
Middle-Tier Database Caching for e-Business *
Qiong Luo# Sailesh Krishnamurthy+ C. Mohanδ Hamid Piraheshδ

Honguk Wooθ Bruce G. Lindsayδ Jeffrey F. Naughton#
* Work done at IBM Almaden Research Center

#Computer Sciences Dept, University of Wisconsin, Madison, WI 53706
+Department of EECS, UC Berkeley, Berkeley, CA 94720

δIBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120
θDepartment of Computer Sciences, University of Texas-Austin, Austin, TX 78712
Contact email: {mohan@almaden.ibm.com, qiongluo@cs.wisc.edu}

ABSTRACT
While scaling up to the enormous and growing Internet
population with unpredictable usage patterns, E-commerce
applications face severe challenges in cost and manageability,
especially for database servers that are deployed as those
applications’ backends in a multi-tier configuration. Middle-tier
database caching is one solution to this problem. In this paper, we
present a simple extension to the existing federated features in
DB2 UDB, which enables a regular DB2 instance to become a
DBCache without any application modification. On deployment
of a DBCache at an application server, arbitrary SQL statements
generated from the unchanged application that are intended for a
backend database server, can be answered: at the cache, at the
backend database server, or at both locations in a distributed
manner. The factors that determine the distribution of workload
include the SQL statement type, the cache content, the application
requirement on data freshness, and cost-based optimization at the
cache. We have developed a research prototype of DBCache, and
conducted an extensive set of experiments with an E-Commerce
benchmark to show the benefits of this approach and illustrate
tradeoffs in caching considerations.

1. INTRODUCTION

Various caching techniques have been deployed to increase the
performance of multi-tier web-based applications in response to
the ever-increasing scale of the Internet. Such applications
typically achieve a measure of scalability with application servers
running on multiple (relatively cheaper) systems connecting to a
single database system. This, however, does not solve the
scalability problem for backend database servers. One way to
address this problem is middle-tier database caching (shown as
the gray box in Figure 1), which is deployed in the middle,

usually at the application server, of a multi-tier web site
infrastructure. Example commercial products include the
Database Cache of Oracle 9i Internet Application Server [19] and
TimesTen's Front-Tier [22].

In a multi-tier e-Business infrastructure, middle-tier database
caching is attractive because of improvements to the following
attributes:

(1) Scalability: by distributing query workload from
backend to multiple cheap front-end systems.

(2) Flexibility: with QoS (Quality Of Service) control
where each cache hosts different parts of the backend
data, e.g., the data of Platinum customers is cached
while that of ordinary customers is not.

(3) Availability: by continued service for applications that
depend only on cached tables even if the backend server
is unavailable.

(4) Performance: by potentially responding to locality
patterns in the workload and smoothing out load peaks.

Using a general-purpose industrial-strength DBMS for
middle-tier database caching is especially attractive to e-
Businesses, even though there have been special-purpose
solutions (for example, e-Bay uses its own front-end data cache
[18]). This is mainly due to crucial business requirements such as
reliability, scalability, and manageability. For instance, an
industrial-strength DBMS closely tracks SQL enhancements, and
provides a variety of tools for application development. More
importantly, it provides transactional support, multiple
consistency levels, and efficient recovery services. Finally, an
ideal cache should be transparent to the application that uses it,
and this is difficult to achieve with a special-purpose solution. We
would also like to take advantage of existing replication support

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ACM SIGMOD’2002, June 4-6, 2002, Madison, Wisconsin, USA.
Copyright 2002 ACM 1-58113-497-5/02/06…$5.00.

Figure 1: M iddle-Tier Databas Caching

Web/App.
Server

Application

DB ServerBrowser
HTTP

Middle-tier
DB Cache

in commercial products rather than developing and supporting
home-grown customer solutions.

Many research questions arise in using a full-fledged
database engine for middle-tier database caching, and the answers
to some of them affect the relevance of others. In decreasing
order of importance, these are:

(1) What are the performance bottlenecks in e-Business
applications, or in other words, are we addressing the
right problems by focusing on database caching?

(2) Will performance be acceptable using a commercial
DBMS as a middle-tier data cache? Features such as
transactional semantics, consistency, and recovery come
with some overhead. What features can be dispensed
with in such an environment?

(3) What database caching schemes are suitable for e-
Business applications?

(4) How can a database caching scheme be implemented in
a commercial database engine and how does it perform
under realistic e-Commerce workloads?

(5) What is the impact of running a database server in the
same computer as an application server?

(6) How can we generalize these results to other kinds of
web applications?

Most of these questions remain open, partly due to the
diversity of e-Commerce applications and the complexity of these
systems.

In this paper, we attempt to answer some of these questions.
We start with examining the opportunities in e-Commerce
applications for middle-tier database caching by running an e-
Commerce benchmark on typical web site architectures. We
observe that this benchmark generated a large number of simple
OLTP-style queries, their table accesses were highly skewed on a
few read-dominant tables, and there was a clear separation
between write-dominant tables and read-dominant tables. We find
that web application clones could scale up to heavy loads and this
leaves the backend database server to eventually become the
performance bottleneck in the system.

We then explore how to extend DB2 so that it can be used as
a middle-tier database cache. By extending DB2’s federated
features, we turned a DB2 instance into a table level database
cache without changing user applications. The novelty of this
extension is that query plans at the cache may involve both the
cache and the remote server based on cost estimation. Through
experiments, we showed that the overhead of adding a full-
strength DBMS as a middle-tier database cache was insignificant
for e-Commerce workloads. Consequently, middle-tier database
caching improved users response time significantly when the
backend database server was heavily loaded.

The remainder of the paper is organized as follows. In
Section 2, we present our prototype middle-tier database cache

(called DBCache) that leverages existing features of federated
technology in a commercial DBMS engine (DB2). In Section 3,
we describe our overall evaluation methodology with an e-
Commerce benchmark. We then present our experimental results
to show the performance impact of middle-tier database caching
(Section 4). We discuss related work in Section 5 and conclude in
Section 6 with our agenda for future research.

