
Morphling: Fast, Near-Optimal Auto-Configuration
for Cloud-Native Model Serving

Luping Wang∗
HKUST, Alibaba Group
lwangbm@cse.ust.hk

Lingyun Yang∗
HKUST, Alibaba Group
lyangbk@cse.ust.hk

Yinghao Yu
Alibaba Group, HKUST

yinghao.yyh@alibaba-inc.com

Wei Wang
HKUST

weiwa@cse.ust.hk

Bo Li
HKUST

bli@cse.ust.hk

Xianchao Sun
Alibaba Group

xianchao.sxc@alibaba-inc.com

Jian He
Alibaba Group

jian.h@alibaba-inc.com

Liping Zhang
Alibaba Group

liping.z@alibaba-inc.com

Abstract
Machine learning models are widely deployed in production
cloud to provide online inference services. Efficiently deploy-
ing inference services requires careful tuning of hardware
and runtime configurations (e.g., GPU type, GPU memory,
batch size), which can significantly improve the model serv-
ing performance and reduce cost. However, existing auto-
configuration approaches for general workloads, such as
Bayesian optimization and white-box prediction, are ineffi-
cient in navigating the high-dimensional configuration space
of model serving, incurring high sampling cost.
In this paper, we present Morphling, a fast, near-optimal

auto-configuration framework for cloud-native model serv-
ing. Morphling employs model-agnostic meta-learning to
navigate the large configuration space. It trains a meta-
model offline to capture the general performance trend under
varying configurations. Morphling quickly adapts the meta-
model to a new inference service by sampling a small number
of configurations and uses it to find the optimal one. We have
implemented Morphling as an auto-configuration service in
Kubernetes, and evaluate its performance with popular CV
and NLP models, as well as the production inference ser-
vices in Alibaba. Compared with existing approaches, Mor-
phling reduces the median search cost by 3×-22×, quickly
∗The first two authors made equal contributions to this work, which was
done while they were doing research internship in Alibaba.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’21, November 1–4, 2021, Seattle, WA, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8638-8/21/11. . . $15.00
https://doi.org/10.1145/3472883.3486987

converging to the optimal configuration by sampling only 30
candidates in a large search space consisting of 720 options.

CCS Concepts: • Information systems→ Enterprise re-
source planning.

Keywords: CloudComputing,Model Serving,Meta-Learning,
Auto-Configuration

1 Introduction
Tech companies are increasingly building large Machine-
Learning-as-a-Service (MLaaS) cloud for model training and
inference serving. In a typical MLaaS workflow, developers
design and train ML models offline with large datasets; the
trained models are then published in the cloud to provide
online inference services, typically running in containers
that can be queried by users to make predictions for given
inputs [21, 28, 29, 43, 50, 70]. As MLaaS cloud serves massive
volumes of inference requests (e.g., tens of trillions per day
in Facebook [30]), the majority of resources and costs are
dedicated to inference serving (e.g., up to 90% in AWS [2]).
However, efficiently deploying inference services in the

cloud is challenging. Given a trained model, cloud operators
need to specify hardware configurations for each model serv-
ing container, such as CPU cores, GPU type, GPU memory,
and GPU share (if GPU sharing is supported), as well as run-
time configurations such as batch size. Together, they form
a large, high-dimensional configuration space. The choice
of configurations largely determines the model serving per-
formance and cost. In our testbed experiments, we find that
a good configuration yields over 10× request throughput
than a bad one (see Figs. 1 and 2). We also observe, in the
production cloud of Alibaba, that inefficient model serving
configurations result in low resource utilization, with nearly
80% of CPUs and GPU memory allocated but not used.

https://doi.org/10.1145/3472883.3486987

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian He, and Liping Zhang

1 2 3 4 5
CPU cores per container

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
.
R
P
S

Uni. Sent. Enco.

VGG16

MobileNet

Word2vec-500

(a) Impact of CPU cores

0.8 1.6 2.4 3.2 4.8 6.4

GPU Memory container (GB)

0.0

0.2

0.4

0.6

0.8

1.0

N
or
m
.
R
P
S

Uni. Sent. Enco.

VGG16

MobileNet

Word2vec-500

(b) Impact of GPU memory

0.0
0.2
0.4
0.6
0.8
1.0

N
or
m
.
R
P
S

Uni. Sent. Enc

VGG16

MobileNet Word2vec-500

M60
(g4ad.4xlarge)

V100
(p3.2xlarge)

T4
(g4dn.2xlarge)

0

1

2

3

E
C
2
P
ri
ce

(U
S
D
/h
)

(c) Impact of GPU types

20 40 60 80 100
GPU Timeshare per container (%)

0.4

0.6

0.8

1.0

N
or
m
.
R
P
S

Service A

Service B

Service C

Service D

(d) Impact of GPU timeshare

Figure 1. Hardware configurations largely determine the service throughput, measured by requests per second, or RPS. For
each inference service, the throughput is normalized by the highest RPS. Models in (a)-(c) are provided by TensorFlow model
zoo [8, 15], running on EC2; models in (d) are proprietary, running in a production cloud supporting GPU time-sharing.

1 2 4 8 16 32 64 128
Maximum batch size

0.2

0.4

0.6

0.8

1.0

N
or
m
.
R
P
S

Uni. Sent. Enco.

VGG16

MobileNet

Word2vec-500

Figure 2. Request batch size versus service throughput. The
throughput of each service is normalized by the highest RPS.

In light of these problems, our goal is to design an effi-
cient approach that can quickly find the optimal configu-
ration of an inference service in a large search space. De-
spite a rich body of work on model serving and workload
auto-configuration, achieving this goal remains elusive. Ex-
isting model serving systems [10, 16, 21, 28, 29, 50, 62, 70,
73] are designed to streamline model deployment with en-
riched features of request scheduling, auto-scaling, and auto-
selection of model variants. These systems do not tune re-
source configurations of model serving containers, but sim-
ply follow the specifications given by developers. Prevalent
auto-configuration techniques, such as Bayesian optimiza-
tion [18], linear regression [36, 61], and transfer learning [27],
perform well in tuning general cloud workloads in a low-
dimensional configuration space (e.g., determining the num-
ber/type of VMs [18, 35]). Yet, these methods become ineffi-
cient as the search space increases [33, 49, 65], incurring a
large sampling overhead to find the optimum (see §6).
In this paper, we present Morphling, a fast, near-optimal

auto-configuration framework for cloud-native model serv-
ing. Our key observation is that hardware and runtime con-
figurations have a general performance impact to a wide
variety of inference services running different ML models.
For example, to run an inference service, there is a minimum
requirement of GPU memory to fully load the serving model
(see Fig. 1b); further increasing GPU memory allows it to

serve larger request batches with higher throughput; yet,
such improvement diminishes as the bottleneck shifts from
GPU memory to other resources like CPUs. The general
performance impact of configurations leads to resembling
configuration-throughput planes of different models (Figs. 3
and 4): despite the varying turning points and scales, the
shapes of these planes show a similar tendency.

