
1DSAA 5012 L8: SQL20 February 2021©

LECTURE 8
STRUCTURED QUERY LANGUAGE (SQL)

DSAA 5012
Advanced Data Management for Data 

Science



2DSAA 5012 L8: SQL20 February 2021©

✓ SQL Basic Structure and Operations

✓ Additional Basic Operations

✓ Aggregate Queries

✓ Nested Subqueries and Set Operations

➨ Database Definition
– Basic Types, User-defined Types/Domains

– Creating, Altering, Destroying Relations

– Integrity Constraints: Domain, Key, Foreign Key, General

Database Modification

Using SQL in Applications

STRUCTURED QUERY LANGUAGE (SQL): OUTLINE

3, 4, 5



5DSAA 5012 L8: SQL20 February 2021©

DATA DEFINITION LANGUAGE (DDL)

The SQL DDL allows the specification of:

– The schema for each relation (attributes).

– The types of values associated with each attribute (i.e., the domain 

of values the attribute, such as string, number, date, etc.).

– Integrity constraints (ICs).

➢ domain, key, foreign key, general

– The set of indices to be maintained for each relation.

– The physical storage structure of each relation on disk.

– Security and authorization information for each relation.

3.2



6DSAA 5012 L8: SQL20 February 2021©

BASIC TYPES

char(n) Fixed length character string with length n.

varchar2(n) Variable-length character string with maximum length n.

int An integer (a finite subset of the integers that is machine-dependent).

smallint A small integer (a machine-dependent subset of the integer domain type).

number(p,d) A fixed point number with a total of p digits (the precision) and d digits to 

the right of the decimal point.

float(n) Floating point number, with user-specified precision of at least n digits.

date A date containing a (4 digit) year, month and day of month.

time The time of day, in hours, minutes and seconds.

timestamp A combination of date and time.

☞ Some relational systems also allow user-defined types.

3.2.1, 4.5.1



7DSAA 5012 L8: SQL20 February 2021©

CREATING RELATIONS

⚫ The create table command is used to define and create a relation.

⚫ The domain type of each attribute needs to be specified.

– A default value can be specified for an attribute (only used when no 

value is provided when inserting with attributes explicitly specified).

– Null values are allowed in all the basic domain types.

☞ The domain type of an attribute is enforced by the DBMS 

whenever tuples are added or modified.

3.2.2

create table Student (

studentId char(8) not null, 

name varchar2(45) not null,

email varchar2(15),

birthdate date not null,

cga number(3,2));

create table EnrollsIn (

studentId char(8) not null, 

courseId char(8) not null,

grade number(4,1) default 0 not null);



8DSAA 5012 L8: SQL20 February 2021©

ALTERING AND DESTROYING RELATIONS

⚫ The alter table command is used to add attributes to, modify

attributes in or drop attributes from an existing relation.

Example:

3.2.2

⚫ The drop table command deletes all information about a relation 

(both data and schema).

Example: drop table Student;

alter table Student

add firstYear int;

The schema is altered by 

adding a new attribute and 

extending every tuple in the 

current instance with a null

value for the new attribute.

alter table Student

drop column firstYear;

The schema is altered 

by dropping the 

attribute from the 

relation and deleting its 

value in every tuple.



9DSAA 5012 L8: SQL20 February 2021©

INTEGRITY CONSTRAINTS (IC)

An integrity constraint (IC) ensures that authorized changes 

to the database do not result in a loss of data consistency.

☞ An IC guards against accidental damage to the database.

⚫ ICs are obtained from the requirements of the real-world 

application that is being described in the database relations.

– An IC is a statement about all possible instances!

– For the Student relation, we know, from common knowledge, that 

name is not a key, but the constraint that an attribute, such as 

studentId, is a key must be given to us by the client.

⚫ We can check a database instance to see if an IC is violated, 

but we can never infer that an IC is true by looking at a 

database instance. Why?

4.4



10DSAA 5012 L8: SQL20 February 2021©

DOMAIN CONSTRAINTS

⚫ Domain constraints define valid values for attributes and are 

used to test values inserted into the database and test queries

to ensure that the comparisons make sense.