2. TURNING DB2 INTO A DBCACHE

In this section, we will first discuss our design considerations for
the DBCache. Then, we present our cache initialization tool and
our modification to the DB2 engine.

2.1 Design Considerations

The goal of our DBCache is to improve the performance and
scalability of web-based applications by distributing query
processing to the clones of the applications and the underlying
application servers (as in Figure 2). With this goal in mind, we
examine the design requirements, our choice of caching schemes
and existing mechanisms.

2.1.1 Requirements

The first requirement in our design of DBCache is that neither the
application, nor the underlying database schema should have to
change. Firstly, it is desired that the decision to deploy a
DBCache could be made for an arbitrary shrink-wrapped
application by local administrators who do not have access to the
application source code. Secondly, requiring the application to be
cognizant of the DBCache would result in increased complexity,
which is undesirable especially given that cost and maintainability
are already major problems in such environments. We aim to
make it easy for database administrators to set up the cache
database schema, and make the DBCache be transparent to the
applications at run time.

The second requirement is to support reasonable update

Figure 2: Deploying DBCache

DB Server

Browser

Network Dispatcher

Web/App.
Server

Application

Web/App.
Server

Application

DBCache DBCache

BrowserBrowser

semantics. Update transactions increase resource contention at
the backend database server as well as the cost for cache
consistency maintenance. Fortunately, E-commerce applications
have high browse-to-buy ratios (read-dominant) and high
tolerance for slightly out-of-date data. This allows us to defer
update propagation to the cache so that it affects on-line
transactions as little as possible. Nevertheless, time limits on the
deferral of cache synchronization are necessary to ensure
reasonable freshness of cached data.

Other requirements include support for failover of incoming
requests to a failed cache node to another cache node, and
dynamic cache node addition and removal. These requirements
are aimed at increasing system availability, manageability, and
incremental changes to capacity.

2.1.2 Choice of Caching Schemes

Given the above requirements, we have the task of choosing a
caching scheme for DBCache. We categorize caching schemes by
the unit of logical data (base or derived) that is cached as follows:
full table, a subset of a table, an intermediate query result, or a
final query result. Although (full) table level caching can be
viewed as a full table scan query, it is the only scheme among the
four that needs only schema information of the cached table. In
contrast, other schemes need to know extra information, such as
the query definitions that correspond to the current cache content.
Therefore, we regard the latter three as query result caching and
consider caching a subset of a table as a special case of an
intermediate query result.

Table level caching has several advantages, with the most
definitive ones being the ability to answer arbitrary queries on
cached tables. However, updates on a table must reach all nodes
that cache this table within a reasonable amount of time. If the
queries are expensive, table level caching does not save any
computation even on a cache hit unless the access paths are
different and/or the cache node is less loaded. In comparison,
query result caching schemes may save expensive computation on
a cache hit. The downside is that they require complex schema
definitions for deployment, complex query rewriting at runtime,
and complex update logic to minimize the number of cache nodes
to synchronize.

The relative performance of these caching schemes is
determined by the characteristics of the data and workload. From
our observations on an E-Commerce benchmark and anecdotal
knowledge of real world e-Businesses, table level caching seems
to be sufficient for these applications. The simple OLTP-type
queries do not need complex intermediate result caching, the
small number of frequently queried tables serve as easy candidates
for table level caching; and the clean separation of read-dominant
tables and write-dominant tables enables selectively caching
tables to reduce update propagation costs.

Accordingly, as the first step of turning DB2 into a middle-
tier data cache, we explore table level caching. Other techniques
such as subset caching and intermediate result caching in the form
of materialized views and final query result caching at a call-level
interface library (such as a JDBC driver) are also on-going work
at IBM but are out of the scope of this paper.

2.1.3 Leveraging Existing Mechanisms

Having decided on table level caching, our problem is the
following: given a web application that cannot be changed, its
backend database schema, and its database workload, generate
the middle-tier cache database schema, and process the SQL
statements utilizing both the cache and the backend database.

In our research prototype, we chose to exploit the existing
DB2 federated features instead of developing a special-purpose
cache manager. One reason is that there is an interesting match
between the existing federated features and the query routing
function needed in our cache. Moreover, our approach allows us
to handle distribute queries effectively, where it is possible for the
optimizer to decide what portion of the query should be processed
in the front end and what portion in the backend.

The federated features in DB2 V7 first appeared in IBM’s
DataJoiner [10] product. Users can access IBM and some non-
IBM databases, relational data and non-relational data, as well as
local data or remote data through a single federated DB2 database.
The local database, called a federator, translates a user query over
local aliases for remote data into a distributed query to remote
data sources. When setting up a federated database, users need to
create references in the local database to remote data sources, for
example, a node to identify a remote host, a server for a remote
database on the host, and a nickname for a table or view in the
remote database.

If we use a federator to model a cache, and a remote data
source to be the backend database, we instantly have almost all
the desired query routing capability that we need. We can
therefore design the cache schema to be such that all cached tables
are local tables, and all un-cached tables to be nicknames of the
backend tables. SQL statements submitted to the cache are
compiled as usual; if a statement involves nicknames, the
federated features of DB2 will estimate the cost of query
execution at the remote server, decide on predicate pushdown
based on the cost estimation, and generate a distributed query
plan.

We aim to keep the data in our DBCache consistent using
standard replication techniques. In our approach, all updates must
happen in the backend, and we use DataPropagator/Relational
(DPropR) [11] to propagate the updates from the backend to the
cache. DPropR is IBM’s tool for asynchronous data replication
for relational databases. It consists of three independent
programs: an administration program, a data change capture
program, and an update apply program. The three programs
communicate with one another through a set of tables called
control tables. Users can subscribe replication requests using
GUI tools and the subscription information is stored in the control
tables. Subscriptions can be on a set of tables, possibly with some
selection predicates on tables. Users can also specify the
frequency of update propagation, the minimum size of each data
transfer, among other options.

2.2 Cache Initialization

Implementing table level caching using DB2 consists of two
pieces of work. The first is a tool for initializing the cache. The

second is to modify the DB2 engine for query routing. In
addition, for reasons explained below, DPropR also has to be
modified slightly. In this subsection, we describe our tool called
DBCacheInit.

