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ABSTRACT 
While scaling up to the enormous and growing Internet 
population with unpredictable usage patterns, E-commerce 
applications face severe challenges in cost and manageability, 
especially for database servers that are deployed as those 
applications’ backends in a multi-tier configuration.  Middle-tier 
database caching is one solution to this problem.  In this paper, we 
present a simple extension to the existing federated features in 
DB2 UDB, which enables a regular DB2 instance to become a 
DBCache without any application modification.  On deployment 
of a DBCache at an application server, arbitrary SQL statements 
generated from the unchanged application that are intended for a 
backend database server, can be answered: at the cache, at the 
backend database server, or at both locations in a distributed 
manner.  The factors that determine the distribution of workload 
include the SQL statement type, the cache content, the application 
requirement on data freshness, and cost-based optimization at the 
cache.  We have developed a research prototype of DBCache, and 
conducted an extensive set of experiments with an E-Commerce 
benchmark to show the benefits of this approach and illustrate 
tradeoffs in caching considerations.   

1. INTRODUCTION 

Various caching techniques have been deployed to increase the 
performance of multi-tier web-based applications in response to 
the ever-increasing scale of the Internet.  Such applications 
typically achieve a measure of scalability with application servers 
running on multiple (relatively cheaper) systems connecting to a 
single database system.  This, however, does not solve the 
scalability problem for backend database servers.  One way to 
address this problem is middle-tier database caching (shown as 
the gray box in Figure 1), which is deployed in the middle, 

usually at the application server, of a multi-tier web site 
infrastructure.  Example commercial products include the 
Database Cache of Oracle 9i Internet Application Server [19] and 
TimesTen's Front-Tier [22]. 

In a multi-tier e-Business infrastructure, middle-tier database 
caching is attractive because of improvements to the following 
attributes: 

(1) Scalability: by distributing query workload from 
backend to multiple cheap front-end systems.  

(2) Flexibility: with QoS (Quality Of Service) control 
where each cache hosts different parts of the backend 
data, e.g., the data of Platinum customers is cached 
while that of ordinary customers is not. 

(3) Availability: by continued service for applications that 
depend only on cached tables even if the backend server 
is unavailable.  

(4) Performance: by potentially responding to locality 
patterns in the workload and smoothing out load peaks. 

Using a general-purpose industrial-strength DBMS for 
middle-tier database caching is especially attractive to e-
Businesses, even though there have been special-purpose 
solutions (for example, e-Bay uses its own front-end data cache 
[18]).  This is mainly due to crucial business requirements such as 
reliability, scalability, and manageability.  For instance, an 
industrial-strength DBMS closely tracks SQL enhancements, and 
provides a variety of tools for application development.  More 
importantly, it provides transactional support, multiple 
consistency levels, and efficient recovery services.  Finally, an 
ideal cache should be transparent to the application that uses it, 
and this is difficult to achieve with a special-purpose solution.  We 
would also like to take advantage of existing replication support 
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in commercial products rather than developing and supporting 
home-grown customer solutions. 

Many research questions arise in using a full-fledged 
database engine for middle-tier database caching, and the answers 
to some of them affect the relevance of others.  In decreasing 
order of importance, these are:  

(1) What are the performance bottlenecks in e-Business 
applications, or in other words, are we addressing the 
right problems by focusing on database caching?   

(2) Will performance be acceptable using a commercial 
DBMS as a middle-tier data cache?  Features such as 
transactional semantics, consistency, and recovery come 
with some overhead.  What features can be dispensed 
with in such an environment? 

(3) What database caching schemes are suitable for e-
Business applications?  

(4) How can a database caching scheme be implemented in 
a commercial database engine and how does it perform 
under realistic e-Commerce workloads? 

(5) What is the impact of running a database server in the 
same computer as an application server?  

(6) How can we generalize these results to other kinds of 
web applications?  

Most of these questions remain open, partly due to the 
diversity of e-Commerce applications and the complexity of these 
systems. 

In this paper, we attempt to answer some of these questions.  
We start with examining the opportunities in e-Commerce 
applications for middle-tier database caching by running an e-
Commerce benchmark on typical web site architectures.  We 
observe that this benchmark generated a large number of simple 
OLTP-style queries, their table accesses were highly skewed on a 
few read-dominant tables, and there was a clear separation 
between write-dominant tables and read-dominant tables.  We find 
that web application clones could scale up to heavy loads and this 
leaves the backend database server to eventually become the 
performance bottleneck in the system. 

We then explore how to extend DB2 so that it can be used as 
a middle-tier database cache.  By extending DB2’s federated 
features, we turned a DB2 instance into a table level database 
cache without changing user applications.  The novelty of this 
extension is that query plans at the cache may involve both the 
cache and the remote server based on cost estimation.  Through 
experiments, we showed that the overhead of adding a full-
strength DBMS as a middle-tier database cache was insignificant 
for e-Commerce workloads.  Consequently, middle-tier database 
caching improved users response time significantly when the 
backend database server was heavily loaded. 

The remainder of the paper is organized as follows.  In 
Section 2, we present our prototype middle-tier database cache 

(called DBCache) that leverages existing features of federated 
technology in a commercial DBMS engine (DB2).  In Section 3, 
we describe our overall evaluation methodology with an e-
Commerce benchmark.  We then present our experimental results 
to show the performance impact of middle-tier database caching 
(Section 4).  We discuss related work in Section 5 and conclude in 
Section 6 with our agenda for future research. 

