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Abstract. A meta-search engine propagates user queries to its partic-
ipant search engines following a server selection strategy. To facilitate
server selection, the meta-search engine must keep concise descriptors
about the document collections indexed by the participant search en-
gines. Most existing approaches record in the descriptors information
about what terms appear in a document collection, but they skip in-
formation about which documents a keyword appears in. This results
in ineffective server ranking for multi-term queries, because a document
collection may contain all of the query terms but not all of the terms
appear in the same document.
In this paper, we propose a server ranking approach in which each search
engine’s document collection is divided into clusters by indexed terms.
Furthermore, we keep the term correlation information in a cluster de-
scriptor as a concise method to estimate the degree of term co-occurrence
in a document set. We empirically show that combining clustering and
term correlation analysis significantly improves search precision and that
our approach effectively identifies the most relevant servers even with a
näıve clustering method and a small number of clusters.

1 Introduction

Search engines, such as Google, are efficient tools for users to find useful infor-
mation on the Web by simple keyword-based queries. With such a vast amount
of data on the Web and the rapid pace at which the Web is growing, it is a
daunting (if not impossible) task for a single search server to index the entire
Web and to keep its index repository up-to-date. As an alternative to a single
search engine, a meta-search engine, or meta-server, accepts queries from users,
propagates the queries to one or more of its participant search servers, and re-
turns to users a uniform representation of the query results retrieved by those
servers. This meta-search method achieves a better coverage of the Web with
less update costs than a centralized search method, even though each participant
search engine covers only a specific topic or a small domain of the Web.

Server selection or server ranking is a crucial procedure in a meta-search
system. When a user query is made, the server selection procedure identifies a
subset of the participant search engines that are potentially most relevant to the
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query, in order to promptly obtain query results of good quality. As a result,
server selection is the first step in determining the efficiency and effectiveness of
a meta-search method. In this paper, we explore how to improve server selection
in order to enhance the effectiveness of a meta-search, especially for long queries.

Most of the existing server selection methods [11] keep statistical information
about the participant search servers’ indexes. They invariably maintain a list of
terms found in the indexed documents, while the weight of a term may vary
across different methods. When a multi-term query arrives, the meta-search
engine computes a relevance score of each server for each single query term. The
scores of each server are then summed to produce the final rank of the server.
Apparently, terms in a query are considered in isolation from one another during
this process. Therefore, whether two query terms appear in one document or each
appears in a different document is not taken into consideration. Consequently,
such methods in general are ineffective for multi-term queries.

Considering term correlation for multi-term queries is necessary for effective
server selection. However, the computation of term correlation information may
be time-consuming and the accuracy of the results may be interfered with by
noisy data. This leads us to consider clustering in combination with term corre-
lation analysis in server ranking. Specifically, we propose to divide each search
engine’s document collection into clusters based on their term occurrences and
then to compute the term correlation information within each cluster. This can
be done efficiently and effectively, because a cluster is smaller than the entire
collection and contains similar documents. The resulting server rank strategy
considers not only the matching level of individual query terms at a server, but
also that of term correlation at the server.

In addition to designing and implementing our server ranking strategy with
a combination of clustering and term correlation, we have performed simulation
experiments on a subset of the TREC (Text Retrieval Conference) documents
collection (details are given in Section 5). Our empirical results show that this
method works well in estimating search server relevance. Most notably, even
though clustering is often a computationally expensive task, our method of com-
bining clustering and term correlation analysis yields good results with a näıve
but fast clustering algorithm and a small number of clusters.

The remainder of the paper is organized as follows. Section 2 briefly discusses
some related work. Section 3 presents the clustering and term correlation meth-
ods we used. Section 4 describes our server ranking method with clustering and
term correlation. We give the experimental results in Section 5, and draw some
conclusions in Section 6.

2 Related Work

A great number of meta-search systems have been developed in recent years,
together with various server selection methods. In addition, there have been
proposals on distributed search [10][13]. In the following we discuss a few previ-
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ous meta-search methods, some of which consider document clustering or term
correlation in server ranking and therefore are especially relevant to our work.

SavvySearch[8] adjusts the number of concurrent participant search engines
to the network load and the local CPU load at the query time, and ranks the
participant search servers by relevance score (TFIDF), user click-through and
their recent performance.

Clustering has been applied in a meta-search method [12], in which descrip-
tors of clusters instead of the entire indexed data collections are adopted. The
descriptors are computed at the individual search servers and are kept by the
meta-search server. This results in improved scalability with respect to compu-
tational consumption and storage space.

