
1DSAA 5012 L12: INDEXING6 March 2021©

LECTURE 12
INDEXING: INTRODUCTION

DSAA 5012
Advanced Data Management for Data

Science

2DSAA 5012 L12: INDEXING6 March 2021©

➨ Indexing Basic Concepts

Ordered Index

– Dense vs. Sparse

– Clustering vs. Non-clustering

B+-tree Index

Hash Index

– Static Hashing

– Dynamic Hashing

Bitmap Index

Indexing Basic Concepts

INDEXING: OUTLINE

14, 24

5DSAA 5012 L12: INDEXING6 March 2021©

INDEXING BASIC CONCEPTS

Find me the record of the person with hkid A634569.

8,000,000 records of Hong Kong residents.

8 records/page⟹ 1,000,000 pages!

6DSAA 5012 L12: INDEXING6 March 2021©

How would you arrange the records in the catalog?

⚫ Your goal is to minimize the cost (i.e., effort) of finding records.

⚫ We measure this cost as the number of pages you have to

“access” before finding the record.

Solution 1: Random order

If the catalog records are in random order of hkid, then in the worst case

you must search the entire catalog (cost = 1,000,000 page accesses)

before finding a record, or to determine that the hkid does not exist in the

catalog.

Solution 2: Records ordered on hkid

Cost: log2106 = 20 page accesses. (binary search)

Cost: 1,000,000 / 2 = 500,000 page accesses. (linear search)What would be the average case page access cost?

What would be the average case page access cost?

INDEXING BASIC CONCEPTS (cont’d)

Records: 8,000,000

Records/page: 8

Pages: 1,000,000

7DSAA 5012 L12: INDEXING6 March 2021©

INDEXING BASIC CONCEPTS (cont’d)

How would you arrange the records in the catalog?

⚫ Your goal is to minimize the cost (i.e., effort) of finding records.

⚫ We measure this cost as the number of pages you have to

“access” before finding the record.

⚫ The same considerations apply when we use computers;

instead of paper pages, we have disk pages of a fixed size.

– Every time we read something from the disk (i.e., do a page I/O), we

need to bring an entire page into main memory.

– The major cost is how many pages we read because disk operations

are much more expensive than CPU operations.

☞ Can we reduce the cost even more?

Records: 8,000,000

Records/page: 8

Pages: 1,000,000

8DSAA 5012 L12: INDEXING6 March 2021©

INDEXING BASIC CONCEPTS (cont’d)

⚫ Continuing with our catalog example, let’s keep the ordered file,

but also build an additional index (e.g., at the front of the catalog).

– Each index entry is a small record, that contains a hkid and the page

where you can find this hkid.

– For example, <A634569, 259> means that hkid A634569 is on page

259 of the catalog.

☞ hkid is the search key of the index.

Recall: A search key is not the same as a primary key or a candidate key!

– Each index entry is much smaller than the actual record.

– Let's assume that we can fit 100 index entries per paper page.

☞ The index entries are also ordered on hkid.

Records: 8,000,000

Records/page: 8

Pages: 1,000,000

9DSAA 5012 L12: INDEXING6 March 2021©

INDEXING BASIC CONCEPTS (cont’d)

Do we need an index entry for each of the 8,000,000 records?

No We only need an entry for the first record of each page.

Example

If there are two consecutive entries <A634569, 259>,

<A700000, 260> in the index, then we know that

every hkid starting from A634569 and up to, but

not including, A700000 must be on page 259.

Therefore, we need only 1,000,000 index

entries (one for each page of the main catalog).

Since we can fit 100 index entries per page,

and we have 1,000,000 index entries, the index is

1,000,000/100 = 10,000 pages (i.e., 104 pages).

.

.

.

A634569, 259

A700000, 260
.
.
.

Index

A634569, …

.

.

.

Page 259

A700000, …

.

.

.

Page 260

.

.

.

.

.

.

index entries/page: 100

10DSAA 5012 L12: INDEXING6 March 2021©

follow pointer to catalog page

INDEXING BASIC CONCEPTS (cont’d)

How can we use the index to speed up search for a record?