Based on this observation, we formulate optimal configu-
ration search as a few-shot learning problem [44, 60, 63] and
solve it with the recently developed model-agnostic meta-
learning (MAML) technique [25]. In particular, Morphling
trains a meta-model offline that captures how the inference
serving performance may change generally under varying
hardware and runtime configurations (see Figs. 3d and 4d).
The meta-model provides an informative prior to config-
uration search, and is used as a good initialization of the
learning process. Given a new inference service, Morphling
performs online few-shot learning: it samples a small num-
ber of configurations and uses the profiled results to adapt
the meta-model to the new service. The adapted meta-model
can be used to accurately predict the service performance,
enabling a fast search for the optimal configuration.

We have implemented Morphling as an easy-to-use auto-
configuration service in Kubernetes [6] with around 5,000
lines of Golang code. Morphling exposes common interfaces
that abstract away the heterogeneity of model serving frame-
works and service deployments. Users implement the in-
terfaces by specifying the serving model, the tunable con-
figuration parameters, the optimization objectives, and the
sampling budget; Morphling then automatically tunes con-
figurations to attain the optimal serving performance, within
the specified sampling budget.
We evaluate Morphling on Amazon EC2 with 42 models

provided by TensorFlow model zoo [8, 15] for image classifi-
cation and language processing. Morphling quickly identi-
fies the optimal configuration by sampling less than 5% of a
large search space consisting of 720 options. In comparison,
existing auto-tuning approaches require to sample 3×-22×

Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving SoCC ’21, November 1–4, 2021, Seattle, WA, USA

more configurations before find the optimal ones. We also
evaluate Morphling with 30 real-world production inference
services in an Alibaba’s cluster. Morphling finds the optimal
configuration for all services by sampling no more than 19
options out of 100 choices, while existing approaches require
at least 60 samplings for guaranteed optimality. We plan to
deploy Morphling as the default auto-configuration service
in Alibaba’s production clusters for efficient model serving
at scale.

2 Background
ML Model Serving. Production clouds run a large num-
ber of machine learning models to provide online inference
service for various AI applications, such as image classifi-
cation [31, 55, 72], video processing [40, 48], language mod-
eling [42, 57], and recommendation [17, 22]. To deploy an
inference service, model developers encapsulate the trained
models, the model serving frameworks, and the pre/post-
processing pipelines into Docker containers [3]. These con-
tainers run for a long time to provide unfailing services,
orchestrated by systems like Kubernetes [6]. Users can then
query the serving containers through HTTP/RPC APIs to
make predictions.
Cloud-Native Model Serving Systems. Many model serv-
ing systems have been developed to streamline model de-
ployment in the cloud for improved performance and re-
duced costs [21, 28, 29, 43, 50, 70]. For example, systems like
Clipper [21], INFaaS [50] and Rafiki [62] abstract away the
heterogeneity of existing model execution frameworks with
a unifying model abstraction. They also support diverse and
customizable model deployment strategies. Existing model
serving systems also support dynamic batching [28, 70],
inference buffering [21, 50], replica auto-scaling [28, 70],
and auto-selection of model variants [21, 50]. The recently
proposed white-box model serving systems [29, 43] enable
model-specific optimizations with model layer sharing and
fine-grained GPU scheduling.
Container-Level Configuration Optimization. Optimiz-
ing the container-level configurations can significantly im-
prove the performance of inference services and reduce their
resource provisioning costs. As we will show in §3, a good
container configuration with optimized resource allocations
(e.g., CPU cores, GPU memory, GPU share, GPU type) and
runtime parameters (e.g., batch size) yields over 10× higher
inference throughput than a bad one. However, auto-tuning
container configurations has received less attention. Sys-
tems like INFaaS [50] and Clipper [21] mainly concern the
auto-selection of a number of model variants with different
architectures implemented in different frameworks. These
model variants are often given by developers and deployed
in multiple containers, among which the system adaptively
chooses one to serve an inference request. This approach
cannot be used to find the optimal container configuration.

3 The Need for Configuration Tuning
In this section, we show empirically that the performance
of inference services largely depends on the resource and
runtime configurations of the serving containers, which re-
quire careful tuning. We hence formulate a configuration
optimization problem, and discuss the inefficiency of existing
approaches.

3.1 Identifying Important Configurations
Inference services usually run in containers. In Alibaba cloud,
we measure a container’s serving capability with the peak
throughput, defined as the maximum requests per second
(RPS) it can servewithout violating the response-time service-
level objective (SLO). The peak RPS can be easily measured
using stress-testing tools [4, 5, 14]. Our production system
uses the peak RPS to determine the required number of
container instances for each inference service such that the
overall serving capability is sufficient to accommodate the
request demands.

Given a model serving container, cloud operators need to
specify its resource and runtime configurations. To quantify
how each configuration may affect the serving capability,
we profile four open-source ML models in Amazon EC2 [7]
and four production inference services. We stress-test their
peak RPS (request latency ≤ 1 second) under various config-
urations. The detailed experimental setup is given in §6.

Resource configuration. Our characterization starts with
resource configurations, including CPU cores, GPU mem-
ory, GPU timeshare, and GPU type. In our experiments, we
change one configuration while keeping the others fixed.
Fig. 1 shows the measurement results.
(a) CPU Cores. As shown in Fig. 1a, addingmore CPU cores to
a serving container enables a higher degree of parallelism for
data processing and I/O, thus higher RPS. For most inference
services, the RPS improvement diminishes with the increase
of CPU cores. The only exception goes to Universal Sentence
Encoder [20], a popular language processing model, where
RPS improves almost linearly and is up to 3×, the largest
among all services.
(b) GPU Memory. An inference service occupies GPU mem-
ory in two ways: static memory occupation for hosting the
model, and dynamic memory usage for caching intermediate
results. As shown in Fig. 1b, the memory allocation must be
large enough to load the model; additional allocations on top
of that allows the service to handle larger request batches
thus higher throughput [21, 70]. Taking the Word2vec-500
language model [46] as an example, it requires GPU memory
larger than the model size (1.9 GB) to serve requests.
(c)GPU Timeshare. Many GPU sharing techniques have been
proposed recently to time-multiplex GPUs [38, 41, 64, 69]
between multiple ML workloads. In Alibaba, we employ
a fine-grained GPU time-sharing approach to isolate the