⚫ Besides a basic domain type, additional constraints can be 

specified on attributes in the create table command.

not null specifies that null values are not allowed.

primary key specifies a key for a relation (the value of a key attribute 

cannot be null⟹ no need to specify not null).

unique specifies that an attribute or a set of attributes is a 

candidate key (the attribute value(s) can be null).

foreign key specifies that one or more attributes refer to a primary key 

attribute in another relation.

check specifies a predicate that the values in every tuple of the 

relation must satisfy.

2.3, 4.4.3



11DSAA 5012 L8: SQL20 February 2021©

create table EnrollsIn (

studentId char(8) references Student(studentId), 

courseId char(8),

grade number(4,1) default 0 not null,

primary key (studentId, courseId));

create table Student (

studentId char(8) primary key, 

name varchar2(45) not null,

email varchar2(30) unique,

birthdate date not null,

cga number(3,2));

FOREIGN KEY CONSTRAINT

A foreign key is a set of attributes in one relation whose values 

must match the primary key values in another relation or be null.

☞ A foreign key must reference the

primary key of the referenced relation.

Example: Only students listed in the Student relation should be 

allowed to enroll for courses.

3.2.2, 4.4.5

create table EnrollsIn (

studentId char(8), 

courseId char(8),

grade number(4,1) default 0 not null,

primary key (studentId, courseId),

foreign key (studentId) references Student(studentId));

☞ Every studentId value in the EnrollsIn relation must reference a 

tuple in the Student relation with a matching studentId value.

create table Student (

studentId char(8) primary key, 

name varchar2(45) not null,

email varchar2(30),

birthdate date not null,

cga number(3,2),

unique (email));



12DSAA 5012 L8: SQL20 February 2021©

FOREIGN KEY:
ENFORCING REFERENTIAL INTEGRITY

Student

studentId name email age cga

22334455 Jones jones@cse 18 3.8

22443366 Smith smith@eecs 18 3.5

22551133 Smith smith@math 19 3.3

EnrollsIn

studentId courseId grade

22334455 COMP1003 66.3

22334455 COMP2012 74.6

22551133 COMP1003 86.2

22334455 COMP3111 75.9

11223344 COMP3111 75.1

⚫ What should be done if an EnrollsIn tuple with a non-existent 

student id is inserted?

☞ Reject it!

⚫ What should be done if a Student tuple is deleted?

1. Disallow deletion of a Student tuple that is referred to by an EnrollsIn

tuple (default action).

2. Alternatively, delete all EnrollsIn tuples that refer to it (on delete 

cascade).

3. Set studentId in EnrollsIn tuples that refer to it to a default value (on 

delete set default).

4. Set studentId in EnrollsIn tuples that refer to it to a null value (on delete 

set null).
☞ 3 and 4 are not applicable in the example 

since studentId is part of the primary key.



13DSAA 5012 L8: SQL20 February 2021©

FOREIGN KEY:
ENFORCING REFERENTIAL INTEGRITY (cont’d)

⚫ What should be done if the primary key student id of a tuple in 

Student is updated?

☞ Reject it!

⚫ Alternatively, propagate the update to the tuples in the EnrollsIn

relation with matching student ids (on update cascade).

Student

studentId name email age cga

22334455 Jones jones@cse 18 3.8

22443366 Smith smith@eecs 18 3.5

22551133 Smith smith@math 19 3.3

EnrollsIn

studentId courseId grade

22334455 COMP1003 66.3

22334455 COMP2012 74.6

22551133 COMP1003 86.2

22334455 COMP3111 75.9

22334466 22334466

22334466

22334466

Oracle Note
Oracle does not support 

on update cascade.

create table EnrollsIn (

studentId char(8), 

courseId char(10),

grade number(4,1) default 0 not null,

primary key (studentId, courseId),

foreign key (studentId) references Student(studentId)

on delete cascade

on update cascade);

The referential integrity 

actions in the referencing 

relation (EnrollsIn) are 

triggered when a tuple in the 

referenced relation (Student) 

is deleted or updated.



