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Ensemble Learning: An 

Introduction

Adapted from Slides by Tan, 

Steinbach, Kumar



2

General Idea
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Why does it work?

• Suppose there are 25 base classifiers

– Each classifier has error rate,  = 0.35

– Assume classifiers are independent

– Probability that the ensemble classifier makes 

a wrong prediction:




 






25

13

25 06.0)1(
25

i

ii

i




4

Examples of Ensemble Methods

• How to generate an ensemble of 

classifiers?

– Bagging

– Boosting
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Bagging

• Sampling with replacement

• Build classifier on each bootstrap sample

• Each sample has probability (1 – 1/n)n of 

being selected as test data

• Training data = 1- (1 – 1/n)n of the original 

data

Original Data 1 2 3 4 5 6 7 8 9 10

Bagging (Round 1) 7 8 10 8 2 5 10 10 5 9

Bagging (Round 2) 1 4 9 1 2 3 2 7 3 2

Bagging (Round 3) 1 8 5 10 5 5 9 6 3 7

Training Data
Data ID
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The 0.632 bootstrap

• This method is also called the 0.632 bootstrap

– A particular training data has a probability of 

1-1/n of not being picked

– Thus its probability of ending up in the test 

data (not selected) is:

– This means the training data will contain 

approximately 63.2% of the instances
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Example of Bagging

0.3 0.8 x

+1
+1

-1

Assume that the training data is:

0.4 to 0.7:

Goal: find a collection of 10 simple thresholding classifiers that 

collectively can classify correctly.

-Each simple (or weak) classifier is: 

(x<=K  class = +1 or -1 depending on 

which value yields the lowest error; where K

is determined by entropy minimization)



8



9

Bagging (applied to training data)

Accuracy of ensemble classifier: 100% 
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Bagging- Summary

• Works well if the base classifiers are 
unstable (complement each other)

• Increased accuracy because it reduces 
the variance of the individual classifier

• Does not focus on any particular instance 
of the training data
– Therefore, less susceptible to model over-

fitting when applied to noisy data

• What if we want to focus on a particular 
instances of training data?
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In general, 

- Bias is contributed to by the training error; a complex 

model has low bias.

-Variance is caused by future error; a complex model has

High variance.

- Bagging reduces the variance in the base classifiers.
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Boosting

• An iterative procedure to adaptively 

change distribution of training data by 

focusing more on previously misclassified 

records

– Initially, all N records are assigned equal 

weights

– Unlike bagging, weights may change at the 

end of a boosting round
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Boosting

• Records that are wrongly classified will 

have their weights increased

• Records that are classified correctly will 

have their weights decreased
Original Data 1 2 3 4 5 6 7 8 9 10

Boosting (Round 1) 7 3 2 8 7 9 4 10 6 3

Boosting (Round 2) 5 4 9 4 2 5 1 7 4 2

Boosting (Round 3) 4 4 8 10 4 5 4 6 3 4

• Example 4 is hard to classify

• Its weight is increased, therefore it is more likely 
to be chosen again in subsequent rounds
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Boosting

• Equal weights are assigned to each training 
instance (1/d for round 1) at first

• After a classifier Ci is learned, the weights are 
adjusted to allow the subsequent classifier 

Ci+1 to “pay more attention” to data that were 
misclassified by Ci.

• Final boosted classifier C* combines the 
votes of each individual classifier
– Weight of each classifier’s vote is a function of its 

accuracy

• Adaboost – popular boosting algorithm
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Adaboost (Adaptive Boost)

• Input:

– Training set D containing N instances

– T rounds

– A classification learning scheme

• Output: 

– A composite model
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Adaboost: Training Phase

• Training data D contain N labeled data (X1,y1), 
(X2,y2 ), (X3,y3),….(XN,yN)

• Initially assign equal weight 1/d to each data

• To generate T base classifiers, we need T
rounds or iterations

• Round i, data from D are sampled with 
replacement , to form Di (size N)