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian He, and Liping Zhang

uses of streamingmultiprocessors (SMs) between contending
containers. In particular, we use CUDA APIs [52] to control
each container’s GPU timeshare at a fine granularity. As
such feature is only available in our production clusters,
we conduct experiments with production inference services.
Fig. 1d depicts how RPS changes with the allocated GPU
timeshare, where we observe up to 10× RPS variation for
compute-intensive inference services.
(d) GPU Type. The performance-price trade-off between var-
ious GPU types further complicates configuration tuning.
In Fig. 1c, we compare three commonly used Nvidia GPUs
in Amazon EC2 [28]. In particular, V100, with steadily-high
frequency [39], provides arguably the best performance for
image classification models (similar results also reported by
MLPerf Inference benchmark [9, 45]). V100’s high perfor-
mance, however, comes with a high cost. In comparison,
T4’s low price tag and inference-specific optimizations make
it usually a better choice for model serving. On the other
hand, M60, designed for graphics-intensive applications [11],
shows no benefit on either performance or cost.
Runtime Parameters. In addition to resources, runtime
parameters are also important factors that determine the
inference RPS. In this work, we mainly focus on tuning the
batch size of inference requests. We will provide more dis-
cussions on the impact of the other parameters in §7.
(e) Batch Size. Batching inference requests is an effective
approach to increasing throughput as it can better utilize the
parallel computing power of GPUs [21, 50] and amortize the
cost of RPC calls and I/O overheads (e.g., copying data to GPU
memory). Frameworks like TensorFlow [16] often enforce
a fixed maximum batch size to maintain a consistent data
layout. Configuring a large batch size is not always beneficial.
In Fig. 2, image processing models like MobileNet [34] and
VGG16 [55] see performance degradation with a large batch
size, as the large input cannot fit into the GPU memory.

3.2 Problem Formulation and Objective
Given a well-trained ML model, the cloud operator needs to
find an optimal resource and runtime configuration for per-
formant and resource-efficient model serving. Formally, con-
sider a configuration vectorwith𝑀 tuneable hyper-parameters
𝑥𝑥𝑥 = {𝑥1, 𝑥2, . . . , 𝑥𝑀 }, where each 𝑥𝑖 has a discrete search
space consisting of 𝑛𝑖 candidates. Our goal is to find the op-
timal configuration 𝑥𝑥𝑥∗ that maximizes the objective function
𝑓 (·) defined by the operator, i.e.,

𝑥𝑥𝑥∗ = argmax𝑥𝑥𝑥 ∈A 𝑓 (𝑥𝑥𝑥), (1)

where A is the configuration space, which is combinatorial
by nature.
For cloud operators, maximizing the container peak RPS

and minimizing the resource costs are the two common ob-
jectives, which are often at odds. We leave the navigation of
such performance-cost trade-off to the operator by allowing

it to define its own objective function 𝑓 (𝑥𝑥𝑥) through system-
provided APIs (see §5), e.g., maximizing the service RPS per
monetary cost.

3.3 Prior Arts and Their Inefficiency
Many auto-configuration approaches have been proposed to
tune general cloud workloads. However, none of them can
efficiently solve our problem.
Auto-Configuration Using Historical Data. One com-
mon approach is to find the optimal configuration based on
the workload’s past executions [24, 51]. Notably, Google’s
Autopilot [51] learns the optimal resource allocations for con-
tainerized services by analyzing their trace data. Though sim-
ple, this approach falls short in performance when applied to
model serving. First, ML frameworks like TensorFlow [16]
occupy all the available GPU memory when running an ML
workload. As a result, monitoring tools like NVIDIA-SMI [12]
always observe the full memory usage, even though only a
small part is used in inference. Second, historical data only
sample a few configuration combinations that are already
deployed, failing to explore the large search space for op-
timality. Finally, for newly published or updated services,
historical data is not always available, especially for newly
published or updated services.
Auto-Configuration Using Search. Another approach to
auto-configuration is to sample a small number of configu-
rations for performance evaluation, following some search
algorithms. Existing works along this line can be divided
into three categories.
1) Black-box search employs sequential model-based

optimization (SMBO) [26, 56] to search for the best con-
figuration. During the search process, SMBO builds a re-
gression model (e.g., Gaussian Process) and uses it to fit
the configuration-performance curve. The algorithm itera-
tively samples the next configuration for testing, until the
sampling budget runs out. A popular SMBO algorithm is
Bayesian Optimization (BO) [26, 56], which has been widely
used to tune configurations of cloud workloads (e.g., Cher-
ryPick [18], Arrow [35], and Rafiki [62]). While efficient
in low-dimensional searching, BO becomes extremely ex-
pensive to navigate a large, high-dimensional configuration
space [33, 49, 65]. Also, its performance critically depends
on the choice of initial sampling: a poor seeding strategy
often leads to a sub-optimal result. We will show in §6 that
BO is inefficient in tuning inference services, incurring high
sampling overhead.

2)White-box prediction is another auto-tuning approach
that predicts the performance under a certain configuration
and uses it to drive the search process. The key to prediction
is to build a regression model with a few samplings using
the prior knowledge of how the performance may change
with configurations (e.g., linear curve) [61]. However, the
high-dimensional configuration-performance plane in our

Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Batch size

1 816
32

64

128 GP
U
Me
m.

(G
B)

0.8
1.6

2.4
3.2

4.8

6.4

N
or
m
.
R
P
S

0.4

0.6

0.8

1.0

(a) ResNet101 (image class.)

Batch size

1 816
32

64

128 GP
U
Me
m.

(G
B)

0.8
1.6

2.4
3.2

4.8

6.4

N
or
m
.
R
P
S

0.0

0.2

0.4

0.6

0.8

1.0

(b) ALBERT (language proc.)

Batch size

1 816
32

64

128 GP
U
Me
m.

(G
B)

0.8
1.6

2.4
3.2

4.8

6.4

N
or
m
.
R
P
S

0.0

0.2

0.4

0.6

0.8

1.0

(c) VGG16 (image class.)

Batch size

1816
32

64

128 GPU M
em

. (
GB)

0.8
1.6

2.4
3.2

4.8

6.4

N
o
rm

.
R

P
S

0.0

0.2

0.4

0.6

0.8

1.0

(d)Meta model 𝜃𝑚 .

Figure 3. Normalized RPS under different configurations of batch size and GPU memory.