14DSAA 5012 L8: SQL20 February 2021©

CHECK CLAUSE: ATTRIBUTES

⚫ The check clause is used to add an integrity constraint for an 

attribute and can contain an arbitrary predicate.

☞ The predicates are similar to those allowed in a where clause.

⚫ The predicate is specified in the definition of a relation and 

checked whenever there is an update to the relation.

Example: Ensure that semester can have only specified values 

and that year is between 2020 and 2024.

4.4.4

create table Section (

courseId char(8), 

sectionId char(2),

semester char(6),

year char(4) check (year between '2020' and '2024'),

check (semester in ('Fall', 'Winter', 'Spring', 'Summer')));



15DSAA 5012 L8: SQL20 February 2021©

STRUCTURED QUERY LANGUAGE 
(SQL)

EXERCISE 1



16DSAA 5012 L8: SQL20 February 2021©

BOOK STORE RELATIONAL SCHEMA

Book(bookId, title, subject, quantityInStock, price, authorId)

Author(authorId, firstName, lastName)

Customer(customerId, firstName, lastName)

BookOrder(orderId, customerId, orderYear)

OrderDetails(orderId, bookId, quantity)

Assumptions

– Each author has authored at least one book in the store.

– Each book has exactly one Author.

– Each order is made by exactly one customer and has one or more 

associated tuples in OrderDetails (e.g., one order may contain several 

different books).

Attribute names in 

italics are foreign 

key attributes.



17DSAA 5012 L8: SQL20 February 2021©

EXERCISE 1

Given the foreign keys of the Book Store relations and 

assuming the referential integrity constraints are 

included in the SQL create statements, what should be 

the create order?

Book

Author Customer

BookOrder

OrderDetails

Book(bookId, title, subject, quantityInStock, price, authorId)

Author(authorId, firstName, lastName)

Customer(customerId, firstName, lastName)

BookOrder(orderId, customerId, orderYear)

OrderDetails(orderId, bookId, quantity)

references references

referencesreferences

Table Possible create order

Author 1 1 2 2 1 3

Customer 2 2 1 1 3 1

Book 3 4 3 4 2 4

BookOrder 4 3 4 3 4 2

OrderDetails 5 5 5 5 5 5

Create Order

Author before Book

Customer before BookOrder

Book, BookOrder before OrderDetails



18DSAA 5012 L8: SQL20 February 2021©

✓ SQL Basic Structure and Operations

✓ Additional Basic Operations

✓ Nested Subqueries and Set Operations

✓ Aggregate Queries

✓ Database Definition

➨ Database Modification

– Deleting Tuples

– Inserting Tuples

– Updating Tuples

Using SQL in Applications

STRUCTURED QUERY LANGUAGE (SQL): OUTLINE

3, 4, 5



19DSAA 5012 L8: SQL20 February 2021©

TUPLE DELETION

⚫ The delete command deletes zero or more tuples from a relation.

Example: Delete all accounts at the Pacific Place branch.

3.9.1

delete from Account

where branchName='Pacific Place';

⚫ A delete statement where clause predicate 

can be as complex as in a select statement.

Example: Delete all depositors at the Langham Place branch.

☞ Can only delete if no integrity constraints are violated!

Account(accountNo, balance, branchName)

Conceptually, deletion is done 

in two steps.

1. Find the tuples to delete.

select * from Account

where branchName='Pacific Place';

2. Delete the tuples found.

Depositor(clientId, accountNo)

delete from Depositor

where accountNo in (select accountNo

from Depositor natural join Account

where branchName= 'Langham Place');

☞ Must also delete 

the accounts of 

these depositors!



20DSAA 5012 L8: SQL20 February 2021©

insert into Account (accountNo, branchName)

values ('A-734', 'Pacific Place');

TUPLE INSERTION

⚫ The insert command adds one or more tuples to a relation.

Example: Add a new Account.

3.9.2

insert into Account values ('A-732', 1200 , 'Pacific Place' );

☞ The order of the values must match the order

of the attributes in the relation.