– Use binary search on the index to find the index page containing the

largest hkid value that is smaller or equal to the search hkid value.

➢ The cost for this search is log2104 = 14 page accesses.

– Then, follow the pointer from that index entry to the actual catalog page.

➢ The cost for this is 1 page access.

Total cost: 14 + 1 = 15 page accesses.
(Page accesses reduced from 20 →15)

… … …

… … … …

index entries/page: 100

index pages: 10,000 (104)

index

catalog

page 1 page 2

page 2 page 10,000

page 1,000,000

…

…

…

page 1

page 101

do binary search on index;

11DSAA 5012 L12: INDEXING6 March 2021©

Can we reduce the cost even further?

Yes Build an index on the index (i.e., a second level index)!

– The second level index contains 10,000 index entries, one for each

page of the first index, and requires 10,000/100 = 100 (102) pages.

– Use binary search on the second level index to find the index page

containing the largest hkid that is smaller or equal to the search hkid.

➢ The cost is log2102 = 7 page accesses.

– Then, follow the pointer from that index entry to the first level index

and finally follow the pointer to the actual catalog page.

➢ The cost for this is

2 page accesses. index

catalog

page 1 page 2

page 2 page 10,000

page 1,000,000

…

…

…

page 1

page 101

INDEXING BASIC CONCEPTS (cont’d)

… … …

… … … …

… ……

page 100page 1

Total cost:

7 + 2 = 9

page accesses.
(Page accesses

reduced from

20 → 15 → 9.)

14.2.2index entries/page: 100

index pages: 10,000 (104)

follow pointer to catalog pagedo binary search on index;

12DSAA 5012 L12: INDEXING6 March 2021©

INDEXING BASIC CONCEPTS (cont’d)

Can we reduce the cost even further?

Yes Build a third level index!

– The third level index contains 100 index entries, one for each page

of the second level index, and requires 100/100 = 1 page.

– Read this page to find the largest hkid that is smaller or equal to the

search hkid, and follow the pointer to the second level index, then

follow the pointer to the first level index and finally follow the pointer

to the actual catalog page.

… … …

… … … …

… …

…

root

…

page 100page 1

Total cost: 4 page

accesses!
(1 access for each

index level plus 1

access to the catalog)
(Page accesses reduced

from 20 → 15 → 9 → 4!)

catalog

page 1 page 2

page 2 page 10,000

page 1,000,000

…

…

…

page 1

page 101

index

index entries/page: 100

index pages: 10,000 (104)

13DSAA 5012 L12: INDEXING6 March 2021©

INDEXING BASIC CONCEPTS (cont’d)

Search key The attribute, or set of attributes, used to search for

records in a file.

☞ Do not confuse with the concept of primary or candidate key.

➢ A primary key is always also a search key.

➢ A search key is not necessarily a primary key (it can be any table attribute).

– In the preceding example, the search key was hkid since records

were found given a value for hkid.

– To find records given the name (or another attribute) additional

indexes need to be constructed.

Index file A file consisting of records (called index entries) of the

form <search key, pointer>.

– Index files are typically much smaller than the original file as they do

not store all the attributes, but only search-key values and pointers.

14DSAA 5012 L12: INDEXING6 March 2021©

INDEXING:
INTRODUCTION

EXERCISE 1

15DSAA 5012 L12: EXERCISES6 March 2021©

Operation Heap File Sequential File Hash File

Scan all records B B 1.251 B

Equality search2 0.5 B log2 B 1

Range search B
log2 B +

of pages with matches
1.251 B

B is the number of pages in a file.

1 Assumes 80% occupancy of pages to allow for future additions. Thus 1.25B pages are needed to store all records.

2 Assumes the search is on the key value.

CALCULATING FILE SIZE AND SEARCH COST

⚫ The blocking factor, bf, of a file is the number of records that fit in a

page and is equal to

bytes per page / # bytes per record

⚫ The number of pages needed to store a file is equal to

records / bf

16DSAA 5012 L12: EXERCISES6 March 2021©

EXERCISE 1

A movie database has the following files and sizes of each field:

Film(title: 40 bytes, director: 20 bytes, releaseYear: 4 bytes, company: 20 bytes)

Actor(id: 4 bytes, name: 20 bytes, dateOfBirth: 4 bytes)

There are 30,000 film and 100,000 actor records.