GPU Mem. (GB)
0.8 1.6 2.4 3.2 4.8 6.4

C
P
U
C
ores 1

2

3

4

5

N
orm

.
R
P
S

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

(a) Uni.Sen.Enc. (language proc.)

GPU Mem. (GB)
0.8 1.6 2.4 3.2 4.8 6.4

C
P
U
C
ores 1

2

3

4

5

N
orm

.
R
P
S

0.0

0.2

0.4

0.6

0.8

1.0

(b) Word2vec-250 (language proc.)

GPU Mem. (GB)
0.8 1.6 2.4 3.2 4.8 6.4

C
P
U
C
ores 1

2

3

4

5

N
orm

.
R
P
S

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c) ResNet50 (image class.)

GPU Mem. (GB)
0.050.100.150.20 0.30 0.40

C
P
U

 C
o
re

s 1

2

3

4

5

N
o
rm

. R
P
S

0.0

0.2

0.4

0.6

0.8

1.0

(d)Meta model 𝜃𝑚 .

Figure 4. Normalized RPS under different configurations of CPU cores and GPU memory.

problem is so complicated that can hardly be fitted with a
few samplings.
3) Similarity-based search measures the similarity be-

tween the tuning and benchmarking workloads and uses it
to guide the search process. For example, Google Vizier [27]
leverages the Gaussian process regressor built from previ-
ously studied benchmarks and applies transfer learning to
configure a new workload with similar resource usage pat-
terns. Scout [36] and PARIS [67] also configure a new work-
load by comparing its pre-defined features with benchmarks.
These works mainly focus on the one-to-one similarity be-
tween the current workload and a previously studied bench-
mark, yet missing the inherent and common performance
trends shared by multiple workloads. As we shall show in
§6, similarity-based search requires sampling a large config-
uration space to find the optimal configuration.

4 Algorithm Design
In this section, we first explore the common performance
trend for model serving in the previous experiments (§4.1).
Utilizing such trend, we present an intelligent configuration
tuning algorithm for cloud-native model serving using the
meta-learning approach. We explain (1) how it captures the
internal features of inference configurations (§4.2), and (2)
how the meta-model is used to direct configuration search
(§4.3).

4.1 Common Performance Trend
We observe a common trend in Fig. 1 that the service RPS im-
proves by configuring more resources of a type, yet such per-
formance improvement diminishes as the bottleneck shifts to
another resource(s) (e.g., fromGPUmemory to CPU cores). In
fact, multiple resources and runtime parameters have collec-
tive impacts to the service RPS, forming a high-dimensional
configuration-RPS plane. Fig. 3 visualizes how the batch size
and GPU memory collectively affect the RPS of three infer-
ence services using open-source models. For small models
like ResNet101 [31] and ALBERT [42], GPU memory has
almost no performance impact, regardless of the choice of
batch size. For a larger model like VGG16 [55] (500 MB), the
service requires more than 1.6 GB GPU memory to handle
a large batch of size greater than 32 (Fig. 3c). Across all
three models, enlarging the batch size initially improves the
performance, followed by a degradation beyond a turning
point. Similar to Fig. 3, Fig. 4 depicts the RPS changes with
respect to CPU cores and GPU memory. For a large model
like Universal Sentence Encoder [20], a large GPU memory
allocation (≥1.6 GB) is needed. Allocating more CPU cores
leads to higher RPS, with linear or sub-linear improvement
depending on the models.

To summarize, resource and runtime configurations have
general performance impacts to a variety of inference ser-
vices running different ML models (e.g., large GPU mem-
ory is needed to load a large model and/or serve a large re-
quest batch; adding more CPU cores (marginally) improves

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian He, and Liping Zhang

the performance), leading to resembling configuration-RPS
planes—except that the actual turning points and scales may
vary from one model to another. This motivates a fast auto-
configuration approach using meta-learning techniques. In
particular, we train a meta-model offline that captures the
common configuration-performance trend for general infer-
ence services (illustrated in Figs. 3d and 4d). To tune config-
urations for a new service, we adapt the meta-model with
few-shot learning and use it to guide the tuning process.

4.2 Meta-Model Training
Few-shot Regression. We start by formulating a few-shot
learning problem,wherewe fit the configuration-performance
plane with a regression model. Formally, consider a regres-
sion task𝑇𝑖 with a mapping function 𝑓𝜃𝑖 (𝑥𝑥𝑥) that predicts the
service performance for an input configuration𝑥𝑥𝑥 , where 𝜃𝑖 is
the parameterized model tuned for task𝑇𝑖 . The loss function
L𝑇𝑖 is defined as the mean squared error (MSE) between the
predicted performance and the real performance 𝑦, i.e.,

L𝑇𝑖 (𝑓𝜃𝑖) =
∑
𝑥𝑥𝑥 𝑗 ,𝑦 𝑗∼𝑇𝑖 | |𝑓𝜃𝑖 (𝑥𝑥𝑥 𝑗) − 𝑦 𝑗 | |22. (2)

In a 𝐾-shot regression, model 𝜃𝑖 is trained with 𝐾 sampled
input-output pairsD = {𝑥𝑥𝑥 𝑗 , 𝑦 𝑗 | 𝑗 = 1, 2, . . . , 𝐾}; the objective
is to minimize the loss L𝑇𝑖 (𝑓𝜃𝑖). In practice, 𝐾 is usually set
as a small number to minimize the training overhead (e.g., 5%
of the search space). Despite such limitation, we still want to
achieve accurate prediction with a 𝐾-shot regression model.
Model-Agnostic Meta-Learning (MAML). The recently
developed Model-Agnostic Meta-Learning (MAML) tech-
nique [25] offers a promising solution for 𝐾-shot regression.
It assumes a set of regression tasks with broadly suitable fea-
tures, and performs regression model training in two stages.
In the first stage, a meta-model is trained across a set of re-
gression tasks; the objective is to obtain a meta-model that
can quickly adapt to a new, unseen task. In the second stage,
a new task is given and the meta-model is adapted to it, ide-
ally converging to a fine-tuned model with a small number
of data points. Formally, consider a set of regression tasks
T = {𝑇1,𝑇2, . . .𝑇𝑁 } that share common input-output map-
ping features. Let 𝜃𝑚 be the meta-model trained in the first
stage. Given a new task 𝑇𝑖 , MAML adapts 𝜃𝑚 to a fine-tuned
model 𝜃𝑖 by iteratively updating it with 𝐾 newly sampled
data pointsD | |𝐾 | | = {𝑥𝑥𝑥 𝑗 , 𝑦 𝑗 | 𝑗 = 1, 2, . . . , 𝐾}, using stochastic
gradient descent (SGD) [19], i.e.,