2.  TURNING DB2 INTO A DBCACHE 

In this section, we will first discuss our design considerations for 
the DBCache.  Then, we present our cache initialization tool and 
our modification to the DB2 engine. 

2.1 Design Considerations 

The goal of our DBCache is to improve the performance and 
scalability of web-based applications by distributing query 
processing to the clones of the applications and the underlying 
application servers (as in Figure 2).  With this goal in mind, we 
examine the design requirements, our choice of caching schemes 
and existing mechanisms. 

2.1.1 Requirements 

The first requirement in our design of DBCache is that neither the 
application, nor the underlying database schema should have to 
change.  Firstly, it is desired that the decision to deploy a 
DBCache could be made for an arbitrary shrink-wrapped 
application by local administrators who do not have access to the 
application source code.  Secondly, requiring the application to be 
cognizant of the DBCache would result in increased complexity, 
which is undesirable especially given that cost and maintainability 
are already major problems in such environments.  We aim to 
make it easy for database administrators to set up the cache 
database schema, and make the DBCache be transparent to the 
applications at run time.   

The second requirement is to support reasonable update 

Figure 2: Deploying DBCache 

DB Server

Browser

Network Dispatcher

Web/App.   
Server

Application

Web/App.   
Server

Application

DBCache DBCache

BrowserBrowser



semantics.  Update transactions increase resource contention at 
the backend database server as well as the cost for cache 
consistency maintenance.  Fortunately, E-commerce applications 
have high browse-to-buy ratios (read-dominant) and high 
tolerance for slightly out-of-date data.  This allows us to defer 
update propagation to the cache so that it affects on-line 
transactions as little as possible.  Nevertheless, time limits on the 
deferral of cache synchronization are necessary to ensure 
reasonable freshness of cached data.   

Other requirements include support for failover of incoming 
requests to a failed cache node to another cache node, and 
dynamic cache node addition and removal.  These requirements 
are aimed at increasing system availability, manageability, and 
incremental changes to capacity. 

2.1.2 Choice of Caching Schemes 

Given the above requirements, we have the task of choosing a 
caching scheme for DBCache.  We categorize caching schemes by 
the unit of logical data (base or derived) that is cached as follows: 
full table, a subset of a table, an intermediate query result, or a 
final query result.  Although (full) table level caching can be 
viewed as a full table scan query, it is the only scheme among the 
four that needs only schema information of the cached table.  In 
contrast, other schemes need to know extra information, such as 
the query definitions that correspond to the current cache content.  
Therefore, we regard the latter three as query result caching and 
consider caching a subset of a table as a special case of an 
intermediate query result. 

Table level caching has several advantages, with the most 
definitive ones being the ability to answer arbitrary queries on 
cached tables.  However, updates on a table must reach all nodes 
that cache this table within a reasonable amount of time.  If the 
queries are expensive, table level caching does not save any 
computation even on a cache hit unless the access paths are 
different and/or the cache node is less loaded.  In comparison, 
query result caching schemes may save expensive computation on 
a cache hit.  The downside is that they require complex schema 
definitions for deployment, complex query rewriting at runtime, 
and complex update logic to minimize the number of cache nodes 
to synchronize. 

The relative performance of these caching schemes is 
determined by the characteristics of the data and workload.  From 
our observations on an E-Commerce benchmark and anecdotal 
knowledge of real world e-Businesses, table level caching seems 
to be sufficient for these applications.  The simple OLTP-type 
queries do not need complex intermediate result caching, the 
small number of frequently queried tables serve as easy candidates 
for table level caching; and the clean separation of read-dominant 
tables and write-dominant tables enables selectively caching 
tables to reduce update propagation costs. 

Accordingly, as the first step of turning DB2 into a middle-
tier data cache, we explore table level caching.  Other techniques 
such as subset caching and intermediate result caching in the form 
of materialized views and final query result caching at a call-level 
interface library (such as a JDBC driver) are also on-going work 
at IBM but are out of the scope of this paper. 

2.1.3 Leveraging Existing Mechanisms 

Having decided on table level caching, our problem is the 
following: given a web application that cannot be changed, its 
backend database schema, and its database workload, generate 
the middle-tier cache database schema, and process the SQL 
statements utilizing both the cache and the backend database.  

In our research prototype, we chose to exploit the existing 
DB2 federated features instead of developing a special-purpose 
cache manager.  One reason is that there is an interesting match 
between the existing federated features and the query routing 
function needed in our cache.  Moreover, our approach allows us 
to handle distribute queries effectively, where it is possible for the 
optimizer to decide what portion of the query should be processed 
in the front end and what portion in the backend.  

The federated features in DB2 V7 first appeared in IBM’s 
DataJoiner [10] product.  Users can access IBM and some non-
IBM databases, relational data and non-relational data, as well as 
local data or remote data through a single federated DB2 database.  
The local database, called a federator, translates a user query over 
local aliases for remote data into a distributed query to remote 
data sources.  When setting up a federated database, users need to 
create references in the local database to remote data sources, for 
example, a node to identify a remote host, a server for a remote 
database on the host, and a nickname for a table or view in the 
remote database. 