⚫ Attribute names need to be specified explicitly for order-

independent insertion and to make use of default values.

insert into Account (accountNo, branchName, balance)

values ('A-734', 'Pacific Place', 1200);

Example: Add a new Account with balance set to null.

insert into Account values ('A-733', null, 'Pacific Place');

Account(accountNo, balance, branchName)



21DSAA 5012 L8: SQL20 February 2021©

COMPLEX INSERTION

⚫ Insertion values can be obtained from the result of a query.

Example: Create a $200 savings account for all loan clients of 

the Pacific Place branch. Let the loan number serve 

as the account number for the new savings account.

insert into Account

select loanNo, 200, branchName

from Loan

where branchName='Pacific Place';

insert into Depositor

select clientId, loanNo

from Loan natural join Borrower

where branchName='Pacific Place';

The order of the attributes in 

the select clause must match 

the order of the attributes in 

the table being inserted into.

Note: The keyword values is omitted when the values are obtained from a select statement.

Account(accountNo, balance, branchName) Depositor(clientId, accountNo)

Loan(loanNo, amount, branchName) Borrower(clientId, loanNo)



22DSAA 5012 L8: SQL20 February 2021©

TUPLE UPDATE

⚫ The update command is used to change a value in a tuple.

Example: Increase all accounts with balance over $10,000 by 

6%; all other accounts receive 5%.

3.9.3

update Account

set balance=balance*1.06

where balance>10000;

update Account

set balance=balance*1.05

where balance<=10000;

☞ Need two update statements! The order is important! Why?

Account(accountNo, balance, branchName)

⚫ This update can be specified using the case statement.

update Account

set balance= case

when balance<=10000 then balance*1.05

else balance*1.06

end;



23DSAA 5012 L8: SQL20 February 2021©

STRUCTURED QUERY LANGUAGE 
(SQL)

EXERCISES 2, 3



24DSAA 5012 L8: SQL20 February 2021©

BOOK STORE RELATIONAL SCHEMA

Book(bookId, title, subject, quantityInStock, price, authorId)

Author(authorId, firstName, lastName)

Customer(customerId, firstName, lastName)

BookOrder(orderId, customerId, orderYear)

OrderDetails(orderId, bookId, quantity)

Assumptions

– Each author has authored at least one book in the store.

– Each book has exactly one Author.

– Each order is made by exactly one customer and has one or more 

associated tuples in OrderDetails (e.g., one order may contain several 

different books).

Attribute names in 

italics are foreign 

key attributes.



25DSAA 5012 L8: SQL20 February 2021©

All attributes will be used in the join!

Cannot specify the attribute on which to join.

Note: Natural join cannot be used if self join is required. Why?

EXERCISE 2

For all authors who wrote books on at least two 

subjects, increase the price of all their books 

by 5%.

update Book

set price=1.05*price

where authorId in (select B1.authorId

from Book B1, Book B2

where B1.authorId=B2.authorId

and B1.subject<>B2.subject);

Join Book with 

itself on authorId.

Select only those tuples where the subject is 

different (i.e., the result contains only those authors 

who wrote books on more than one subject).

Update the 

price by 5%.

Book(bookId, title, subject, quantityInStock, price, authorId)



26DSAA 5012 L8: SQL20 February 2021©

EXERCISE 2 (cont’d)

For all authors who wrote books on at least two 

subjects, increase the price of all their books 

by 5%.

update Book

set price=1.05*price

where authorId in (select authorId

from Book

group by authorId

having count(distinct subject)>=2);

Authors who wrote books 

on more than one subject.

Update the 

price by 5%.

Do not

use join

Book(bookId, title, subject, quantityInStock, price, authorId)



27DSAA 5012 L8: SQL20 February 2021©

Can we say⟹ where subject='Art' and subject='Business'?
☞ Selects nothing.

Can we say⟹ where subject='Art' or subject='Business'?
☞ Selects authors who wrote either Art or Business books, 

but not necessarily on both subjects.