𝜃𝑖 = 𝜃
𝑚 − 𝛼∇𝜃𝑚L𝑇𝑖 (𝑓𝜃𝑚), (3)

where 𝛼 is the learning rate. We next describe the two train-
ing stages in detail.
Stage-1: Meta-Model Training. From the perspective of fea-
ture learning, meta-model training essentially builds an inter-
nal representation that is broadly applicable to many related
tasks. As the meta-model will later be adapted to a new re-
gression task using SGD, it should be trained such that the

Algorithm 1:MAML for Few-Shot Regression
Input :Regression task set of 𝑁 inference models: T ,

learning rates 𝛼 and 𝛽 , sampling budget 𝐾 , meta
training episodes 𝐸

Output :A well-trained meta model with parameters 𝜃𝑚

1 Randomly initialize 𝜃𝑚
2 for episode = 1, 2, . . . , E do
3 for allallall 𝑇𝑖 ∈ T do
4 Sample 𝐾 datapoints D | |𝐾 | | = {𝑥𝑥𝑥 𝑗 , 𝑦 𝑗 } from 𝑇𝑖

5 Evaluate ∇𝜃𝑚L𝑇𝑖 (𝑓𝜃𝑚) using D and L𝑇𝑖 in Eq. (2)
6 Compute adapted model 𝜃𝑖 with SGD using Eq. (3)
7 Update meta model 𝜃𝑚 :

𝜃𝑚 ← 𝜃𝑚 − 𝛽∇𝜃𝑚
∑
𝑇𝑖∼T L𝑇𝑖 (𝑓𝜃𝑖)

later SGD process can make a rapid progress without over-
fitting. Therefore, the meta-model 𝜃𝑚 is trained to optimize
𝑓𝜃𝑖 over tasks sampled from T , i.e.,

𝜃𝑚 ← 𝜃𝑚 − 𝛽∇𝜃𝑚
∑
𝑇𝑖∼T L𝑇𝑖 (𝑓𝜃𝑖), (4)

where 𝛽 is the learning step in the meta-training stage, and
𝜃𝑖 is the fine-tuned model for task 𝑇𝑖 , computed in the sec-
ond stage following Eq. (3). Algorithm 1 details the training
process of the meta-model.
Stage-2: Fast Adaptation. Once the meta-model 𝜃𝑚 is trained,
it is used as the initial regression model for a new task 𝑇𝑖 ,
followed by a fine-tuning process to better fit it to 𝑇𝑖 (see
Eq. (3)). Such fine-tuning converges quickly with only a few
data points, as meta-training is meant to enable fast adap-
tation: it aims to find meta-model 𝜃𝑚 that is sensitive to
changes in the task, such that a small change of parameters
will produce a large improvement on the loss for any 𝑇𝑖 . We
next develop a novel SMBO (Sequential Model-Based Opti-
mization) approach that directs the search for the optimal
configuration using the trained meta-model, along with its
fast adaptation.

4.3 Directing SMBO Search with Meta-Model
SMBO is a common approach to configuration tuning [26, 56].
In its standard form, SMBO starts by randomly initializing
a regression model, and iterates between fitting the model
and using it to determine which configurations to explore
next (exploration or sampling). The search stops when the
sampling budget runs out. During the search, it is important
to strike a balance between exploration and exploitation. An
acquisition function is hence defined to navigate such tradeoff,
usually by combining both the mean and variance of the
predictions made by the regression model [47, 49, 65].
Meta-Model as an Initial Regression Model. Unlike the
standard SMBO approaches, we use the trained meta-model
𝜃𝑚 as the initial regression model and adapt it to a new in-
ference service (modeled as a regression task 𝑇𝑖) during the
search. Formally, let 𝐾 be the sampling budget, which is

Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Algorithm 2: SMBO with Meta Model
Input :A new regression task 𝑇𝑖 , learning rates 𝛼 ,

sampling budget 𝐾 , meta model 𝜃𝑚
Output :The optimal configuration 𝑥𝑥𝑥∗

1 Initialize 𝜃𝑖 ← 𝜃𝑚 , and newly-sampled data set D ← { }
2 for k = 1, 2, . . . , 𝐾 do
3 Update regression model 𝜃 ′

𝑖
= 𝜃𝑖 − 𝛼∇𝜃𝑖L𝑇𝑖 (𝑓𝜃𝑖)

4 for allallall 𝑥𝑥𝑥 ∈ A do
5 Calculate the 𝑓𝜃𝑖 (𝑥𝑥𝑥) and Acq(𝑓𝜃𝑖 (𝑥𝑥𝑥)) using Eq. (6)
6 𝑥𝑥𝑥𝑘 ← argmax𝑥𝑥𝑥 ∈A,𝑥𝑥𝑥∉D Acq(𝑓𝜃𝑖 (𝑥𝑥𝑥))
7 Estimate 𝑦𝑘 for 𝑥𝑥𝑥𝑘 ⊲ Real-world evaluation
8 D ← D ∪ (𝑥𝑥𝑥𝑘 , 𝑦𝑘), 𝜃𝑖 ← 𝜃 ′

𝑖

9 𝑥𝑥𝑥∗ ← argmax𝑥𝑥𝑥𝑘 ∈D 𝑦
𝑘

the maximum number of configurations that the algorithm
can explore. Let 𝜃𝑖 be the refined model for 𝑇𝑖 . Given sam-
pling budget 𝐾 , our algorithm sequentially explores the next
configuration by predicting the performance 𝑓𝜃𝑖 (𝑥𝑥𝑥 𝑗) for all
candidate configurations 𝑥𝑥𝑥 𝑗 in the search space.
Exploration-Exploitation Trade-off. Supposing the algo-
rithm performs no exploration but only exploitation, it will
always sample the configuration with the highest prediction.
This can easily trap the search into a local optimum. We
therefore need to strike a balance between exploration and
exploitation, which requires the knowledge of prediction con-
fidence. However, a fine-tuned regression model usually has
no clue about the uncertainty of the predictions it makes for
a configuration, unless the algorithm uses Bayesian posterior
covariance to measure the prediction confidence [26, 65].
We solve this problem by defining the prediction confi-

dence with respect to the fine-tuning process. In particular,
given a configuration𝑥𝑥𝑥 , let 𝑓𝜃𝑖 (𝑥𝑥𝑥) be the performance predic-
tion made by model 𝜃𝑖 . Upon sampling, the model is updated
to 𝜃 ′𝑖 = 𝜃𝑖 − 𝛼∇𝜃𝑖L𝑇𝑖 (𝑓𝜃𝑖), and the new prediction becomes
𝑓𝜃 ′