Each page is 512 bytes. Each pointer is 6 bytes.

a) What is the blocking factor bfF for the Film file and bfA for the Actor file?

bfF:

bfA:

84 bytes/record

28 bytes/record

512 bytes per page / 84 bytes per Film record = 6 records/page

512 bytes per page / 28 bytes per Actor record = 18 records/page

Film records: 30,000

Actor records: 100,000

Page size: 512 bytes

Pointer size: 6 bytes

bf = # bytes per page / # bytes per record

pages = # records / bfr

17DSAA 5012 L12: EXERCISES6 March 2021©

EXERCISE 1 (cont’d)

b) Assuming the Film file is ordered on title and there is no index, what is the

page I/O cost for:

i. Finding the film with title "Titanic”?

pages needed:

page I/O cost:

ii. Finding all the films directed by “John Woo”?

page I/O cost:

Explanation: A sequential scan is needed since the file is not ordered

based on director.

log25000 = 13 (binary search)

30,000 Film records / 6 Film records per page = 5000

Film records: 30,000

Actor records: 100,000

Page size: 512 bytes

Pointer size: 6 bytes

Film record size: 84 bytes; bfF = 6

Actor record size: 28 bytes; bfA = 18

5000 Why?

bf = # bytes per page / # bytes per record

pages = # records / bfr

18DSAA 5012 L12: INDEXING6 March 2021©

✓ Indexing Basic Concepts

➨ Ordered Index

– Dense vs. Sparse

– Clustering vs. Non-clustering

B+-tree Index

Hash Index

– Static Hashing

– Dynamic Hashing

Bitmap Index

INDEXING: OUTLINE

14, 24

19DSAA 5012 L12: INDEXING6 March 2021©

ORDERED INDEX

⚫ The index constructed for hkid is an ordered (or tree) index.

– The index entries are ordered (sorted) on the search key (e.g., hkid).

– Searching for a record always starts from the root and follows a

single path to the leaf that contains the search key of the record.

– An additional access is then required to retrieve the record from the

data file.

Page I/O cost: height of the tree (i.e., number of index levels) plus 1.

14.2

… … …

… … … …

… …

…

An ordered index

is good for equality

and range search.

root

…

page 100page 1

data file

page 1 page 2

page 2 page 10,000

page 1,000,000

…

…

…

page 1

page 101

index

leaves

20DSAA 5012 L12: INDEXING6 March 2021©

ORDERED INDEX (cont’d)

⚫ An index page is also called an index node.

⚫ The number of children (pointers) of an index node is called the

fan-out.

☞ In our example, the fan-out is 100.

⚫ The height of the tree is logfan-out(# of leaf index entries).

☞ In our example, the height of the tree is log100(106) = 3.

… … …

… … … …

… …

…

root

…

page 100page 1

data file

page 1 page 2

page 2 page 10,000

page 1,000,000

…

…

…

page 1

page 101

index

leaves

21DSAA 5012 L12: INDEXING6 March 2021©

DENSE VS. SPARSE INDEX

Dense Index Contains an index entry for every search-key value.

Sparse Index Contains an index entry for only some search-key

values.

Example: The hkid index only has index entries for the first record in

each page of the file.

– In general, there is an index entry for every data file page corresponding

to the minimum search-key value in the page.

– To locate a record with search-key value K (single-level index):

➢ Find the index entry with largest search-key value ≤ K.

➢ Follow the pointer to the data file page.

➢ Starting at the first record on this page, search the data file sequentially until

the search key value is found or the end of the data file is reached.

– Sparse indexes require less space and less maintenance overhead for

insertions and deletions than dense indexes.

14.2.1

22DSAA 5012 L12: INDEXING6 March 2021©

CLUSTERING/PRIMARY INDEX

– A clustering index is an index for which the data file is ordered on the

search key of the index (e.g., the index on hkid).