First, the tool collects necessary access authorization
information about the backend database, such as the server name,
the backend database name, and user/password information.
Then, it uses that information to examine the catalog of the
backend database, and further collects information about existing
tables, views, indexes, referential integrity constraints, and so on.
Information about triggers, stored procedures, or user-defined
functions is not collected, as they may be involved with updates,
and in this version, we want all updates to happen only at the
backend.

Ideally, after collecting information about the backend
database, the tool should examine a snapshot of a typical
workload consisting of SQL queries, and decide which tables to
cache. This is a similar problem to that solved by DB2's Index
Advisor, which recommends indexes based on query workload
and available disk space. Therefore, in our tool, we presume that
selection of the cached tables versus uncached tables is provided
a-priori.

Once the tables to cache are determined, the tool then creates
a cache database with the same name as that of the backend
database, unless specified otherwise, and replicates the to-be-
cached tables at the cache database. For each table that is not to
be cached, the tool creates a nickname for it at the cache database,
with the same name as the corresponding table at the backend. In
addition, all views in the backend are recreated in the front-end.
By setting up names of cached tables and nicknames identical to
their counterparts at the backend database, the user application
does not need to change or even be aware of the existence of the
cache database. The DB2 federated query processor will decide
how to process queries.

Finally, for the cached tables, we need to load their initial
data. We also need to set up replication subscriptions for them so
that when the tables in the backend database change, the cached
tables will be brought up to date asynchronously. We use DPropR
for this purpose. When the cached tables are subscribed for update
propagation, and the capture and apply programs start running,
the cached tables are loaded with the data from their counterparts
in the backend database and are updated asynchronously at the
specified frequency.

2.3 Inside DBCache

Inside the DBCache, we achieve query routing by introducing an
automatic passthru, or auto-passthru mechanism based on DB2’s
existing passthru mechanism.

The existing mechanism relies on the commands set passthru
<remote-server-name> and set passthru reset. All statements
submitted after a passthru session has been turned on and before it
has been reset, are sent to the specified remote server directly.
The exception to this is another “ set passthru” command. If a
user sets passthru to Server A and then sets passthru to Server B
before resetting passthru, the statements before set passthru B are

sent to Server A directly, and after set passthru B to Server B
directly, implicitly ending the passthru to Server A. When a set
passthru reset is issued later, the passthru mode to B is then
ended. Note that this model is different from a truly nested or a
stack model.

Unlike the existing passthru mechanism, we do not depend
on explicit passthru set and reset commands, as that will require
application modification. Instead, auto-passthru takes place in
the DBCache. Three factors affect where a statement is executed:
(1) statement type, whether it is a UDI (Update/Delete/Insert) or a
query (Select), (2) the current value of the REFRESH AGE
register, which indicates the user’s tolerance for out-of-date data,
and (3) any nicknames in the query.

More specifically, if a statement is a UDI, auto-passthru
sends it through to the remote server. If a statement is a read-only
query, auto-passthru examines the current value of REFRESH
AGE to decide further: if the value is zero, it means that the user
has requested the most-up-to-date data. In this case, auto-passthru
will send the statement through to the backend database server to
ensure the freshness of the data. Otherwise, the auto-passthru
mechanism will allow the query to be executed locally at the
cache. Interestingly, if a query is routed to the local database but
involves nicknames, then the existing federated query processing
takes over: if the query involves any cached tables, then a
distributed query plan is generated; otherwise, a remote-only plan
is chosen. Finally, statements other than a UDI or a query, such as
Data Definition Language (DDL) statements, are directly passed
to the backend database on the assumption that it is what the user
desired. The philosophy here is that the user is in general
unaware of the existence of the cache, and so any schema change
should be effected at the backend database.

For situations where a user is aware of the cache’s existence
(such as creation of local indexes), we need a way to capture the
user’s intent. An example of a situation where operations are
explicitly targeted at the cache database is the DPropR apply
program. This application propagates data updated on the
backend database to the cache database. Since DpropR reuses the
SQL API, the cache DBMS engine has no way of knowing that
these updates are targeted at the cache database, and so we have to
ensure that auto-passthru does not send them to the backend
database again. Other administration activities over the cache
database face the same problem. We solve this problem by
providing an SQL statement set passthru local. Applications use
this command to indicate that the following statements should be
executed locally even in the DBCache. Like a normal passthru,
this can be turned off with the set passthru reset command. In our
case we modified the DPropR apply program to let it issue set
passthru local command right after it sets up a connection to the
cache database for applying changes.

3. EVALUATION METHODOLOGY

There are at least two alternative ways to examine the
performance impact of middle-tier database caching in e-Business
applications. One alternative is to apply our prototype in the field
and perform case studies. Unfortunately, this is seldom viable for
various business reasons. Moreover, with the diversity of these
applications and workloads, it may be difficult to gain insights

from case studies. The other alternative is to pursue simulation
studies. The problem there is that it may be extremely difficult to
model the complex running environments of e-Commerce
applications.

Therefore, we chose to pursue a middle-of-the-road approach
to test out our ideas. We used hardware and software components
that are popular in real e-Commerce applications to build our
testing environment. We chose an e-Commerce benchmark called
ECDW (Electronic Commerce Division Workload) to be the test
target application. This benchmark is developed and used
internally by the WebSphere Commerce Server Performance
group at IBM Toronto Lab. It is similar to the TPC-W benchmark
[23], but has more features that are typical in e-Commerce
applications.

We tested the ECDW workload in several typical server-side
configurations. We chose to use production DB2 in all
configurations, instead of using production DB2 for some
configurations and using our DBCache prototype for some other
configurations with a middle-tier database cache. The main
reason was that we wanted to compare the caching scheme results
with the non-caching results without worrying about the effects of
implementation differences. Therefore, for configurations with
middle-tier database caching, we created special database schema
at the middle-tier to simulate the effects of caching. By
“simulating” table level caching using the existing DB2 federated
features, it is sufficient to show how this scheme performs.

Disclaimer: The usage of the ECDW benchmark throughout this
paper is for us to gain insights in an e-Commerce application and
test our ideas. It neither was intended for nor should be in any
way viewed as the best possible performance results for any
specific IBM or non-IBM products.