If we use a federator to model a cache, and a remote data 
source to be the backend database, we instantly have almost all 
the desired query routing capability that we need.  We can 
therefore design the cache schema to be such that all cached tables 
are local tables, and all un-cached tables to be nicknames of the 
backend tables.  SQL statements submitted to the cache are 
compiled as usual; if a statement involves nicknames, the 
federated features of DB2 will estimate the cost of query 
execution at the remote server, decide on predicate pushdown 
based on the cost estimation, and generate a distributed query 
plan. 

We aim to keep the data in our DBCache consistent using 
standard replication techniques.  In our approach, all updates must 
happen in the backend, and we use DataPropagator/Relational 
(DPropR) [11] to propagate the updates from the backend to the 
cache.  DPropR is IBM’s tool for asynchronous data replication 
for relational databases.  It consists of three independent 
programs: an administration program, a data change capture 
program, and an update apply program.  The three programs 
communicate with one another through a set of tables called 
control tables.  Users can subscribe replication requests using 
GUI tools and the subscription information is stored in the control 
tables.  Subscriptions can be on a set of tables, possibly with some 
selection predicates on tables.  Users can also specify the 
frequency of update propagation, the minimum size of each data 
transfer, among other options.  

2.2 Cache Initialization 

Implementing table level caching using DB2 consists of two 
pieces of work.  The first is a tool for initializing the cache.  The 



second is to modify the DB2 engine for query routing.  In 
addition, for reasons explained below, DPropR also has to be 
modified slightly.  In this subsection, we describe our tool called 
DBCacheInit. 

First, the tool collects necessary access authorization 
information about the backend database, such as the server name, 
the backend database name, and user/password information.  
Then, it uses that information to examine the catalog of the 
backend database, and further collects information about existing 
tables, views, indexes, referential integrity constraints, and so on.  
Information about triggers, stored procedures, or user-defined 
functions is not collected, as they may be involved with updates, 
and in this version, we want all updates to happen only at the 
backend.   

Ideally, after collecting information about the backend 
database, the tool should examine a snapshot of a typical 
workload consisting of SQL queries, and decide which tables to 
cache.  This is a similar problem to that solved by DB2's Index 
Advisor, which recommends indexes based on query workload 
and available disk space.  Therefore, in our tool, we presume that 
selection of the cached tables versus uncached tables is provided 
a-priori. 

Once the tables to cache are determined, the tool then creates 
a cache database with the same name as that of the backend 
database, unless specified otherwise, and replicates the to-be-
cached tables at the cache database.  For each table that is not to 
be cached, the tool creates a nickname for it at the cache database, 
with the same name as the corresponding table at the backend.  In 
addition, all views in the backend are recreated in the front-end.  
By setting up names of cached tables and nicknames identical to 
their counterparts at the backend database, the user application 
does not need to change or even be aware of the existence of the 
cache database.  The DB2 federated query processor will decide 
how to process queries. 

Finally, for the cached tables, we need to load their initial 
data.  We also need to set up replication subscriptions for them so 
that when the tables in the backend database change, the cached 
tables will be brought up to date asynchronously.  We use DPropR 
for this purpose. When the cached tables are subscribed for update 
propagation, and the capture and apply programs start running, 
the cached tables are loaded with the data from their counterparts 
in the backend database and are updated asynchronously at the 
specified frequency. 

2.3 Inside DBCache 

Inside the DBCache, we achieve query routing by introducing an 
automatic passthru, or auto-passthru mechanism based on DB2’s 
existing passthru mechanism. 

The existing mechanism relies on the commands set passthru 
<remote-server-name> and set passthru reset.  All statements 
submitted after a passthru session has been turned on and before it 
has been reset, are sent to the specified remote server directly.  
The exception to this is another “ set passthru”  command.  If a 
user sets passthru to Server A and then sets passthru to Server B 
before resetting passthru, the statements before set passthru B are 

sent to Server A directly, and after set passthru B to Server B 
directly, implicitly ending the passthru to Server A.  When a set 
passthru reset is issued later, the passthru mode to B is then 
ended.  Note that this model is different from a truly nested or a 
stack model. 

Unlike the existing passthru mechanism, we do not depend 
on explicit passthru set and reset commands, as that will require 
application modification.  Instead, auto-passthru takes place in 
the DBCache.  Three factors affect where a statement is executed: 
(1) statement type, whether it is a UDI (Update/Delete/Insert) or a 
query (Select),  (2) the current value of the REFRESH AGE 
register, which indicates the user’s tolerance for out-of-date data, 
and (3) any nicknames in the query.  

More specifically, if a statement is a UDI, auto-passthru 
sends it through to the remote server.  If a statement is a read-only 
query, auto-passthru examines the current value of REFRESH 
AGE to decide further: if the value is zero, it means that the user 
has requested the most-up-to-date data.  In this case, auto-passthru 
will send the statement through to the backend database server to 
ensure the freshness of the data.  Otherwise, the auto-passthru 
mechanism will allow the query to be executed locally at the 
cache.  Interestingly, if a query is routed to the local database but 
involves nicknames, then the existing federated query processing 
takes over: if the query involves any cached tables, then a 
distributed query plan is generated; otherwise, a remote-only plan 
is chosen.  Finally, statements other than a UDI or a query, such as 
Data Definition Language (DDL) statements, are directly passed 
to the backend database on the assumption that it is what the user 
desired.  The philosophy here is that the user is in general 
unaware of the existence of the cache, and so any schema change 
should be effected at the backend database.   