No. Why?

No. Why?

EXERCISE 3

Find the last name and first name of all authors who 

wrote books on both the subjects of Art and Business.

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)

select lastName, firstName

from (select authorId, lastName, firstName

from Author natural join Book

where subject='Art'

intersect

select authorId, lastName, firstName

from Author natural join Book

where subject='Business');

Authors who wrote 

books on Art.

Authors who wrote 

books on Business.

Select only those authors in the Art 

set who are also in the Business set.



28DSAA 5012 L8: SQL20 February 2021©

EXERCISE 3 (cont'd)

Find the last name and first name of all authors 

who wrote books on both the subjects of Art and 

Business.

select lastName, firstName

from Author natural join Book

where subject='Art'

and authorId in (select authorId

from Author natural join Book

where subject='Business');

Authors who wrote 

books on Art (Art set).

Authors who wrote books 

on Business (Business set).

Select only those authors in the Art 

set who are also in the Business set.

Use only set 

membership

Book(bookId, title, subject, quantityInStock, price, authorId) Author(authorId, firstName, lastName)



29DSAA 5012 L8: SQL20 February 2021©

✓ SQL Basic Structure and Operations

✓ Additional Basic Operations

✓ Aggregate Queries

✓ Nested Subqueries and Set Operations

✓ Database Definition

✓ Database Modification

➨ Using SQL in Applications
– Database APIs

– Oracle PL/SQL

STRUCTURED QUERY LANGUAGE (SQL): OUTLINE

3, 4, 5



30DSAA 5012 L8: SQL20 February 2021©

API BASICS

⚫ To utilize DBMS services, client applications use a specific

application programming interface (API) provided by the DBMS.

– Facebook, Google, Instagram, etc. have such APIs.

– Proprietary versus generic APIs (e.g., ODBC, JDBC, ADO.NET).

⚫ The DBMS API exposes an interface through which the services 

provided by the DBMS can be accessed.

– The client and server interfaces often are implemented in the form of 

network sockets that use a specific port number on the server (e.g., 

port 1521 for the course Oracle Database server).

SQL query request 

/ response

Database
Server 

interface

data

Database server

Application

Application

Application

DBMS 

API

Client 

interface

Client



31DSAA 5012 L8: SQL20 February 2021©

EMBEDDED VS CALL-LEVEL API

Embedded API

– SQL statements are part of the host programming language source 

code.

– An SQL pre-compiler parses and checks the SQL instructions before

the program is compiled and replaces these with source code 

instructions native to the host programming language used.

Call-level API

– Passes SQL instructions to the DBMS by direct calls to a series of 

procedures, functions or methods provided by the API.

– The calls perform actions such as setting up a database connection, 

sending queries and iterating over the query result.



32DSAA 5012 L8: SQL20 February 2021©

EARLY VS LATE BINDING

⚫ SQL binding is the translation of SQL statements in a 

programming language into a form that can be executed by the 

DBMS.

– Involves performing tasks such as validating table and attribute 

names, checking whether the user or client has sufficient access 

rights and generating an efficient query plan to access the data.

⚫ Early binding performs these tasks only once before program 

execution (i.e., using a pre-compiler with an embedded API).

⚫ Late binding performs these tasks every time at runtime (i.e., 

when using a call-level API).

☞ It is still possible to do early binding using call-level APIs 

by using stored procedures in the DBMS.



33DSAA 5012 L8: SQL20 February 2021©

ORACLE PL/SQL

⚫ PL/SQL (Procedural Language/SQL) allows SQL statements to 

be embedded into a procedural programming language.

⚫ A PL/SQL program is stored as a database object (stored 

procedure/function) and can be

– a procedure, which does not return a value and is invoked using the 

exec keyword.

– a function, which returns a value using the return keyword and is 

invoked by assigning its result to a variable or using it in a select

statement.

⚫ Both types of PL/SQL programs can accept parameters.