3.1 Benchmark Descr iption

The ECDW benchmark was designed through close interactions
with a wide range of customers in order to reflect the key
characteristics of real world e-Commerce applications. It
simulates web users accessing an on-line shopping mall. It uses
IBM’s WebSphere Commerce Suite (WCS) [13] on the server
side, and Segue Software’s SilkPerformer [21] tool on the browser
side. We describe WCS, SilkPerformer, and ECDW itself in
order.

WCS is an integrated solution used by e-commerce sites in
various industries. A sample set of customers are: BuyUSA,
InfinityQS, Mazda’s Competition Parts Program, Milwaukee
Electronic Corporation, and IBM’s own shopIBM site
(www.ibm.com). It provides services for creating, customizing,
running, and maintaining on-line stores throughout their entire
lifespan of operations. On the database side, it has more than 500
tables, many indexes, constraints, and triggers. There are tools to
create the database schema and load in data. On the application
side, it uses an Enterprise Java Bean (EJB) framework so that
developers can program database accesses without being directly
bound to the underlying database schema. Furthermore, customers
can and do extend the database schema as well as the application,
by creating new columns and tables and new EJBs.

SilkPerformer is a load and performance testing tool for e-
business web applications. It emulates workloads that testers
specify, such as number of concurrent users, testing period, testing
scenarios, and other options. The tool warms up the testing
environment, does the measurement, and finishes with a proper
shutdown process. All the measurements are performed on the
client side; in the normal configuration, no instrumentation is
done at the web server, application server, or backend database
server. The measurement output includes throughput, response
time, user-defined counters, user-defined timers, and other
numbers, both on a running basis and on an aggregation basis.

The ECDW benchmark uses around 300 tables in the WCS
schema. The database size can be small (10,000 items, 650MB),
medium (30,000 items, 2GB), or large (50,000 items, 3.5GB).
The regular shopping scenario is defined in a SilkPerformer
script, which depends on two variables – user type and shop flow.
The user types are: new registering user (5%), existing registered
user (10%), and guest user (85%). The shop flows are: browsing
(88%), browsing and adding to a shopping cart (5%), browsing
and preparing an order (2%), and browsing and buying (5%).
These ratios were obtained through customer interactions, and
thus attempt to mimic common browse to buy ratios at real
shopping sites.

The benchmark measures web interactions and web
transactions. A web interaction corresponds to a user conducting
a specific operation at a browser that may involve a few mouse
clicks and possibly some user input. For instance, a LogOn web
interaction is one in which a registered user clicks on the "Log
on" link, fills out her information, and clicks on the submit button.
A web transaction corresponds to an HTTP session – a series of
user operations, which includes multiple web interactions.

Figure 3 shows the regular shopping scenario of the
benchmark. Each box represents a web interaction. A web
transaction in the regular shopping scenario consists of the
following sequence of web interactions: 1) Go to the front page of

Figure 3: Regular Shopping Scenar io

Register

Registered user

StoreFront

LogOn

AddToShopCart

Guest New registering user

Browse
ShoppingBrowsing only Continue

browsing

Guest ordering Registered user ordering

DisplayOrderInfo FillInAddressBook

ShippingDetails

Buying

Order

the store. 2) If the user is a new registering shopper, register with
the site; if the user is an existing registered shopper, log on to the
site; otherwise (a guest shopper), go to the next step directly. 3)
Browse a few items. 4) If the current shop flow is not just
browsing, but also preparing an order or buying, loop a few times
adding some browsed products into the shopping cart, and
browsing a few items again. 5) If the current shop flow needs to
prepare an order, open and fill out the address book for a guest
shopper or directly display order information for registered users,
and generate the detailed shipping information for all users. 6) If
the current shop flow is to buy, finish the order.

Since there are four different shop flows in the regular
shopping scenario, a web transaction may end after one of the
following four web interactions (grayed boxes as in Figure 3):
Browse, AddingToShopCart, ShippingDetails, or Order.

3.2 Server-side Topologies

We benchmarked five server-side topologies, two of them with a
middle-tier database cache, and three of them without. The three
topologies that do not have a middle-tier cache (shown in Figure

4) are the following: (1) single box, in which the web/application
server and the backend database server are on the same machine;
(2) remote DB, in which these two components are on two
machines; (3) clustered remote DB, in which there are multiple
web/application server machines that communicate with the same
backend database server. The HTTP requests are distributed to
the web application server machines in round-robin fashion
through a network dispatcher or some mechanisms like that.

The two topologies that do have middle-tier caching are
shown in Figure 5. DBCache topology adds a middle-tier
database cache to the Remote DB topology, and Clustered
DBCache adds a middle-tier database cache to each web
application server in the Clustered Remote DB topology. Note
that the single box topology in Figure 4 is essentially a DBCache
topology with a 100% cache hit ratio.

3.3 Test Environment Details

We used six computers in the tests. Four of them were IBM
Netfinity 3500 server machines with an 800MHz Pentium III CPU
and 1GB memory, and two of them were IBM IntelliStation
workstations with 930 MHz Pentium III CPU and 512MB
memory. The four server machines had Windows 2000 Server
and the two workstations had Windows 2000 Professional. All
machines had 20-30GB disk space. All machines were on a LAN
with a bandwidth of 100Mbits/second.

We installed IBM WebSphere Commerce Suite (WCS) V5.1
on each server system, which includes the IBM HTTP Server
(repackaged Apache), WebSphere Application Server (WAS), and
DB2 V7.1. We also deployed the ECDW store application (JSP
files, HTML files, Java class files, EJB files, etc.) in the WCS
instance on each sever system, and created the store database with
the large data size (3.5GB) using the scripts and data that come
with the benchmark. On one workstation computer, we installed
SilkPerformer V3.5 to be used as the test driver (web client). On
the other workstation machine, we installed IBM WebSphere
Edge Server V3.6 to be used as a network dispatcher to distribute
HTTP requests to multiple WAS servers.