For situations where a user is aware of the cache’s existence 
(such as creation of local indexes), we need a way to capture the 
user’s intent.  An example of a situation where operations are 
explicitly targeted at the cache database is the DPropR apply 
program.  This application propagates data updated on the 
backend database to the cache database.  Since DpropR reuses the 
SQL API, the cache DBMS engine has no way of knowing that 
these updates are targeted at the cache database, and so we have to 
ensure that auto-passthru does not send them to the backend 
database again.  Other administration activities over the cache 
database face the same problem.  We solve this problem by 
providing an SQL statement set passthru local.  Applications use 
this command to indicate that the following statements should be 
executed locally even in the DBCache.  Like a normal passthru, 
this can be turned off with the set passthru reset command.  In our 
case we modified the DPropR apply program to let it issue set 
passthru local command right after it sets up a connection to the 
cache database for applying changes. 

3. EVALUATION METHODOLOGY 

There are at least two alternative ways to examine the 
performance impact of middle-tier database caching in e-Business 
applications.  One alternative is to apply our prototype in the field 
and perform case studies.  Unfortunately, this is seldom viable for 
various business reasons.  Moreover, with the diversity of these 
applications and workloads, it may be difficult to gain insights 



from case studies.  The other alternative is to pursue simulation 
studies.  The problem there is that it may be extremely difficult to 
model the complex running environments of e-Commerce 
applications. 

Therefore, we chose to pursue a middle-of-the-road approach 
to test out our ideas.  We used hardware and software components 
that are popular in real e-Commerce applications to build our 
testing environment.  We chose an e-Commerce benchmark called 
ECDW (Electronic Commerce Division Workload) to be the test 
target application.  This benchmark is developed and used 
internally by the WebSphere Commerce Server Performance 
group at IBM Toronto Lab.  It is similar to the TPC-W benchmark 
[23], but has more features that are typical in e-Commerce 
applications. 

We tested the ECDW workload in several typical server-side 
configurations.  We chose to use production DB2 in all 
configurations, instead of using production DB2 for some 
configurations and using our DBCache prototype for some other 
configurations with a middle-tier database cache.  The main 
reason was that we wanted to compare the caching scheme results 
with the non-caching results without worrying about the effects of 
implementation differences.  Therefore, for configurations with 
middle-tier database caching, we created special database schema 
at the middle-tier to simulate the effects of caching.  By 
“simulating”  table level caching using the existing DB2 federated 
features, it is sufficient to show how this scheme performs.  

Disclaimer: The usage of the ECDW benchmark throughout this 
paper is for us to gain insights in an e-Commerce application and 
test our ideas.  It neither was intended for nor should be in any 
way viewed as the best possible performance results for any 
specific IBM or non-IBM products. 

3.1 Benchmark Descr iption 

The ECDW benchmark was designed through close interactions 
with a wide range of customers in order to reflect the key 
characteristics of real world e-Commerce applications.  It 
simulates web users accessing an on-line shopping mall.  It uses 
IBM’s WebSphere Commerce Suite (WCS) [13] on the server 
side, and Segue Software’s SilkPerformer [21] tool on the browser 
side.  We describe WCS, SilkPerformer, and ECDW itself in 
order. 

WCS is an integrated solution used by e-commerce sites in 
various industries.  A sample set of customers are: BuyUSA, 
InfinityQS, Mazda’s Competition Parts Program, Milwaukee 
Electronic Corporation, and IBM’s own shopIBM site 
(www.ibm.com).  It provides services for creating, customizing, 
running, and maintaining on-line stores throughout their entire 
lifespan of operations. On the database side, it has more than 500 
tables, many indexes, constraints, and triggers.  There are tools to 
create the database schema and load in data.  On the application 
side, it uses an Enterprise Java Bean (EJB) framework so that 
developers can program database accesses without being directly 
bound to the underlying database schema. Furthermore, customers 
can and do extend the database schema as well as the application, 
by creating new columns and tables and new EJBs. 

SilkPerformer is a load and performance testing tool for e-
business web applications.  It emulates workloads that testers 
specify, such as number of concurrent users, testing period, testing 
scenarios, and other options.  The tool warms up the testing 
environment, does the measurement, and finishes with a proper 
shutdown process.  All the measurements are performed on the 
client side; in the normal configuration, no instrumentation is 
done at the web server, application server, or backend database 
server. The measurement output includes throughput, response 
time, user-defined counters, user-defined timers, and other 
numbers, both on a running basis and on an aggregation basis. 

The ECDW benchmark uses around 300 tables in the WCS 
schema.  The database size can be small (10,000 items, 650MB), 
medium (30,000 items, 2GB), or large (50,000 items, 3.5GB).  
The regular shopping scenario is defined in a SilkPerformer 
script, which depends on two variables – user type and shop flow.  
The user types are: new registering user (5%), existing registered 
user (10%), and guest user (85%).  The shop flows are: browsing 
(88%), browsing and adding to a shopping cart (5%), browsing 
and preparing an order (2%), and browsing and buying (5%).  
These ratios were obtained through customer interactions, and 
thus attempt to mimic common browse to buy ratios at real 
shopping sites. 