34DSAA 5012 L8: SQL20 February 2021©

ORACLE PL/SQL: BASIC STRUCTURE

⚫ The basic processing unit is a block, which is delimited by 

begin…end and which can be nested.

create or replace procedure procedure_name [ as | is ]

Declaration section: contains declaration 

of variables, types, and local subprograms.

begin Executable section: contains procedural 

and SQL statements. This is the only 

section of a block that is required.

exception Exception handling section: contains 

error handling statements.

end;

Allowed SQL statements: select, insert, update, delete (i.e., DML)

Not allowed SQL statements: create, drop, alter, rename (i.e., DDL)



36DSAA 5012 L8: SQL20 February 2021©

PL/SQL PROCEDURE EXAMPLE

Increment the rating of a sailor if the rating is less than 5.

create or replace procedure L9Example1 (sid in int) as

sailorName Sailor.sName%type;

sailorRating Sailor.rating%type;

begin

-- Fetch the sailor’s name and rating into the variables sailorName and sailorRating 

select sName, rating into sailorName, sailorRating from Sailor where sailorId=sid;

if sailorRating<5 then

update Sailor set rating=sailorRating+1 where sailorId=sid;

-- Write record updated message to the Script Output tab

dbms_output.put_line('Sailor ' || sailorName || '(' || sid || ') rating updated from ' || 

sailorRating || ' to ' || (sailorRating+1) || '.');

else

-- Write record NOT updated message to the Script Output tab

dbms_output.put_line('Sailor ' || sailorName || '(' || sid || ') rating ' || sailorRating || ' NOT updated.');

end if;

end L9Example1;

Sailor(sailorId, sName, rating, age)

Local variables sailorName and 

sailorRating are of the same type as 

sName and rating in the Sailor relation.

Must fetch at 

most one record



38DSAA 5012 L8: SQL20 February 2021©

CURSORS

⚫ Procedural programming languages normally process only one 

record at a time.

⚫ Thus, if a select statement returns more than one record, a 

cursor is needed to process the records one-at-a-time.

– A cursor is like a pointer that points to a single record in a query 

result and allows access to the attribute values of that record.

⚫ In PL/SQL a cursor is defined in the declare section

cursor cursor_name is select_statement;

and can be used and managed

– explicitly using the open, fetch and close commands and by checking 

cursor status.

– implicitly using the for…loop statement where the cursor_name

replaces the range limit so the loop ranges from the first record of 

the cursor to the last record of the cursor.



39DSAA 5012 L8: SQL20 February 2021©

PL/SQL CURSOR EXAMPLE

create or replace procedure L9Example2 as

currentSailorId Sailor.sailorId%type;

-- Declare the cursors for the sailor and reserves tables

cursor sailorCursor is select * from Sailor order by sName;

cursor reservesCursor is select count(boatid) reservations from reserves where sailorId=currentSailorId;

begin

-- Fetch the sailorCursor records one-by-one

for sailorRecord in sailorCursor loop

-- Assign the sailor id for the current sailor record

currentSailorId:=sailorRecord.sailorId;

-- Fetch the reservesCursor records one-by-one

for reservesRecord in reservesCursor loop

-- Insert into appropriate table

if reservesRecord.reservations=0 then

insert into ReservationSummary values (sailorRecord.sailorId, sailorRecord.sName, 'No'); 

else

insert into ReservationSummary values (sailorRecord.sailorId, sailorRecord.sName, 'Yes');

end if;

end loop;

end loop;

end L9Example2;

Sailor(sailorId, sName, rating, age) Reserves(sailorId, boatId, rDate)

sailorCursor and reservesCursor

define what data should be 

retrieved when their select

statement is executed.

Determine which sailors have/have not reserved boats.

Executes reservesCursor select statement 

using the value in currentSailorId

(i.e., retrieves only the Reserves records 

where sailorId=currentSailorId).

Executes sailorCursor select statement 

(i.e., retrieves all Sailor records).

Assigns the sailorId value in the current 

Sailor record to the variable currentSailorId.



40DSAA 5012 L8: SQL20 February 2021©

PL/SQL EXCEPTIONS

⚫ Predefined exceptions are raised 

implicitly by PL/SQL if the exception 

occurs.