We configured DB2 as specified by the ECDW benchmark
with appropriate buffer pool and log buffer sizes. To intensify the

Figure 4: Three Non-Caching Server-side Topologies

Figure 5: Two Caching Server-side Topologies

DB ServerDB Server

Browser

HTTP

Browser

HTTP

Network Dispatcher

Clustered DBCacheDBCache

Web/App.
Server

Application

DBCache

Web/App.
Server

Application

DBCache

Web/App.
Server

Application

DBCache

Web/App.
Server

Application

DB Server

Browser

HTTP

DB ServerDB Server

Web/App.
Server

Application

Browser

HTTP

Browser

HTTP

Network Dispatcher

Web/App.
Server

Application

Web/App.
Server

Application

Single Box Clustered Remote DBRemote DB

testing for the database server, we set the think time (waiting time
between web interactions) to be zero in the ECDW client test
driver.

3.4 Database Workload Details

We are especially interested in the characteristics of the database
workload from the application. This WCS-based benchmark is a
canned application. We used DB2’s dynamic SQL statement
snapshot tool [12] to capture the SQL execution information on
the database server side. It reports the SQL statement text (with
‘?’ representing parameter markers – input variables that are
bound at query run-time as opposed to compile-time), the total
number of executions, total execution time, number of rows read,
and other information.

We examined the SQL statements that were captured through
the snapshot tool. For the 1-user regular shopping workload,
there were 151 distinct query templates (with parameter markers
and literals), consisting of 125 read queries, 14 insert statements,
and 11 update statements. For the 30-user regular shopping
workload, there were 388 distinct query templates, but still the
same 14 inserts and 11 updates as in the 1-user workload. This
was because while all the insertions and updates were issued as
prepared statements with parameter markers, some queries (for
example, checking orders of a particular registered user) were
issued with literals and not parameter markers. As a result, the
different workloads had a fixed numbers of insert and update
templates, but had different numbers of selection templates. This
large and varying number of query templates made it difficult for
us to analyze the SQL query characteristics of the workloads.
Since ordering and registering comprised only a small fraction of
the workload, in later experiments we focused on browsing-only
workloads, which we created by modifying the original regular
shopping workloads.

In a browsing-only scenario, all users are guest shoppers and
all transactions are browsing only. We also examined the SQL
snapshots of 1-user and 30-user browsing-only workloads. The
query templates in the browsing-only workloads were fixed.
There were a total of 47 query templates, with 27 of them having
parameter markers, and the other 20 not. All of them were simple
OLTP style queries, with only 15 of them having joins among two
to four tables and the other 32 being single-table selection queries.
In total, the browsing only workloads involved 51 tables.

The number of executions of these query templates in
browsing-only workload is shown in Figure 6. The top 12 most
accessed query templates all had parameter markers in them. Four
of them were joins and the other eight were selection queries.
Collectively they accessed 15 tables (less than 1/4 of the involved
tables of the workload) and consisted of 88% of the total number
of SQL executions.

Moreover, in regular shopping workloads, we observed that
there was a large degree of overlap between tables with inserts
and updates – of the 11 tables with updates and 14 with inserts
(there was no deletion in the workload), 9 had both inserts and
updates. We observed that there was little overlap between read-
only tables with queries and tables with updates and inserts. Only
two tables (userreg and users) were subject to inserts, updates and

selects, only one table (member) was both queried from and
inserted into, and one table (keys) was queried from and updated
to. We also examined if any updates/inserts happened on the
tables that were involved in the top 12 most frequent query
templates. We found that there was only one such table (the table
users accessed by the 6th most frequent query template).

In summary, we observed that e-Commerce workloads had
short query execution time, highly skewed popularity of tables,
and clean separation of read-dominant and write-dominant tables.
These characteristics make middle-tier database caching very
attractive.

4. EXPERIMENTAL RESULTS

First, we compared performance of regular shopping scenarios
with that of browse-only scenarios. Then, we measured the
overhead of adding a middle-tier database cache by using a
database cache with 0% hit rate. Then, we cached tables for the
top 6 most frequent queries at the middle-tier and measured its
performance while varying the workload on the backend database
server. We then explored update propagation cost in the caching
scheme. Finally, we examined the performance of clustered
topologies.

4.1 Compar ing Workload Character istics

We tested the regular shopping scenario in the single box
topology. We varied the number of concurrent users at the
simulator and measured each user executing 100 web transactions.
The backend database was restored after each run so that each run
started with the same database content. The throughput is
reported in terms of average number of web transactions per
second, and the average response time is reported in terms of the
number of seconds per web transaction. We also report the
average response times (in seconds) per web interaction as
TBrowse, TBuy, TOthers, and TOverAll. TBrowse refers to the
time spent in browsing. TBuy includes the time spent in adding
items to shopping carts, filling out address book, displaying order
information, working out shipping details, and ordering. TOthers
refers to the time spent in registered user logging on and new
users registering. TOverAll is the weighted average response time
per web interaction for all types of web interactions, with the
weights being the occurrences of each type of interaction. These

Figure 6: Number of Executions of Query Templates in
Browsing

#executions of query templates/xact

0

10

20

30

40

50

query templates

#e
xe

cu
ti

on
s

numbers are shown in Table 1. We also ran the browsing only
workload on a single box server topology varying the number of
concurrent users as shown in Table 2.

#users 1 5 10 30

#xacts/sec 0.5 0.8 0.8 1.0

secs/xact 1.9 6.2 11.2 30.1

TBrowse 0.1 0.5 0.8 3.0

TBuy 1.0 1.9 6.1 5.5

TOthers 0.2 1.0 3.7 3.0

TOverAll 0.2 0.7 1.2 3.2

#users 1 5 10 30

#xacts/sec 1.3 1.6 1.6 1.6

secs/xact 0.8 3.1 6.4 19.5

TOverAll 0.1 0.4 0.8 2.5

Not surprisingly, both the throughput and response times (per
web transaction and per web interaction) of the browsing-only
workload improved over those of the regular shopping workload.
Nevertheless, both scenarios followed the same pattern: the
throughput increased slightly from 1 user to 30 users, while the
response time consistently increased proportional to the increase
in the number of users. Since browsing represents the majority of
the total workload (TOverAll in regular shopping scenario follows
closely with the TBrowse value), and browsing-only scenario is
much simpler to test, most of the following experiments are
focused on browsing-only workloads.