Document relevance has also been considered in a previous meta-search en-
gine [15]. This meta-search engine computes the relevance score of an individual
search server S to a term T as the similarity between T and the most relevant
document in S, and records only the top N relevant servers. It offers excellent
scalability and guarantees that the K most relevant documents are retrieved for
single-term queries. However, it doesn’t perform well with multi-term queries
and tends to return answers pointing to identical sources.

Finally, the Ingrid[10] search infrastructure provides a good model for clus-
tering based on term combinations rather than separate terms, but it is not likely
to scale up, since the number of clusters required to maintain a correct Ingrid
topology increases sharply as the system grows.

3 Clustering and Term Correlation

3.1 Clustering Algorithm

Clustering has been studied extensively in machine learning [6], pattern recogni-
tion [5], and optimization [3]. The most general approach to clustering is to view
it as a density estimation problem [14]. Various models [9] have been developed
for clustering purposes, among which the K-means algorithm is well-known for
its efficiency.

K-means is a widely-used iterative algorithm that starts from K rough cen-
troids and converges gradually. Much effort has been made to improve its effec-
tiveness [2]. Since an effective clustering algorithm is often expensive and thus is
unsuitable for server ranking, we purposely adopt a näıve but fast two-iteration
K-means algorithm in our server ranking method. We show by experiments that
our method works well, notwithstanding the relatively high error rate of the
clustering algorithm.

3.2 Term Correlation

Descriptors of Clusters. After the document collections of the participant
search servers are partitioned into clusters, we can obtain crucial information
that best describes each cluster. We define the descriptor of a cluster c as follows:
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– The cardinality of cluster c, Card(c);
– The centroid of c, Cent(c) = (aw1, aw2, ..., awn), where each coordinate value

awi is the average of all weights of term ti across the documents in cluster
c, with the weight of ti in a document being zero if there is no occurrence of
this term in the document.

– A term correlation matrix, CM(c), which records the pairwise similarity
of frequent terms of cluster c. Similarity and frequent terms are defined in
Sections 3.2.2 and 3.2.3.

Since clustering is based on the density distribution of the indexed documents
in the vector space, the resulting clusters are composed of documents that are
similar to each other to some extent. We can regard a cluster as a special topic
area in the sense that documents of the same topic tend to be relatively similar.
While a clustering algorithm may make mistakes due to noise in the data and
may be too expensive to be applied to the entire document collection of a search
server, it is more efficient and effective to analyze term correlation within specific
topic areas, where the term space is narrowed and the noisy data are eliminated.

Frequent Term Selection. If it is assumed that clusters are topic areas, the
frequent terms of a cluster can then be regarded as popular words of a special
topic. We choose the frequent term set, FT (c), for a cluster c, such that FT (c)
covers the majority of popular words of c, but does not have much intersection
with the frequent term sets of the other clusters.

For each document vector dv = (tw1, tw2, ..., twn) in a cluster c, twi is the
weight of term ti in the document, which is defined as the raw term frequency
tfi divided by the maximum raw term frequency tfmax in dv. In this paper, we
define the total weight of a term ti in cluster c as follows:

W (ti, c) =
∑

dv∈c

twi, dv = (tw1, tw2, ..., twn).

We compare a threshold with the total weight of each term in the cluster to
determine the frequent term set of the cluster. This method identifies frequent
terms based on their absolute total weight values within a cluster, regardless of
the cluster size, and therefore tends to produce a larger frequent term set for a
larger cluster, which is natural in the real world.

Term Correlation Representation. After the frequent term set is decided on,
we analyze the correlation among frequent terms within a cluster by computing
a term correlation matrix, through which information about the distribution of
terms over documents can be obtained.

To compute the term correlation matrix, CM(c), of a cluster c, we first
construct a term-document matrix, DM(c), from c’s document collection. An
entry dmi,j in DM(c) is the weight of term ti in document vector dvj ∈ c. Thus,
we obtain a term-document vector for each frequent term.
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We define the correlation of two terms ti and tj as the similarity between their
term-document vectors, tvi and tvj . Let Card(c) = m, tvi = (wi,1, wi,2, ..., wi,m)
and tvj = (wj,1, wj,2, ..., wj,m). cmi,j , the (i, j) entry of the term correlation
matrix, CM(c), can be represented as follows:

cmi,j = sim(tvi, tvj)

=
∑m

k=1 wi,k × wj,k√∑m
k=1 w2

i,k × ∑m
k=1 w2

j,k

. (1)

Equation 1 implies that terms with a similar distribution of occurrences
among the documents within a cluster have a high correlation value. Specifi-
cally, when two terms have the exact same distribution (i.e., they co-occur in all
documents with the same weight), their term correlation is one; if they do not
co-exist in any single document, their term correlation is zero.