– If a clustering index search key is the primary key, then the index is

called a primary index.

☞ There can only be one primary index for a data file.

☞ A primary index is usually sparse.

– Index-sequential file: An ordered, sequential file with a primary index

(also called ISAM - indexed sequential access method).

… …

… … … …

… …

…

…

…

index root

index leaf level

data file

(ordered on search key)

…

…

…

…

index

23DSAA 5012 L12: INDEXING6 March 2021©

NON-CLUSTERING/SECONDARY INDEX

– A non-clustering/secondary index is an index for which the data file is

not ordered on the search key of the index.

☞ There can be several secondary indexes for a data file.

☞ A secondary index must be dense.

… …

… … … …

… …

…

…

…

index root

index leaf level

data file

(not ordered on search key)

…

…

…

…

index

14.2.4

24DSAA 5012 L12: INDEXING6 March 2021©

SECONDARY INDEX EXAMPLE

For the catalog of Hong Kong residents, we also want to be able to

find records given a name. How to find the record fast?

Solution: Build another index on the name

– Since the file is ordered on hkid, the new index must be secondary

(since the file is not ordered on the search key) and dense (there is

one entry for every search-key value).

– Assuming that all names are distinct (not realistic!), the index will

contain 8 million entries.

– Assuming that the fan-out is again 100, the cost of finding a record

given the name is log100(8,000,000) + 1 = 4 + 1 = 5 page I/Os.

⚫ A secondary index is almost as good as a primary index (in

terms of cost) when retrieving a single record.

– However, it may be very expensive when retrieving many records

(e.g., for range queries) and it requires more storage space.

index entries/page: 100

height of the index

25DSAA 5012 L12: INDEXING6 March 2021©

INDEX ON NON-CANDIDATE SEARCH KEY

Chan A, …

Chan A,…

Chan B, …

.

.

.

Chan C, …

Chan C, …

Index

Chan A

Chan C

Chan E

Chan H

.

.

.

Chan C, …

Chan C,…

Chan D, …

.

.

.

.

.

.

.

.

.

We want to build an index on name, but there may be several

people with the same name.

⟹ Zero, one or more records are retrieved.

☞Not a problem if the index is clustering and sparse.

How would you do it?

26DSAA 5012 L12: INDEXING6 March 2021©

INDEX ON NON-CANDIDATE SEARCH KEY

If the index is non-clustering (secondary) and dense.

Option 1: Use variable length index entries

– Each entry contains a name and pointers to all records with this name.

Example: <Jackie Chan, pointer1, pointer2, …., pointern>

Problem: Complicated implementation as a file organization that supports

records of variable length is needed.

Option 2: Use multiple index entries per name

– There is an entry for every person, if he/she shares the same name with

other people.

Example: <Jackie Chan, pointer1>, <Jackie Chan, pointer2>, …, <Jackie

Chan, pointern>

Problem: Redundancy – the name repeats many times.

27DSAA 5012 L12: INDEXING6 March 2021©

INDEX ON NON-CANDIDATE SEARCH KEY (cont’d)

Option 3: Use an extra level of indirection (most common approach)

– An index entry points to a list that contains the pointers to all the records with

the same name ⟹ requires one additional page access.

☞ Also called an inverted file.

A101102 Perry Pong …

A102305 Ricky Chan …

… A103215 Miles Law …

… A104101 Jackie Chan …

Jackie Chan A105543 Jackie Chan …

… A106201 Jackie Chan …

… A107217 Bob Hui …

A108110 David Wong …
...

index file data file

dense index

indirection level

28DSAA 5012 L12: INDEXING6 March 2021©

INDEX ON COMPOSITE SEARCH KEY

⚫ If a query often uses certain combinations of attributes together

(e.g., hkid, age), then creating an index on this attribute

combination can speed up retrieval.

☞ A composite search key is a search key that

consists of more than one attribute.

⚫ The index structure for a composite search key is the same as

that for a single attribute search key.

⚫ For a composite search key, the ordering of search key values

is the lexicographic ordering.