4.2 Examining Overhead of Adding a Front
End Cache

Adding a middle-tier database cache at the application server
creates overhead by consuming resources on the application
server machine. This is a common concern, especially when the
middle-tier database cache is a full-strength DBMS and not a
lightweight query processor, so we examine this overhead.

We configured WAS (WebSphere Application Server) on a
server machine to let it use a local DB2 server, and used the
DBCacheInit tool to create a database of all nicknames in the
local DB2 referencing the backend database in a remote DB2 on
another server machine. This makes the local DB2 act as a
middle-tier DBCache with a 0% cache hit rate. We compared the
performance of this dbcache0 configuration and the remote DB
configuration to examine the overhead.

We compare the throughput and web transaction response
time of these configurations for varying number of concurrent
users in Figure 7. The remote DB configuration is shown as
remote, and the database cache with all nicknames dbcache0. As
expected, dbcache0 was always worse than the remote DB case,
because the backend server was not overloaded. This is because
all the queries at the cache are misses and every query goes
through two database servers. This made the performance of
dbcache0 around one half of the remote DB case under a light
load (less than 10 users), but when the number of concurrent users
increased to 30, the difference became much less significant. This
shows that although using a full strength DBMS as a middle-tier
database cache adds some overhead, this overhead is insignificant
when the server is fully loaded.

4.3 Examining Server Workload Shar ing

In real world scenarios, e-business applications have a large
number of online users, and the load can vary by a factor of 100 in
daily operations [5]. When the backend database server is more
heavily loaded, caching in the front ends is even more important
to improve users' response time. Therefore, we set up a middle-
tier cache database at a WAS machine as the front end and
measured its performance varying the workload on the backend
server.

From previous investigation on the browse-only workloads,
we observed that the accesses of different query templates were
highly skewed. We selected the top 8 most used query templates
and cached in the local database the eight tables that they
accessed. Queries on these eight tables consisted of 71% of the
database queries in the browse-only scenario. In the later
experiments, we also used this cache configuration for all
DBCache cases.

The setup for varying the backend server workload in the

Table 1: Regular Shopping Scenar io on Single Box

Table 2: Browsing-only Scenar io on Single Box

Figure 7: Overhead of Adding a Front End Cache with a 0% Cache Hit Rate

0

0.5

1

1.5

2

1 5 10 30 100#us ers

T
h

ro
u

g
h

p
u

t
(x

ac
ts

/s
ec

)

remote dbcache0

0

20

40

60

80

1 5 10 30 100#us ers

R
es

p
o

n
se

 T
im

e

(s
ec

s/
xa

ct
)

remote dbcache0

DBCache topology is shown in Figure 8. The goal is to vary the
backend server workload and examine how caching can help. We
achieved this by sending an extra browsing only workload to the
backend directly. The setup for varying the backend server
workload in the Remote topology is similar except that there is no
middle-tier dbcache at the front end. Both the front-end response
time and the backend response time were measured at the test
driver (web client side). We compare the response times in the
dbcache case with those in the remote case.

In Figure 9, we see that when the extra workload on the
backend database was 10 or 50 users, adding a cache at the
application server did not help. However, when the number of
extra users on the backend reached 100, caching started to make a
difference. The front-end response time was improved because
the cache sheltered its users from the overloaded backend
database server, and the backend response time was improved
because the cache shared its server workload. Due to resource
constraints, we were not able to test more than 100 users, but we
believe that this caching benefit will be even more significant
when the backend database server is more heavily loaded.

4.4 Examining Update Propagation Cost

This experiment was to examine how much performance impact
the asynchronous update propagation process had on the on-line
query performance. We set up DPropR on the backend database
server and the WAS server with a DBCache. The capture program
was running on the backend database server, and the apply
program on the cache database. The cache database still had the
eight tables cached and the other tables uncached. Since the

cached users table was updated frequently in a regular-shopping
scenario to update the lastSession field with the timestamp of the
last log-on session for each registered user, we subscribed the
users table for update propagation with the minimum frequency of
1 minute.

We still used the same extra workloads on the backend as in
the previous experiment, and examined the update propagation
cost in this setting. Besides sending a 10-user browsing-only
workload to the front end WAS server with a DBCache and
sending extra browsing-only workload to the backend database
server with a WAS clone directly, we also sent an update workload
on the lastSession field of the users table to the backend database
server (shown in Figure 10). This lastSession field was updated
with the current timestamp to simulate the actual update in a
regular-shopping scenario when a registered user logged on. The
update workload was executed without any waiting time between
consecutive updates. The update throughput was measured to be
40-60 updates/second depending on the server load. We
measured the performance impact of update propagation on the
browsing workloads by measuring the response times at the
simulated browsers.

We compared the with-dpropr-running case with the without-
dpropr-running case when the same updater was updating the
backend database server. Figure 11 shows that in general
asynchronous update propagation did not add significant overhead
to the response time, although the capture program on the
backend database server incurred around 20% overhead to the
query workload when the extra load on the server was 100 users.
The overhead caused by the apply program was low because the

Figure 8: Setup for Varying Server Workload

Figure 9: Caching Effect with Varying Server Workload

Us ers Connecting to the Front End

0
2
4
6
8

10

10 users 50 users 100 users

Extra Work load at Back end

R
es

p
o

n
se

 T
im

e
(s

ec
s/

xa
ct

)

w / dbcache w /o dbcache

Us ers Connecting to the Back End

0
20
40
60
80

100

10 users 50 users 100 users

Extr a Work load at Back end
R

es
p

o
n

se
 T

im
e

(s
ec

s/
xa

ct
)

w / dbcache w /o dbcache

Web/App.
Server

Application
Backend

DB ServerBrowser
Middle-tier
DB Cache

Browser Web/App.
Server

Application

HTTP

HTTP
Extra Workload

10-user load

apply program batched up updates for each propagation interval
(1 minute), and each experiment lasted 20-30 minutes. The
overhead caused by the capture program was reading the log and,
when a log record relating to a subscribed table is found,
performing an SQL insert into the changed data table (one of the
control tables used by DPropR).