4 Server Ranking

Having presented the cluster descriptors with term correlation information, we
are now ready to discuss our server ranking method in a multi-term query meta-
search.

Consider a query with two terms A and B. If the cluster descriptors fail to
distinguish between one document with terms A and B, and two documents
each with only one of the terms, the referral may be false. Our goal in server
ranking is to eliminate such false referrals and subsequent fruitless query results
by ranking servers based on the term correlation within clusters.

We adopt a cluster ranking metric based on the cardinality, the centroid, and
the term correlation matrix of each cluster. We then rank each search server by
summing the weights of all of its clusters. This way, we guarantee that a cluster
with query terms co-occurring more frequently is assigned to a higher rank and
that a server with higher quality clusters is also ranked higher.

Let us define the ranking metric formally as follows. Suppose a search server
S(c1, c2, ..., ck) has K Clusters, and that we define the rank of the server as the
sum of the cluster ranks (weights).

W (S) =
K∑

i=1

W (ci).

Consider a query Q with k query terms. We represent query Q as a vector
qv where all terms that occur in the query have a weight of 1, and 0 otherwise.
Then, the weight of a cluster c with respect to query Q is represented as follows,
where sim is a function of the cosine similarity between two vectors as defined
in Equation 1.
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W (c) = {α × sim[Cent(c), qv] + β × (
∑

i<j

cmi,j)} × Card[c]; (2)

for all (i, j) ∈ {(i, j)| i < j, ti ∈ Q, tj ∈ Q}.

In this cluster weight formula, α and β are two weighting coefficients decided
at the meta-search server side, where

α + β = 1.

This equation takes into account the proximity between the cluster centroid
and the query vector, the correlation of the query terms within the cluster, and
the size of the cluster. It shows that the closer the cluster is located to the query
vector, the more often the query terms co-exist in the documents of the cluster;
and the larger the cluster, the higher rank the cluster is assigned.

Let us illustrate this by a simple example. Consider a query with four terms A,
B, C, and D, and two clusters c1 and c2. Cluster c1 has two documents, document
doc11 containing query terms A, B, and C simultaneously, and document doc12
containing query term D only. Cluster c2 also has two documents, document
doc21 containing all of the four query terms, and document doc22 containing
none of the query terms. Intuitively, cluster c2 should be ranked higher than c1.

Let us see how our method works in this example. To ensure that all other
conditions are equal, we assume

– Cent(c1) = Cent(c2), and that the similarity between the query vector and
the cluster centroid is S.

– Card(c1) = Card(c2) = 2 (i.e., no other documents are contained in the two
clusters besides doc11, doc12, doc21, and doc22).

– The weights of all query terms, A, B, C, and D, have a value of 1 in whichever
documents they occur.

Since doc11 and doc12 in cluster c1 together contribute to sim(A, B),
sim(B, C), and sim(A, C), while in c2, only doc21 contributes to the similar-
ity of all the C2

4 = 6 possible term pairs, we compute the cluster weights to
be

W (c1) = (α ∗ S + β ∗ 3) ∗ 2; W (c2) = (α ∗ S + β ∗ 6) ∗ 2.

This shows that cluster c2 is indeed ranked higher than c1 by our method.
We believe that our server selection method is a scalable approach, because

the growth of the number of frequent terms in a cluster is slow with respect to
that of the number of documents in the cluster. It follows that the computation
cost of the term correlation matrix is linear to the number of documents when
the vocabulary is stabilized and the size of the matrix is invariable.

Finally, we believe that document updates (which often occur on the Web)
can easily be handled by our approach if we periodically perform clustering and
update the cluster descriptors. Since all the computation of clustering and term
correlation analysis is done off-line and is distributed over all participant search
servers, the update overhead will not be too heavy a burden at each local server.
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5 Experimental Results

To evaluate our server selection method, we set up a simulation environment in
which a large document set is partitioned into smaller collections, each of which
is indexed and searched separately. Thus, each collection simulates a “pseudo”-
search server. In our experiment, 50 pseudo-search servers are used. The docu-
ment set comes from Volumes 41 and 52of the TREC collection, consisting of
over 500,000 documents. We distribute the data among all 50 pseudo-servers
such that all servers maintain document collections of a similar cardinality. We
choose a uniform distribution in this paper, rather than a skewed one (i.e., hav-
ing a bias towards some of the servers over others with respect to the number of
indexed documents), to isolate the effects of our method from other factors.
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Fig. 1. Various α and β settings

Each pseudo-server is partitioned into K clusters using the two-iteration K-
means clustering algorithm with random initial points. All cluster descriptors
are computed at individual search servers and are stored at the meta-search
engine. For each query, the meta-search engine performs the server selection and
propagates the query to the top T highest ranked search servers. We choose
retrieval accuracy (precision) as our search performance measurement metric, as
it is the most important metric in Web search, where users are mostly interested
in only the top few query results (precision or accuracy, not recall).