Example: For two search keys (a1, a2) and (b1, b2):

(a1, a2) < (b1, b2) if either a1 < b1 or a1 = b1 and a2 < b2

– This is basically the same as alphabetic ordering of words.

14.2.5

29DSAA 5012 L12: INDEXING6 March 2021©

INDEXING:
INTRODUCTION

EXERCISE 2

30DSAA 5012 L12: INDEXING6 March 2021©

EXERCISE 2

Assume the Actor file is ordered on name and we want to create an

ordered index on id (4 bytes) where each index entry has the form

<id, pointer>.

a) What is bfAindex if the index is single-level?

bfAindex:

b) How many index entries are needed? (Briefly explain your

answer.)

index entries:

Explanation: A dense index is needed (i.e., one entry per Actor

record) since the file is ordered on name, not on id.

c) How many pages are required for the Actor index entries?

pages needed:

512 bytes per page / (4 + 6) bytes per index entry = 51

100,000 Why?

100,000 Actor records / 51 index entries per page = 1961

Film records: 30,000

Actor records: 100,000

Page size: 512 bytes

Pointer size: 6 bytes

Film record size: 84 bytes; bfF = 6

Actor record size: 28 bytes; bfA = 18

bf = # bytes per page / # bytes per record

pages = # records / bfr

31DSAA 5012 L12: INDEXING6 March 2021©

d) What is the page I/O cost of retrieval based on a single id value

using the Actor index (e.g., “Find actor with id 100”)?

page I/O cost:

EXERCISE 2 (cont’d)

log21961 + 1 = 12

Actor file ordered

on name.

Film records: 30,000

Actor records: 100,000

Page size: 512 bytes

Pointer size: 6 bytes

Film record size: 84 bytes; bfF = 6

Actor record size: 28 bytes; bfA = 18

bf = # bytes per page / # bytes per record

pages = # records / bfr

bfAindex = 51

100,000 records, 18 records/page⟹ 5556 pages data file

100,000 index entries, 51 entries/page⟹ 1961 pages

(need to point to every record)
dense

1 2 5555 5556... Actor file

21 1961... index level 1

Actor single-level index

32DSAA 5012 L12: INDEXING6 March 2021©

e) If the single-level index is converted into a multi-level index, how

many levels are needed (assuming full pages)? (Briefly explain

your answer.)

index levels: 3

Explanation:

EXERCISE 2 (cont’d)

sparse
1961 index entries, 51 entries/page⟹ 39 pages

(only need to point to every page)
1 2 39... index level 2

bfAindex = 51

100,000 records, 18 records/page⟹ 5556 pages data file

100,000 index entries, 51 entries/page⟹ 1961 pages

(need to point to every record)
dense

1 2 5555 5556... Actor file

21 1961... index level 1

Film records: 30,000

Actor records: 100,000

Page size: 512 bytes

Pointer size: 6 bytes

Film record size: 84 bytes; bfF = 6

Actor record size: 28 bytes; bfA = 18

bf = # bytes per page / # bytes per record

pages = # records / bfr

Actor multi-level index

39 index entries, 51 entries/page⟹ 1 page

(only need to point to every page)
1 index level 3sparse

33DSAA 5012 L12: INDEXING6 March 2021©

EXERCISE 2 (cont’d)

f) Using the multi-level index, what is the page I/O cost of

answering the query “Find the actor with id 100”?

page I/O cost:

Explanation: 3 page I/Os for the index plus 1 page I/O to retrieve

the record.

4 Why?

Film records: 30,000

Actor records: 100,000

Page size: 512 bytes

Pointer size: 6 bytes

Film record size: 84 bytes; bfF = 6

Actor record size: 28 bytes; bfA = 18

bf = # bytes per page / # bytes per record

pages = # records / bfr

index sparse 1 2 39... Level 2 index

1 Level 3 index

data file

dense

1 2 5555 5556... Actor file

21 1961... Level 1 index

sparse

34DSAA 5012 L12: INDEXING6 March 2021©

INDEXING 1
EXERCISES 3, 4

Upload your completed exercise

worksheet to Canvas by March

12th 11 p.m.