𝑖
(𝑥𝑥𝑥). We define the confidence of 𝑓𝜃 ′

𝑖
(𝑥𝑥𝑥) as

Conf(𝑓𝜃 ′
𝑖
(𝑥𝑥𝑥)) = |𝑓𝜃𝑖 (𝑥𝑥𝑥) − 𝑓𝜃 ′𝑖 (𝑥𝑥𝑥) |. (5)

That is, a lower Conf(.) indicates a higher confidence. Intu-
itively, if two sequential regression models 𝜃𝑖 and 𝜃 ′𝑖 make
similar predictions for the same configuration, then we have
a high confidence about the results, and vice versa. Following
this intuition, we define the acquisition function as an upper
confidence bound:

Acq(𝑓𝜃𝑖 (𝑥𝑥𝑥)) = 𝑓𝜃𝑖 (𝑥𝑥𝑥) + 𝛿Conf(𝑓𝜃𝑖 (𝑥𝑥𝑥)), (6)
where 𝛿 is a pre-defined weight knob which is usually a small
constant. Algorithm 2 details the search process with the
meta-model.

4.4 Why Do We Use Meta-Learning?
In meta-learning, the offline trained meta-model automati-
cally captures the common features and general performance

type Experiment struct {
ModelDockerImageID string
Objective ObjectiveSpec
TunableParameters []Parameter
SamplingAlgorithm AlgorithmSpec
SamplingBudget *int32
TrialConcurrency *int32
RequestTemplate string

}

Listing 1. Morphling Programming Interface.

trends of inference services. The meta-model provides an in-
formative and non-overfitting prior for configuration search,
and can be adapted online in a few shots to accurately fit a
new inference service. The meta-learning approach hence
combines the benefits of both black-box search and white-
box predictions. It generally applies to a range of inference
services and various optimization objectives, while achieving
accurate predictions with fine-tuned models automatically
learned from the general meta-model. We will show in §6
that the meta-learning approach substantially reduces the
required configuration samplings compared to the existing
auto-tuning algorithms.

5 Cloud-Native Implementation
We have implemented the meta-learning algorithm as a

managed configuration tuning service in Kubernetes [6],
which we call Morphling. Our implementation consists of
around 5k lines of Golang code and is open-sourced for public
access.1

5.1 Programming Interface and Workflow
Programming Interface. To use Morphling for configura-
tion tuning, users simply specify the following information
through the system-provided Experiment interface shown
in Listing 1: (1) a serving container (e.g., a Docker image)
that runs an ML model, (2) the performance objective func-
tion 𝑓 (𝑥𝑥𝑥),(3) tuneable configuration knobs such as resource
allocations and runtime parameters,(4) the sampling algo-
rithm (e.g., meta-learning or BO), (5) the sampling budget
specifying the maximum number of sampled configurations
during the search, (6) the trial concurrency specifying the
maximum number of parallel trials, where a trial is an in-
ternal API that abstracts a stress-testing procedure, (7) the
service request template consisting of one or more serialized
client requests to query the inference service for stress test.
Workflow. Fig. 5 illustrates the system components of
Morphling and their interaction workflow. To start a config-
uration tuning process, a user submits an experiment request
to an experiment controller by making an RPC call or through
1Morphling is now integrated into KubeDL as a Cloud Native Computing
Foundation project at https://github.com/kubedl-io/morphling.

https://github.com/kubedl-io/morphling

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian He, and Liping Zhang

Experiment Trial

Serving
Instance

Client
Algorithm

Server

TrialTrial

ML Model Storage

Optimal
Config.

Morphling

①
②

③

④

⑤

⑥
⑦

⑧

Figure 5. Morphling’s implementation and workflow.

a front-end UI, specifying the serving container of the ML
model, the tuneable configuration knobs, optimization ob-
jectives, and sampling budgets (1○). During an experiment,
Morphling iteratively communicates with an algorithm server
which returns the next sampled configuration (2○), and then
starts a trial to evaluate that configuration (3○). In each trial,
a model serving instance is launched, followed by a stress
test initiated by a client (4○, 5○ and 6○). After the test com-
pletes, the measured performance (e.g., peak RPS) is stored
into a database. A trial completes after all the results are sent
back to the experiment controller (7○). Morphling launches
trials iteratively, until the sampling budget exhausts. The
experiment hence completes, and the optimal configuration
is obtained.

5.2 System Components
Controllers. Morphling defines an experiment and a trial
as Kubernetes CRDs (Custom Resource Definition) [1]. For
each CRD, Morphling designs a controller to manage its life
cycle. Specifically, a controller is a long-running process
that orchestrates container operations and drives the cur-
rent cluster state towards a desired state. For example, the
experiment controller governs the entire configuration tun-
ing process with iterative trials; the trial controller manages
low-level container behaviors, such as launching a serving
container and initializing a client-side stress test. Such design
automates container orchestrations and provides a simple
interface to users.
Algorithm Server. Morphling trains a meta-model offline
with a 2-layer neural network in TensorFlow. It uses the
meta-model as the initial regression model at the beginning
of an experiment and gradually refines it to navigate config-
uration search. Morphling implements the entire algorithm
in an algorithm server running in a separate container. The
server exposes an RPC interface through which it accepts a
query from the experiment controller and returns the next
configuration to it. In addition to meta-learning, the server
also provides interfaces for users to implement other auto-
configuration algorithms like BO and grid search.

Table 1. Open-source models used in the evaluation (42 in
total), provided by the TensorFlow model zoo [8, 15].

Model Type Model Families (# of models)

Img. Class. ResNet (5), NASNet (2), VGG (2), Inception (2),
DenseNet (1), MobileNet (2), EfficientNet (7),

Lang. Mod.
BERT (2), ALBERT (4), ELMo (1), NNLM (2),
Small BERT (4), Word2vec (2), ELECTRA (2),
Universal Sentence Encoder (4)

Table 2. EC2 instances used in the evaluation.

Instance Type # of CPUs GPU Type $/hour
g4dn.2xlarge 8 T4 0.75
p3.2xlarge 8 Tesla V100 3.06
g4ad.4xlarge 16 Tesla M60 0.87
c6g.4xlarge 16 None 0.54

Client. Morphling provides an out-of-the-box client to
stress-test an inference service under a selected configu-
ration. For each service container, a client sends concurrent
requests via REST APIs. It gradually increases the request
load and reports the peak RPS without violating the target
latency SLOs.
Storage Database. Morphling logs the measured configura-
tion performance of each trial to a metric storage, currently
implemented as a MySQL database container that can be
accessed via an RPC interface.