Given a query Q, the cast number T (i.e., the number of search servers to
which a user query is forwarded) and the number of top relevant documents
retrieved at each search engine, N , the retrieval accuracy of the meta-search
engine is defined as:

Acc(Q, T, N) =
|(∪S

i=1Rli ∩ R|
N

, for all sli selected,

1 TREC Volume 4, May 1996 Collection includes material from the Financial Times
(1991, 1992, 1993, 1994), the Congressional Record of the 103rd Congress (1993),
and the Federal Register (1994).

2 TREC Volume 5, April 1997 Collection includes material from the Foreign Broadcast
Information Service (1996) and the Los Angeles Times (1989, 1990).
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where Ri is the set of query results returned by search server si, and R is the set
of top N relevant documents across the entire TREC document collection. We
believe this measurement describes the effectiveness of a server ranking approach
well, since it is decided mostly by which servers are selected rather than by the
quality of the document collection.

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Cast Number

R
et

rie
va

l P
re

ci
si

on

TC

CL

Fig. 2. 20 Clusters, Top 10 Documents

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Cast Number

R
et

rie
va

l P
re

ci
si

on

TC

CL

Fig. 3. 20 Clusters, Top 20 Documents

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Cast Number

R
et

rie
va

l P
re

ci
si

on

TC

CL

Fig. 4. 30 Clusters, Top 10 Documents



A Meta-search Method with Clustering and Term Correlation 551

5.1 Coefficient Settings

In the cluster weight formula (formula 2), the two coefficients α and β respec-
tively suggest how much the ranking score is affected by the statistical informa-
tion and the term correlation within clusters. We conduct experiments on various
α and β settings in an environment where the number of clusters K = 20, and
the cast number N = 20.

Figure 1 illustrates the retrieval precision of three typical settings, from which
we can observe that α = 0.2, β = 0.8 works the best.
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Fig. 5. 30 Clusters, Top 20 Documents
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5.2 Comparison

We then evaluate our approach for K = 20; 30, N = 10; 20, and T = 1; 10; 20;
30; 40; 50. It is obvious that when T = 50, the retrieval accuracy of all approaches
converges to 100%. We compare our method only with the method proposed by
Shen et al. [12], which makes use of clustering but not term correlation analysis,
because their method has been shown to perform better than the other existing
ranking methods such as gGloss[7], CORI[4], and CVV[16].
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We refer to our method TC and that of Shen et al. CL .3 in the figures.
Obviously, the two methods perform the same for single-term queries. Therefore,
we consider only multi-term queries in our experiments. The results (Figures 2-
5) show that our approach (TC) consistently achieves a higher accuracy than
the cluster-based method (CL).

Our results also show that K = 30 is a good value for clustering in our
setting and that our approach improves retrieval accuracy more significantly
when a small number of top-score documents are retrieved (N = 10), which is
especially encouraging since it is most important to precisely retrieve the very
top document set.

Finally, we conduct experiments where the number of clusters is rather small
(K = 5) and thus the clustering procedure is quite fast. In this scenario, the
cluster-based method with no term correlation analysis turns out to be as inef-
fective as a random server selection method. In comparison, we show in Figure 6
that our cluster and term correlation-based method still achieves a high accuracy.

6 Conclusion

In this paper, we have proposed a server ranking method combining document
clustering and term correlation for meta-search systems with respect to multi-
term queries. In our method, each participant search server applies clustering
to its local repository and computes the correlation matrix of frequent terms
to be included in the cluster descriptor. This approach takes into consideration
the degree of co-occurrence of query terms in documents. Therefore, it signifi-
cantly improves the effectiveness of server selection for multi-term queries. This
is confirmed by our initial experiments on the TREC document collection. Ad-
ditionally, our empirical results show that a simple but fast clustering algorithm
and a small number of clusters is sufficient to achieve the accuracy enhancement,
thus allaying concerns about the overhead of the clustering procedure.
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