4.5 Cluster ing Web Application Servers

Finally, we compared the performance on clustered topologies (2-
WAS and 3-WAS) with that on corresponding non-clustered
topologies (1-WAS) to see how they were scaling with the number
of WAS machines. Figure 12 shows the throughput and response
times of a 30-user browsing-only workload when the backend

database is heavily loaded under a CPU hog program.

When the number of WAS machines increased, both
clustered topologies improved the user response time, but
clustered dbcache improved the throughput more than clustered
remote DB topology. This implies that (1) For the clustered
remote DB topology, simply increasing the number of application
servers does not scale up the entire system under a heavy load,
and causes the backend database server to become the bottleneck.
(2) Clustered DBCache topology shares the backend database
server workload, and it can scale up throughput better by adding
more cache nodes. We are interested in adding more WAS nodes
to further examine the scale-up effect for clustered topologies.

Figure 11: Update Propagation Cost with Varying Server Workload

Figure 12: Varying Number of WAS machines

Figure 10: Setup of DPropR with Varying Server Workload

0

1

2

3

4

1-WAS 2-WAS 3-WAS

T
h

ro
u

g
h

p
u

t
(x

ac
ts

/s
ec

o
n

d
)

remote dbcache

0

5

10

15

20

25

30

1-WAS 2-WAS 3-WAS

R
es

p
o

n
se

 T
im

es

(s
ec

s/
xa

ct
)

remote dbcache

Web/App.
Server

Application
Backend

DB ServerBrowser
Middle-tier
DB Cache

Browser Web/App.
Server

Application

FE BE

HTTP

HTTP

Extra Workload

10-user Load

Test Driver

C
apture

Apply

Updater
Update Workload

Us ers Connecting to the Front End

0

5

10

10 users 50 users 100 users

Extr a Work load at Back end

R
es

p
o

n
se

 T
im

e
(s

ec
s/

xa
ct

)

w /o dpropr w / dpropr

Us er s Connecting to the Back end

0

50

100

10 users 50 users 100 users

Extr a Work load at Back end
R

es
p

o
n

se
 T

im
e

(s
ec

s/
xa

ct
)

w /o dpropr w / dpropr

4.6 Discussion

By running the benchmark and its modifications in various
configurations, we show that both application servers and
backend database servers can be bottlenecks under different
workloads. Application servers are mostly CPU intensive under
e-Commerce workloads, but they can scale to a large number of
users by replicating (together with replicated applications) to
multiple nodes. In general, single node commercial database
servers consume much less CPU resource than application
servers, but they can also become a bottleneck under heavy loads.

One approach to scaling the backend database when it is a
bottleneck is to use a more expensive SMP/MPP system – while
this approach helps increase the scalability of the system, it does
not address the performance, flexibility and availability concerns.
It is also more expensive compared to the DBCache approach
where cheaper and less reliable machines can be used to run the
application servers with DBCache.

Due to resource constraints, we were not able to test more
than 100 simulated users, more than 3 WCS nodes, or separating
the application servers from the DB server by a wide area
network. However, from the trends shown in the experiments, we
believe that middle-tier database caching on the application
servers can improve server scalability. If these data caches are
deployed with edge servers, they can also bring content closer to
users and improve performance in terms of response time.
Performance can also be enhanced when the application server
and the database are geographically separated by a wide-area
network, as is common for many customers. Finally, by
continuing to provide limited service based on cached data, this
approach also increases availability of the web site. Many issues
relating to database caching in application and edge servers are
discussed in [18].

5. RELATED WORK

Products most relevant to ours are the Database Cache of Oracle’s
9i IAS (Internet Application Server) [19] and TimesTen's Front-
Tier [22]. Oracle's Database Cache caches full tables using a full-
fledged Oracle DBMS, and relies on replication tools to
asynchronously propagate updates from the backend database to
the cache. TimesTen's Front-Tier is a caching product based on
their in-memory database technology. One advanced feature of
Front-Tier is that users can create cache views at the Front-Tier,
which can be a subset of tables and join views. Unlike Oracle and
our DBCache, updates are performed at the Front-Tier cache, and
propagated to the backend database at transaction commit time (or
the propagation to the backend can also be done asynchronously).

A major difference between our work and these existing
products is that our cache has distributed query processing
capability. This is because we leverage DB2's federated features
so that query plans at the cache can involve both sites in a cost-
based manner [20]. In contrast, Oracle’s query routing happens at
the OCI layer before a statement reaches the cache database.
Consequently, the statement is either entirely executed at the
backend database or entirely at the cache database. Similarly,
applications using TimesTen's Front-Tier must be aware of the

cache content and issue queries on cached content and on the
backend database separately.

Caching for data-intensive web sites have been recently
studied in [2], [3], [7], [16], [17], and [24]. They focused on
caching dynamically generated web pages, HTML fragments,
XML fragments, or query results from outside of a DBMS (except
[24] investigated using the backend database to cache
intermediate query results as materialized views). Our focus is to
engineer a full-strength DBMS into a middle-tier database cache
from inside out, and improve availability and performance for
applications without making any changes to them.

Finally, previous work on materialized views [9] and caching
for heterogeneous systems ([1], [4]), client-server database
systems ([6], [14]), and OLAP systems [8] are relevant to our
work. Most of the techniques proposed in these papers are
suitable for specific types of applications, for example, keyword
based search, mobile navigation, or computation intensive OLAP
queries. Compared to these applications, e-Commerce
applications are usually simple OLTP-style queries but require
reliability, scalability, and maintainability. Consequently, we
choose simple table level caching using an industrial strength
DBMS.

6. CONCLUSIONS AND FUTURE WORK

We have examined the opportunities in e-Commerce applications
for middle-tier database caching by running an e-Commerce
benchmark on typical web site architectures. We observed that e-
Commerce applications generated a large number of simple
OLTP-style queries, their table accesses are highly skewed on a
few read-dominant tables, and there was a clear separation
between write-dominant tables and read-dominant tables. We
demonstrated that web application clones could scale up to heavy
loads and the backend database server eventually becomes the
performance bottleneck in the system.