6 Evaluation
In this section, we evaluate Morphling with popular open-
source models in AWS EC2 and real-world inference services
running in our production cluster. Our evaluations aim to
answer three questions. (1) How does Morphling perform
compared to existing auto-tuning solutions in terms of con-
figuration optimality and search cost (§6.1.2 and §6.2)? (2)
Can Morphling support different performance objectives
(§6.1.2)? (3) How does Morphling quickly adapt to a new
configuration task (§6.1.3)?

6.1 Serving Open-Source Models in EC2 Clusters
Our evaluation starts with an EC2 deployment that serves
popular open-source models.

6.1.1 Methodology

Open-SourceModels. Following the guideline of theMLPerf
Inference benchmark [45], we choose 42 models of various
sizes in 15 model families (Table 1), including image classi-
fication models like ResNet [31, 32], EfficientNet [59], and
MobileNet [34, 53], and language models like BERT [23], AL-
BERT [42], and Universal Sentence Encoder [20]. These pre-
trained models are provided by TensorFlow model zoos [8,
15]. We package both the model and the serving framework
in a Docker container [3], along with an interface to config-
ure the resources and batch size upon container launching.

Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Table 3. Search space for open-source models.

Configuration Candidate choices
CPU cores 1, 2, 3, 4, 5

GPU memory 5%, 10%, 15%, 20%, 30%, 40%
Batch size 1, 2, 4, 8, 16, 32, 64, 128
GPU type T4, Tesla V100, Tesla M60

Search Space. We consider four tuneable configuration
knobs for a model serving container: (1) CPU cores, (2) GPU
memory (in percentage of the total capacity), (3) request
batch size, and (4) GPU type. For each configuration knob, we
perform offline measurement to determine its search space.
For example, we do not consider a configuration with > 5
CPU cores as it cannot further improve the inference RPS. Ta-
ble 3 summarizes the possible choices for each configuration
knob. Together, we have a total of 720 configuration options
in the search space. This is considered large compared to the
existing cloud configuration works, e.g., the search space of
VM configurations studied in Cherrypick [18] and Scout [36]
has only dozens of choices.
Objective. We set the objective of configuration tuning as
to maximize the service throughput per monetary cost, i.e.,

max𝑥 ∈A RPS/Cost. (7)
In particular, we stress-test a container’s peak RPS subject to
a latency SLO, set to 1 second in the experiment. To measure
the monetary cost of model serving, we assume the following
cost model: Cost = base cost + GPU price × GPU memory
+ CPU price × # of CPU cores. Table 2 compares four EC2
instances with different resources and prices, based on which
we set the hourly rate of each resource as follows: base cost
= 0.2 USD, CPU price = 0.02 USD, T4 price = 0.4 USD, M60
price = 0.4, and V100 price = 2.6 USD.
Morphling Settings. The meta-model used in Morphling
is a neural network with two hidden layers, each having 128
hidden units. Among all 42 ML models, we use 10 models for
meta-training and the others for testing. For a fair and re-
producible comparison, we choose 8 fixed configurations as
the initial sampling points, including the maximum and the
minimum values of CPU cores, GPU memory, and batch size.
We use T4 GPUs in the experiments. We find that sampling
these configurations as initial points leads to the best per-
formance for the baseline algorithms, especially BO, while
Morphling is insensitive to the initial choices.
Baselines. We compare Morphling with five baseline algo-
rithms for auto-configuration.

1) Bayesian optimization (BO): Similar to Cherrypick [18],
we use a Gaussian regressor with upper confidence bound
as the acquisition function.

2) Ernest [61] builds a dedicated regression model for each
workload and trains it with a few samplings. We use the
same neural network architecture as in Morphling, but train
it for each inference service from scratch.

10/720 30/720 100/720 200/720
Sampling Budget/Search Space

40
50
60
70
80
90

100

No
rm

. P
er

f.
w.

r.t
. B

es
t C

on
f.

(%
)

Morphling
Fine-Tuning
Vizier

BO
Ernest

(a) Normalized performance of configurations returned by different
approaches with varying sampling budget.

70% 90% 100%
Optimality Threshold w.r.t. Best Conf.

0

100

200

300

400

500

of

 S
am

pl
in

gs

Morphling
Fine-Tuning
Vizier

BO
Ernest

(b) Search cost incurred by different approaches to meet certain
performance requirements (e.g., 70%, 90%, and 100% optimality).

Figure 6. Configuration performance and search cost of 32
opens-source models, using different tuning approaches.

3) Google Vizier [27] is a similarity-based search frame-
work which uses a Gaussian regressor as the kernel function
and employs transfer learning to accelerate a new search
with well-profiled benchmarks. We use 10 ML models as the
offline benchmarks. Each testing model is then represented
by the data from the benchmarks, plus a Gaussian regressor
that fits the testing benchmark residual.
4) Fine-Tuning is another simple, yet effective similarity-

based search approach. Similar to Morphling, we offline train
a regression model with 10 ML models. Yet, the objective is
to simply improve the average prediction accuracy, without
considering fast adaptation in the future. The trained model
is then refined for a new service model.
5) Random search generates different configurations by

randomly sampling the search space and takes the one with
the best performance. In our implementation, the same con-
figuration will only be sampled once, i.e., random search
without replacement.
Metrics. We use two metrics in evaluation. (1) The resultant
performance under a chosen configuration, defined by the
objective function in Eq. (7). We report the normalized value
with respect to the performance of the optimal configuration
found by exhaustive search. (2) The search cost, measured
by the number of samplings needed to find a configuration
that meets a certain performance requirement, e.g., 70% of
the optimum.

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian He, and Liping Zhang

Objective #2
 Ignore CPU prices

Objective #3
 Search the highest RPS

Various Objectives

0
100
200
300
400
500
600
700
800

of

 S
am

pl
in

gs
 to

fin

d
th

e
Be

st
 C

on
f. Morphling

Fine-Tuning
Vizier
BO

Ernest

Figure 7.Morphling remains the most efficient under vari-
ous objective functions. The bars measure the median search
costs of tuning 32 models, and the error bars extend to the
10th and the 90th percentile.