The benchmark measures web interactions and web 
transactions.  A web interaction corresponds to a user conducting 
a specific operation at a browser that may involve a few mouse 
clicks and possibly some user input.  For instance, a LogOn web 
interaction is one in which a registered user clicks on the "Log 
on" link, fills out her information, and clicks on the submit button.  
A web transaction corresponds to an HTTP session – a series of 
user operations, which includes multiple web interactions.  

Figure 3 shows the regular shopping scenario of the 
benchmark.  Each box represents a web interaction.  A web 
transaction in the regular shopping scenario consists of the 
following sequence of web interactions: 1) Go to the front page of 
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the store.  2) If the user is a new registering shopper, register with 
the site; if the user is an existing registered shopper, log on to the 
site; otherwise (a guest shopper), go to the next step directly.  3) 
Browse a few items.  4) If the current shop flow is not just 
browsing, but also preparing an order or buying, loop a few times 
adding some browsed products into the shopping cart, and 
browsing a few items again.  5) If the current shop flow needs to 
prepare an order, open and fill out the address book for a guest 
shopper or directly display order information for registered users, 
and generate the detailed shipping information for all users.  6) If 
the current shop flow is to buy, finish the order. 

Since there are four different shop flows in the regular 
shopping scenario, a web transaction may end after one of the 
following four web interactions (grayed boxes as in Figure 3): 
Browse, AddingToShopCart, ShippingDetails, or Order.  

3.2 Server-side Topologies  

We benchmarked five server-side topologies, two of them with a 
middle-tier database cache, and three of them without.  The three 
topologies that do not have a middle-tier cache (shown in Figure 

4) are the following: (1) single box, in which the web/application 
server and the backend database server are on the same machine; 
(2) remote DB, in which these two components are on two 
machines; (3) clustered remote DB, in which there are multiple 
web/application server machines that communicate with the same 
backend database server.  The HTTP requests are distributed to 
the web application server machines in round-robin fashion 
through a network dispatcher or some mechanisms like that. 

The two topologies that do have middle-tier caching are 
shown in Figure 5.  DBCache topology adds a middle-tier 
database cache to the Remote DB topology, and Clustered 
DBCache adds a middle-tier database cache to each web 
application server in the Clustered Remote DB topology.  Note 
that the single box topology in Figure 4 is essentially a DBCache 
topology with a 100% cache hit ratio. 

3.3 Test Environment Details  

We used six computers in the tests. Four of them were IBM 
Netfinity 3500 server machines with an 800MHz Pentium III CPU 
and 1GB memory, and two of them were IBM IntelliStation 
workstations with 930 MHz Pentium III CPU and 512MB 
memory.  The four server machines had Windows 2000 Server 
and the two workstations had Windows 2000 Professional.  All 
machines had 20-30GB disk space.  All machines were on a LAN 
with a bandwidth of 100Mbits/second.  

We installed IBM WebSphere Commerce Suite (WCS) V5.1 
on each server system, which includes the IBM HTTP Server 
(repackaged Apache), WebSphere Application Server (WAS), and 
DB2 V7.1.  We also deployed the ECDW store application (JSP 
files, HTML files, Java class files, EJB files, etc.) in the WCS 
instance on each sever system, and created the store database with 
the large data size (3.5GB) using the scripts and data that come 
with the benchmark.  On one workstation computer, we installed 
SilkPerformer V3.5 to be used as the test driver (web client).  On 
the other workstation machine, we installed IBM WebSphere 
Edge Server V3.6 to be used as a network dispatcher to distribute 
HTTP requests to multiple WAS servers. 

We configured DB2 as specified by the ECDW benchmark 
with appropriate buffer pool and log buffer sizes.  To intensify the 
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testing for the database server, we set the think time (waiting time 
between web interactions) to be zero in the ECDW client test 
driver. 

3.4 Database Workload Details 

We are especially interested in the characteristics of the database 
workload from the application.  This WCS-based benchmark is a 
canned application.  We used DB2’s dynamic SQL statement 
snapshot tool [12] to capture the SQL execution information on 
the database server side.  It reports the SQL statement text (with 
‘?’ representing parameter markers – input variables that are 
bound at query run-time as opposed to compile-time), the total 
number of executions, total execution time, number of rows read, 
and other information. 

We examined the SQL statements that were captured through 
the snapshot tool.  For the 1-user regular shopping workload, 
there were 151 distinct query templates (with parameter markers 
and literals), consisting of 125 read queries, 14 insert statements, 
and 11 update statements.  For the 30-user regular shopping 
workload, there were 388 distinct query templates, but still the 
same 14 inserts and 11 updates as in the 1-user workload.  This 
was because while all the insertions and updates were issued as 
prepared statements with parameter markers, some queries (for 
example, checking orders of a particular registered user) were 
issued with literals and not parameter markers.  As a result, the 
different workloads had a fixed numbers of insert and update 
templates, but had different numbers of selection templates. This 
large and varying number of query templates made it difficult for 
us to analyze the SQL query characteristics of the workloads.  
Since ordering and registering comprised only a small fraction of 
the workload, in later experiments we focused on browsing-only 
workloads, which we created by modifying the original regular 
shopping workloads. 