⚫ User-defined exceptions are declared in 

the declaration section,

exception_name exception;

raised explicitly within a begin…end block

if condition then

raise exception_name;

end if;

and handled in the exception section 

within the begin…end block.

exception

when exception_name then...

Predefined Exceptions
ACCESS_INTO_NULL ORA-06530

CASE_NOT_FOUND ORA-06592

COLLECTION_IS_NULL ORA-06531

CURSOR_ALREADY_OPEN ORA-06511

DUP_VAL_ON_INDEX ORA-00001

INVALID_CURSOR ORA-01001

INVALID_NUMBER ORA-01722

LOGIN_DENIED ORA-01017

NO_DATA_FOUND ORA-01403

NOT_LOGGED_ON ORA-01012

PROGRAM_ERROR ORA-06501

ROWTYPE_MISMATCH ORA-06504

SELF_IS_NULL ORA-30625

STORAGE_ERROR ORA-06500

SUBSCRIPT_BEYOND_COUNT ORA-06533

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532

SYS_INVALID_ROWID ORA-01410

TIMEOUT_ON_RESOURCE ORA-00051

TOO_MANY_ROWS ORA-01422

VALUE_ERROR ORA-06502

ZERO_DIVIDE ORA-01476



41DSAA 5012 L8: SQL20 February 2021©

PL/SQL EXCEPTIONS EXAMPLE

Sailor(sailorId, sName, rating, age) Reserves(sailorId, boatId, rDate)

create or replace procedure L9Example3 (sid in int) as

sailorName Sailor.sName%type;

sailorRating Sailor.rating%type;

begin

-- Fetch the sailor’s name and rating into the variables sailorName and sailorRating 

select sName, rating into sailorName, sailorRating from Sailor where sailorId=sid;

if sailorRating<5 then

update Sailor set rating=sailorRating+1 where sailorId=sid;

-- Write record updated message to the Script Output tab

dbms_output.put_line('Sailor ' || sailorName || '(' || sid || ') rating updated from ' || 

sailorRating || ' to ' || (sailorRating+1) || '.');

else

-- Write record NOT updated message to the Script Output tab

dbms_output.put_line('Sailor ' || sailorName || '(' || sid || ') rating ' || sailorRating || ' NOT updated.');

end if;

exception

when no_data_found then

-- Write exception message to the Script Output tab

dbms_output.put_line('There is no sailor with id ' || sid || '.');

end L9Example3;

Increment the rating of a sailor if the rating is less than 5.

If the sailor id does not exist, 

then the no_data_found

exception is raised causing 

execution to pass to the 

exception section and to the 

no_data_found exception code.



42DSAA 5012 L8: SQL20 February 2021©

⚫ Structured Query Language (SQL) is a relational query 

language that provides facilities to

Query Relations

➢ Select-From-Where Statement

➢ Set Operations (Union, Intersect, Except)

➢ Nested Subqueries (to test for set membership, comparison, cardinality)

➢ Aggregate Functions (avg, min, max, sum, count)

➢ Group By with Having clause

Create and Modify Relations

➢ Create, Alter, Drop Tables

➢ Specify integrity constraints: domain, key, foreign key, general

➢ Insert, Delete, Update Tuples

Access a Database from a Programming Language

STRUCTURED QUERY LANGUAGE (SQL): SUMMARY



43DSAA 5012 L8: SQL20 February 2021©

✓ Introduction

✓ Entity-Relationship (E-R) Model and Database Design

✓ Relational Algebra

✓ Structured Query Language (SQL)

✓ Relational Database Design

➨ Storage and File Structure

Indexing

Query Processing

Query Optimization

Transactions

Concurrency Control

Recovery System

NoSQL Databases

COMP 3311: SYLLABUS



44DSAA 5012 L8: SQL20 February 2021©

STRUCTURED QUERY LANGUAGE 
(SQL)

EXERCISES 4, 5, 6, 7

Upload your completed exercise 

worksheet to Canvas by 11 p.m. 

Feb 26th