We have presented our prototype implementation of a
middle-tier database cache. By extending DB2’s federated
features, we turned a DB2 instance into a DBCache without
changing user applications. The novelty of this extension is that
query plans at the cache may involve both the cache and the
remote server based on cost estimation. Through experiments, we
showed that the overhead of adding a full-strength DBMS as a
middle-tier database cache was insignificant for e-Commerce
workloads. Consequently, middle-tier database caching improved
users response time significantly when the backend database
server was heavily loaded.

Future work includes extending the DBCache prototype to
handle special SQL data types, statements, and user defined
functions. We are also investigating alternatives for handling
updates. Usability enhancements, such as cache performance
monitoring, and dynamic identification of candidate tables for
caching are important directions for us to pursue.

7. ACKNOWLEDGEMENTS

We would like to thank Mehmet Altinel for his helpful
suggestions on the paper, Larry Brown for setting up and testing
the prototype on NT, and Kiran Mehta and Dan Wolfson for
discussions about our architecture. We would also like to thank
Satya Dash, Joseph Fung, Jim Kleewein, Peter Schwarz, and
David Tolleson for answering our questions on the ECDW
benchmark, DB2 federated features, and DPropR.

8. REFERENCES
[1] Sibel Adali, K. Selçuk Candan, Yannis Papakonstantinou,

and V. S. Subrahmanian. Query Caching and Optimization
in Distributed Mediator Systems. Proc. ACM SIGMOD
International Conference on Management of Data, Montreal,
Quebec, Canada, June 1996.

[2] K. Selçuk Candan, Wen-Syan Li, Qiong Luo, Wang-Pin
Hsiung, and Divyakant Agrawal. Enabling Dynamic Content
Caching for Database-Driven Web Sites. Proc. ACM
SIGMOD International Conference on Management of Data,
Santa Barbara, May 2001.

[3] Jim Challenger, Arun Iyengar, and Paul Dantzig. A Scalable
System for Consistently Caching Dynamic Web Data. IEEE
INFOCOM 1999.

[4] Boris Chidlovskii, Claudia Roncancio, and Marie-Luise
Schneider. Cache Mechanism for Heterogeneous Web
Querying. Proc. 8th World Wide Web Conferences
(WWW8), Toronto, Canada, 1999.

[5] Mike Conner, George Copeland, and Greg Flurry. Scaling
Up e-Business Applications with Caching.
DeveloperToolbox Technical Magazine, August 2000.
http://service2.boulder.ibm.com/devtools/news0800/art7.htm

[6] Shaul Dar, Michael J. Franklin, Björn Þór Jónsson, and
Divesh Srivastava, Michael Tan. Data Caching and
Replacement. Proc. Very Large Data Bases Conference,
Bombay, India, 1996.

[7] Anindaya Datta, Kaushik Dutta, Helen M. Thomas, Debra E.
VanderMeer, Krithi Ramamritham, and Dan Fishman. A
Comparative Study of Alternative Middle Tier Caching
Solutions to Support Dynamic Web Content Acceleration.
Proc. Very Large Data Bases Conference, Roma, Italy, 2001.

[8] Prasad Deshpande, Karthikeyan Ramasamy, Amit Shukla,
and Jeffrey F. Naughton. Caching Multidimensional Queries
Using Chunks. Proc. ACM SIGMOD International
Conference on Management of Data, Seattle, 1998.

[9] Ashish Gupta and Inderpal Singh Mumick (Editors).
Materialized Views: Techniques, Implementations, and
Applications. The MIT Press, 1999.

[10] IBM. DB2 DataJoiner. http://www-
4.ibm.com/software/data/datajoiner/

[11] IBM.DB2 DataPropagator. http://www-
4.ibm.com/software/data/DPropR/

[12] IBM. DB2 System Monitor Guide and Reference.
http://www-4.ibm.com/cgi-
bin/db2www/data/db2/udb/winos2unix/support/document.d2
w/report?fn=db2v7f0frm3toc.htm

[13] IBM. WebSphere Commerce Suite. http://www-
4.ibm.com/software/webservers/commerce/wcs51.html

[14] Arthur M. Keller and Julie Basu. A Predicate-based Caching
Scheme for Client-Server Database Architectures. The
VLDB Journal 5(1): 35-47 (1996).

[15] Donald Kossmann, Michael J. Franklin, and Gerhard Drasch.
Cache Investment: Integrating Query Optimization and
Distributed Data Placement. ACM Transactions on Database
Systems (TODS), December 2000

[16] Alexandros Labrinidis and Nick Roussopoulos. WebView
Materialization. ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, 2000.

[17] Qiong Luo and Jeffrey F. Naughton. Form-Based Proxy
Caching for Database-Backed Web Sites. Proc. Very Large
Data Bases Conference, Roma, Italy, 2001.

[18] C. Mohan. Caching Technologies for Web Applications.
Tutorial at Very Large Data Bases Conference, Roma, Italy,
2001.
http://www.almaden.ibm.com/u/mohan/Caching_VLDB2001
.pdf

[19] Oracle Corporation. Oracle Internet Application Server
Documentation Library.
http://technet.oracle.com/docs/products/ias/doc_index.htm

[20] Mary Tork Roth, Fatma Ozcan, Laura M. Haas: Cost Models
DO Matter: Providing Cost Information for Diverse Data
Sources in a Federated System. Proc. Very Large Data
Bases, Edinburgh, Scotland, 1999

[21] Segue Software, Inc. SilkPerformer.
http://www.segue.com/html/s_solutions/s_performer/s_perfo
rmer.htm

[22] TimesTen. TimesTen Front-Tier.
http://www.timesten.com/products/fronttier/index.html

[23] Transaction Processing Performance Council. TPC-W
Benchmark. http://www.tpc.org/tpcw/default.asp

[24] Khaled Yagoub, Daniela Florescu, Valérie Issarny, and
Patrick Valduriez. Building and Customizing Data-Intensive
Web Sites Using Weave. Proc. Very Large Data Bases
Conference, Cairo, Egypt, 2000.