In a browsing-only scenario, all users are guest shoppers and 
all transactions are browsing only.  We also examined the SQL 
snapshots of 1-user and 30-user browsing-only workloads.  The 
query templates in the browsing-only workloads were fixed.  
There were a total of 47 query templates, with 27 of them having 
parameter markers, and the other 20 not. All of them were simple 
OLTP style queries, with only 15 of them having joins among two 
to four tables and the other 32 being single-table selection queries.  
In total, the browsing only workloads involved 51 tables. 

The number of executions of these query templates in 
browsing-only workload is shown in Figure 6.  The top 12 most 
accessed query templates all had parameter markers in them.  Four 
of them were joins and the other eight were selection queries.  
Collectively they accessed 15 tables (less than 1/4 of the involved 
tables of the workload) and consisted of 88% of the total number 
of SQL executions.  

Moreover, in regular shopping workloads, we observed that 
there was a large degree of overlap between tables with inserts 
and updates – of the 11 tables with updates and 14 with inserts 
(there was no deletion in the workload), 9 had both inserts and 
updates.  We observed that there was little overlap between read-
only tables with queries and tables with updates and inserts.  Only 
two tables (userreg and users) were subject to inserts, updates and 

selects, only one table (member) was both queried from and 
inserted into, and one table (keys) was queried from and updated 
to.  We also examined if any updates/inserts happened on the 
tables that were involved in the top 12 most frequent query 
templates.  We found that there was only one such table (the table 
users accessed by the 6th most frequent query template).  

In summary, we observed that e-Commerce workloads had 
short query execution time, highly skewed popularity of tables, 
and clean separation of read-dominant and write-dominant tables.  
These characteristics make middle-tier database caching very 
attractive. 

4. EXPERIMENTAL RESULTS 

First, we compared performance of regular shopping scenarios 
with that of browse-only scenarios.  Then, we measured the 
overhead of adding a middle-tier database cache by using a 
database cache with 0% hit rate.  Then, we cached tables for the 
top 6 most frequent queries at the middle-tier and measured its 
performance while varying the workload on the backend database 
server. We then explored update propagation cost in the caching 
scheme.  Finally, we examined the performance of clustered 
topologies. 

4.1 Compar ing Workload Character istics 

We tested the regular shopping scenario in the single box 
topology.  We varied the number of concurrent users at the 
simulator and measured each user executing 100 web transactions.  
The backend database was restored after each run so that each run 
started with the same database content.  The throughput is 
reported in terms of average number of web transactions per 
second, and the average response time is reported in terms of the 
number of seconds per web transaction.  We also report the 
average response times (in seconds) per web interaction as 
TBrowse, TBuy, TOthers, and TOverAll.  TBrowse refers to the 
time spent in browsing.  TBuy includes the time spent in adding 
items to shopping carts, filling out address book, displaying order 
information, working out shipping details, and ordering.  TOthers 
refers to the time spent in registered user logging on and new 
users registering.  TOverAll is the weighted average response time 
per web interaction for all types of web interactions, with the 
weights being the occurrences of each type of interaction.  These 

Figure 6: Number  of Executions of Query Templates in 
Browsing 
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numbers are shown in Table 1.  We also ran the browsing only 
workload on a single box server topology varying the number of 
concurrent users as shown in Table 2.  

#users 1 5 10 30 

#xacts/sec 0.5 0.8 0.8 1.0 

secs/xact 1.9 6.2 11.2 30.1 

TBrowse 0.1 0.5 0.8 3.0 

TBuy 1.0 1.9 6.1 5.5 

TOthers 0.2 1.0 3.7 3.0 

TOverAll 0.2 0.7 1.2 3.2 

#users 1 5 10 30 

#xacts/sec 1.3 1.6 1.6 1.6 

secs/xact 0.8 3.1 6.4 19.5 

TOverAll 0.1 0.4 0.8 2.5 

Not surprisingly, both the throughput and response times (per 
web transaction and per web interaction) of the browsing-only 
workload improved over those of the regular shopping workload.  
Nevertheless, both scenarios followed the same pattern: the 
throughput increased slightly from 1 user to 30 users, while the 
response time consistently increased proportional to the increase 
in the number of users. Since browsing represents the majority of 
the total workload (TOverAll in regular shopping scenario follows 
closely with the TBrowse value), and browsing-only scenario is 
much simpler to test, most of the following experiments are 
focused on browsing-only workloads.  

4.2  Examining Overhead of Adding a Front 
End Cache 

Adding a middle-tier database cache at the application server 
creates overhead by consuming resources on the application 
server machine.  This is a common concern, especially when the 
middle-tier database cache is a full-strength DBMS and not a 
lightweight query processor, so we examine this overhead. 

We configured WAS (WebSphere Application Server) on a 
server machine to let it use a local DB2 server, and used the 
DBCacheInit tool to create a database of all nicknames in the 
local DB2 referencing the backend database in a remote DB2 on 
another server machine.  This makes the local DB2 act as a 
middle-tier DBCache with a 0% cache hit rate.  We compared the 
performance of this dbcache0 configuration and the remote DB 
configuration to examine the overhead. 