• Each data’s chance of being selected in the 
next rounds depends on its weight
– Each time the new sample is generated directly from 

the training data D with different sampling probability 
according to the weights; these weights are not zero
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Adaboost: Training Phase

• Base classifier Ci, is derived from training 

data of Di

• Error of Ci is tested using Di

• Weights of training data are adjusted 

depending on how they were classified

– Correctly classified: Decrease weight

– Incorrectly classified: Increase weight

• Weight of a data indicates how hard it is to 

classify it (directly proportional)
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Adaboost: Testing Phase

• The lower a classifier error rate, the more accurate it is, 

and therefore, the higher its weight for voting should be

• Weight of a classifier Ci’s vote is 

• Testing: 

– For each class c, sum the weights of each classifier that 

assigned class c to X (unseen data)

– The class with the highest sum is the WINNER!
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Example: AdaBoost

• Base classifiers: C1, C2, …, CT

• Error rate: (i = index of 

classifier, j=index of instance)

• Importance of a classifier: 
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Example: AdaBoost

• Assume: N training data in D, T rounds, (xj,yj) are 
the training data, Ci, ai are the classifier and 
weight of the ith round, respectively.

• Weight update on all training data in D:

factorion normalizat  theis    where
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Boosting

Round 1 + + + -- - - - - -
0.0094 0.0094 0.4623

B1

 = 1.9459

Illustrating AdaBoost
Data points 
for training

Initial weights for each data point

Original

Data + + + -- - - - + +

0.1 0.1 0.1
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Illustrating AdaBoost

Boosting

Round 1 + + + -- - - - - -

Boosting

Round 2 - - - -- - - - + +

Boosting

Round 3 + + + ++ + + + + +

Overall + + + -- - - - + +

0.0094 0.0094 0.4623

0.3037 0.0009 0.0422

0.0276 0.1819 0.0038

B1

B2

B3

 = 1.9459

 = 2.9323

 = 3.8744
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Random Forests

• Ensemble method specifically designed for 

decision tree classifiers

• Random Forests grows many trees

– Ensemble of unpruned decision trees

– Each base classifier classifies a “new” vector of 

attributes from the original data

– Final result on classifying a new instance: voting.  

Forest chooses the classification result having the 

most votes (over all the trees in the forest)
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Random Forests

• Introduce two sources of randomness: 

“Bagging” and “Random input vectors”

– Bagging method: each tree is grown using a 

bootstrap sample of training data

– Random vector method: At each node, best 

split is chosen from a random sample of m

attributes instead of all attributes
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Random Forests
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Methods for Growing the Trees

• Fix a m <= M.  At each node
– Method 1: 

• Choose m attributes randomly, compute their information 
gains, and choose the attribute with the largest gain to split

– Method 2:
• (When M is not very large): select L of the attributes 

randomly.  Compute a linear combination of the L attributes 
using weights generated from [-1,+1] randomly. That is, new 
A = Sum(Wi*Ai), i=1..L.

– Method 3: 
• Compute the information gain of all M attributes.  Select the 

top m attributes by information gain.  Randomly select one of 
the m attributes as the splitting node.
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Random Forest Algorithm: 

method 1 in previous slide
• M input features in training data, a number 

m<<M is specified such that at each node, m 
features are selected at random out of the M and 
the best split on these m features is used to split 
the node. (In weather data, M=4, and m is 
between 1 and 4)

• m is held constant during the forest growing

• Each tree is grown to the largest extent possible 
(deep tree, overfit easily), and there is no 
pruning
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Generalization Error of Random 

Forests (page 291 of Tan book)

• It can be proven that the generalization Error <= 

r(1-s2)/s2,

 r is the average correlation among the trees

– s is the strength of the tree classifiers

• Strength is defined as how certain the classification results 

are on the training data on average

• How certain is measured Pr(C1|X)-Pr(C2-X), where C1, C2 

are class values of two highest probability in decreasing 

order for input instance X.

• Thus, higher diversity and accuracy is good for 

performance