We compare the throughput and web transaction response 
time of these configurations for varying number of concurrent 
users in Figure 7.  The remote DB configuration is shown as 
remote, and the database cache with all nicknames dbcache0.  As 
expected, dbcache0 was always worse than the remote DB case, 
because the backend server was not overloaded.  This is because 
all the queries at the cache are misses and every query goes 
through two database servers.  This made the performance of 
dbcache0 around one half of the remote DB case under a light 
load (less than 10 users), but when the number of concurrent users 
increased to 30, the difference became much less significant.  This 
shows that although using a full strength DBMS as a middle-tier 
database cache adds some overhead, this overhead is insignificant 
when the server is fully loaded.  

4.3 Examining Server  Workload Shar ing 

In real world scenarios, e-business applications have a large 
number of online users, and the load can vary by a factor of 100 in 
daily operations [5].  When the backend database server is more 
heavily loaded, caching in the front ends is even more important 
to improve users' response time.  Therefore, we set up a middle-
tier cache database at a WAS machine as the front end and 
measured its performance varying the workload on the backend 
server. 

From previous investigation on the browse-only workloads, 
we observed that the accesses of different query templates were 
highly skewed.  We selected the top 8 most used query templates 
and cached in the local database the eight tables that they 
accessed.  Queries on these eight tables consisted of 71% of the 
database queries in the browse-only scenario.  In the later 
experiments, we also used this cache configuration for all 
DBCache cases. 

The setup for varying the backend server workload in the 

Table 1: Regular  Shopping Scenar io on Single Box

Table 2: Browsing-only Scenar io on Single Box

Figure 7: Overhead of Adding a Front End Cache with a 0% Cache Hit Rate 
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DBCache topology is shown in Figure 8.  The goal is to vary the 
backend server workload and examine how caching can help.  We 
achieved this by sending an extra browsing only workload to the 
backend directly.  The setup for varying the backend server 
workload in the Remote topology is similar except that there is no 
middle-tier dbcache at the front end.  Both the front-end response 
time and the backend response time were measured at the test 
driver (web client side).  We compare the response times in the 
dbcache case with those in the remote case. 

In Figure 9, we see that when the extra workload on the 
backend database was 10 or 50 users, adding a cache at the 
application server did not help.  However, when the number of 
extra users on the backend reached 100, caching started to make a 
difference.  The front-end response time was improved because 
the cache sheltered its users from the overloaded backend 
database server, and the backend response time was improved 
because the cache shared its server workload.  Due to resource 
constraints, we were not able to test more than 100 users, but we 
believe that this caching benefit will be even more significant 
when the backend database server is more heavily loaded. 

4.4 Examining Update Propagation Cost   

This experiment was to examine how much performance impact 
the asynchronous update propagation process had on the on-line 
query performance.  We set up DPropR on the backend database 
server and the WAS server with a DBCache.  The capture program 
was running on the backend database server, and the apply 
program on the cache database.  The cache database still had the 
eight tables cached and the other tables uncached.  Since the 

cached users table was updated frequently in a regular-shopping 
scenario to update the lastSession field with the timestamp of the 
last log-on session for each registered user, we subscribed the 
users table for update propagation with the minimum frequency of 
1 minute.  

We still used the same extra workloads on the backend as in 
the previous experiment, and examined the update propagation 
cost in this setting.  Besides sending a 10-user browsing-only 
workload to the front end WAS server with a DBCache and 
sending extra browsing-only workload to the backend database 
server with a WAS clone directly, we also sent an update workload 
on the lastSession field of the users table to the backend database 
server (shown in Figure 10).  This lastSession field was updated 
with the current timestamp to simulate the actual update in a 
regular-shopping scenario when a registered user logged on.  The 
update workload was executed without any waiting time between 
consecutive updates. The update throughput was measured to be 
40-60 updates/second depending on the server load.  We 
measured the performance impact of update propagation on the 
browsing workloads by measuring the response times at the 
simulated browsers. 

We compared the with-dpropr-running case with the without-
dpropr-running case when the same updater was updating the 
backend database server.  Figure 11 shows that in general 
asynchronous update propagation did not add significant overhead 
to the response time, although the capture program on the 
backend database server incurred around 20% overhead to the 
query workload when the extra load on the server was 100 users. 
The overhead caused by the apply program was low because the 

Figure 8: Setup for  Varying Server  Workload  

Figure 9: Caching Effect with Varying Server  Workload 
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apply program batched up updates for each propagation interval 
(1 minute), and each experiment lasted 20-30 minutes.  The 
overhead caused by the capture program was reading the log and, 
when a log record relating to a subscribed table is found, 
performing an SQL insert into the changed data table (one of the 
control tables used by DPropR). 

4.5 Cluster ing Web Application Servers 

Finally, we compared the performance on clustered topologies (2-
WAS and 3-WAS) with that on corresponding non-clustered 
topologies (1-WAS) to see how they were scaling with the number 
of WAS machines.  Figure 12 shows the throughput and response 
times of a 30-user browsing-only workload when the backend 

database is heavily loaded under a CPU hog program. 

When the number of WAS machines increased, both 
clustered topologies improved the user response time, but 
clustered dbcache improved the throughput more than clustered 
remote DB topology.  This implies that (1) For the clustered 
remote DB topology, simply increasing the number of application 
servers does not scale up the entire system under a heavy load, 
and causes the backend database server to become the bottleneck. 
(2) Clustered DBCache topology shares the backend database 
server workload, and it can scale up throughput better by adding 
more cache nodes.  We are interested in adding more WAS nodes 
to further examine the scale-up effect for clustered topologies. 

Figure 11: Update Propagation Cost with Varying Server  Workload  

Figure 12: Varying Number  of WAS machines

Figure 10: Setup of DPropR with Varying Server  Workload
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4.6 Discussion 

By running the benchmark and its modifications in various 
configurations, we show that both application servers and 
backend database servers can be bottlenecks under different 
workloads.  Application servers are mostly CPU intensive under 
e-Commerce workloads, but they can scale to a large number of 
users by replicating (together with replicated applications) to 
multiple nodes.  In general, single node commercial database 
servers consume much less CPU resource than application 
servers, but they can also become a bottleneck under heavy loads. 

One approach to scaling the backend database when it is a 
bottleneck is to use a more expensive SMP/MPP system – while 
this approach helps increase the scalability of the system, it does 
not address the performance, flexibility and availability concerns.  
It is also more expensive compared to the DBCache approach 
where cheaper and less reliable machines can be used to run the 
application servers with DBCache. 

Due to resource constraints, we were not able to test more 
than 100 simulated users, more than 3 WCS nodes, or separating 
the application servers from the DB server by a wide area 
network.  However, from the trends shown in the experiments, we 
believe that middle-tier database caching on the application 
servers can improve server scalability.  If these data caches are 
deployed with edge servers, they can also bring content closer to 
users and improve performance in terms of response time. 
Performance can also be enhanced when the application server 
and the database are geographically separated by a wide-area 
network, as is common for many customers.  Finally, by 
continuing to provide limited service based on cached data, this 
approach also increases availability of the web site.  Many issues 
relating to database caching in application and edge servers are 
discussed in [18]. 

5. RELATED WORK 

Products most relevant to ours are the Database Cache of Oracle’s 
9i IAS (Internet Application Server) [19] and TimesTen's Front-
Tier [22].  Oracle's Database Cache caches full tables using a full-
fledged Oracle DBMS, and relies on replication tools to 
asynchronously propagate updates from the backend database to 
the cache.  TimesTen's Front-Tier is a caching product based on 
their in-memory database technology.  One advanced feature of 
Front-Tier is that users can create cache views at the Front-Tier, 
which can be a subset of tables and join views.  Unlike Oracle and 
our DBCache, updates are performed at the Front-Tier cache, and 
propagated to the backend database at transaction commit time (or 
the propagation to the backend can also be done asynchronously). 

A major difference between our work and these existing 
products is that our cache has distributed query processing 
capability.  This is because we leverage DB2's federated features 
so that query plans at the cache can involve both sites in a cost-
based manner [20].  In contrast, Oracle’s query routing happens at 
the OCI layer before a statement reaches the cache database.  
Consequently, the statement is either entirely executed at the 
backend database or entirely at the cache database.  Similarly, 
applications using TimesTen's Front-Tier must be aware of the 

cache content and issue queries on cached content and on the 
backend database separately. 

Caching for data-intensive web sites have been recently 
studied in [2], [3], [7], [16], [17], and [24].  They focused on 
caching dynamically generated web pages, HTML fragments, 
XML fragments, or query results from outside of a DBMS (except 
[24] investigated using the backend database to cache 
intermediate query results as materialized views).  Our focus is to 
engineer a full-strength DBMS into a middle-tier database cache 
from inside out, and improve availability and performance for 
applications without making any changes to them. 

Finally, previous work on materialized views [9] and caching 
for heterogeneous systems ([1], [4]), client-server database 
systems ([6], [14]), and OLAP systems [8] are relevant to our 
work.  Most of the techniques proposed in these papers are 
suitable for specific types of applications, for example, keyword 
based search, mobile navigation, or computation intensive OLAP 
queries. Compared to these applications, e-Commerce 
applications are usually simple OLTP-style queries but require 
reliability, scalability, and maintainability.  Consequently, we 
choose simple table level caching using an industrial strength 
DBMS. 

6. CONCLUSIONS AND FUTURE WORK 

We have examined the opportunities in e-Commerce applications 
for middle-tier database caching by running an e-Commerce 
benchmark on typical web site architectures.  We observed that e-
Commerce applications generated a large number of simple 
OLTP-style queries, their table accesses are highly skewed on a 
few read-dominant tables, and there was a clear separation 
between write-dominant tables and read-dominant tables.  We 
demonstrated that web application clones could scale up to heavy 
loads and the backend database server eventually becomes the 
performance bottleneck in the system. 

We have presented our prototype implementation of a 
middle-tier database cache.  By extending DB2’s federated 
features, we turned a DB2 instance into a DBCache without 
changing user applications.  The novelty of this extension is that 
query plans at the cache may involve both the cache and the 
remote server based on cost estimation.  Through experiments, we 
showed that the overhead of adding a full-strength DBMS as a 
middle-tier database cache was insignificant for e-Commerce 
workloads.  Consequently, middle-tier database caching improved 
users response time significantly when the backend database 
server was heavily loaded. 

Future work includes extending the DBCache prototype to 
handle special SQL data types, statements, and user defined 
functions.  We are also investigating alternatives for handling 
updates.  Usability enhancements, such as cache performance 
monitoring, and dynamic identification of candidate tables for 
caching are important directions for us to pursue. 
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