6.1.2 Performance, Cost, and Generality

Search Quality and Search Cost. We tune the configu-
rations of all 32 test models using Morphling and the five
baseline approaches. Fig. 6a compares the normalized per-
formance of the identified configurations under different
sampling budgets, where boxes depict the 25th, 50th, and
75th percentiles of the performance of all test models, and
whiskers depict the 10th and the 90th percentile. With the
same sampling budget, Morphling always returns a better
configuration than the five baselines. In fact, Morphling iden-
tifies the optimal configuration for all models by sampling
no more than 30 configurations (less than 5% of the search
space); Fine-Tuning, the second-best algorithm, requires sam-
pling 200 configurations, yet still cannot guarantee the opti-
mal performance for all models.

Fig. 6b further compares the search cost needed by differ-
ent approaches to meet certain performance requirements,
where the bars measure the median costs of tuning 32 mod-
els with the error bars extending to the 10th and the 90th
percentile. In all cases, Morphling outperforms the other
baselines: the higher the performance requirement is, the
more efficient it becomes. In particular, when searching for
the optimal configuration (100% optimality), Morphling is
3× efficient than Fine-Tuning (requiring a median of 54 sam-
plings), 9.4× efficient than BO and Google Vizier, and over
22× efficient than Ernest and random search. It is worth men-
tioning that Ernest, though efficient in solving simpler cloud
auto-tuning problems with a small configuration space like
VM selection [61], falls short in navigating high-dimensional
search mandated by model serving.
Support of Different Objective Functions. The high
performance and low cost of Morphling are not tied to a par-
ticular objective function, but generally applies to a broad
range of objectives. To show this, we define two tuning ob-
jectives, referred to as objectives #2 and #3 as opposed to
the definition in previous experiments. In particular, objec-
tive #2 is similarly defined based on Eq. (7), except that it
ignores the CPU price (CPU price = 0). This definition is
well justified in production clusters as operators are mainly

concerned with better utilizing high-cost GPUs. Objective #3
is set to pursue the highest RPS regardless of the monetary
cost. Fig. 7 compares the search cost of Morphling and the
five baselines under the two objectives. Morphling retains its
advantage over the baselines, always returning the optimal
configuration within 30 samplings. Compared to Fig. 6b, BO
sees a sharp efficiency drop under the two new objectives,
requiring a median of more than 400 samplings (55% of the
search space) to find the optimal configuration. We note that
objectives like searching for the highest RPS often result
in a highly uneven configuration-performance plane with
multiple local optimums, where BO can be easily stuck.

6.1.3 Microbenchmark

Fast Adaptation for NewRegression Tasks. Morphling’s
high efficiency is attributed to its ability of quickly adapt-
ing the meta-model to a new inference service. To illus-
trate this, we consider tuning two configuration knobs, GPU
memory and maximum batch size, for a language model
NNLM-128 [54], and depict the adaptation of the meta-model
in Fig. 8. Fig. 8d shows the configuration-RPS plane manually
measured for the model. During the configuration sampling
process, the goal of regression is to fit this mapping plane.
Figs. 8a, 8b and 8c visualize the mapping planes given by
the initial meta-model 𝜃 ∗ (the initial regression model), the
adapted model after 8 initial samplings, and that after 28
samplings, respectively. The meta-model, after samplings 8
fixed configurations in the initial stage, is quickly adapted
towards the ground truth. Shortly after 28 samplings, the
fine-tuned regression can accurately fit the target. This ex-
plains why Morphling can find the global optimum in a few
shots. In comparison, Fig. 9 visualizes the fitting process of
BO for the same model NNLM-128 [54], where the fitted plane
remain far from the ground truth after 28 samplings.

Search Path. To further explain the search path of Mor-
phling along with fast adaptation, we illustrate the first 10
sampled configurations after the fixed initial samplings. We
consider twoMLmodels: Universal-Sentence-Encoder [20]
(un.se.en) and EfficientNetb5 [59] (effic.5). The tun-
ing objective is set to Eq. (7). Exhaustive profiling shows that
the optimal configurations for effic.5 and un.se.en are ⟨3
CPU cores, 5% GPU memory, V100, batch size 8⟩ and ⟨1 CPU
cores, 10% GPU memory, T4, batch size 128⟩, respectively.
Fig. 10a visualizes the two models’ search paths in a 2-

dimensional space. Both searches start at the same points
(1 CPU core, batch size 16), yet expand to different paths
leading to their respective optimums (marked with stars).
Similar results are also shown in Fig. 10b, where Morphling
quickly identifies that T4 is most suited for un.se.en, and
V100 is the best fit for effic.5.

Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving SoCC ’21, November 1–4, 2021, Seattle, WA, USA

Batch size

1816
32

64

128 GPU M
em

. (
GB)

0.8
1.6

2.4
3.2

4.8

6.4
N

o
rm

.
R

P
S

0.0

0.2

0.4

0.6

0.8

1.0

(a) Morphling: meta-model.

Batch size

1816
32

64

128 GPU M
em

. (
GB)

0.8
1.6

2.4
3.2

4.8

6.4

N
o
rm

.
R

P
S

0.2

0.4

0.6

0.8

1.0

(b)Morphling: 8 initial samplings.

Batch size

1816
32

64

128 GPU M
em

. (
GB)

0.8
1.6

2.4
3.2

4.8

6.4

N
o
rm

.
R

P
S

0.2

0.4

0.6

0.8

1.0

(c) Morphling: 8 + 20 samplings.

Batch size

1 816
32

64

128 GP
U
Me
m.

(G
B)

0.8
1.6

2.4
3.2

4.8

6.4

N
or
m
.
R
P
S

0.2

0.4

0.6

0.8

1.0

(d) Ground truth.

Figure 8. An illustration of Morphling quickly adapting the meta-model to a language model NNLM-128. There are two tunable
knobs, GPU memory and the maximum batch size. The RPS is normalized by the highest that the inference service can achieve.

Batch size

1816
32

64

128 GPU M
em

. (
GB)

0.8
1.6

2.4
3.2

4.8

6.4

N
o
rm

.
R

P
S

0.0

0.2

0.4

0.6

0.8

1.0

(a) BO: 8 initial samplings.

Batch size

1816
32

64

128 GPU M
em

. (
GB)

0.8
1.6

2.4
3.2

4.8

6.4

N
o
rm

.
R

P
S

0.0

0.2

0.4

0.6

0.8

1.0

(b) BO: 8 + 20 samplings.

Figure 9. An illustration of BO’s regression process for
NNLM-128. The RPS is normalized by the maximum value.

6.2 Serving Production Models in Alibaba
We have deployed Morphling in a production cluster in Al-
ibaba to auto-tune the configurations of inference services
for optimal performance.
Production Inference Services. Our evaluation includes
30 production inference services that are widely deployed
to support the company’s online retailing businesses. They
run state-of-the-art ML models for commodity classifica-
tion, production recommendation, object detection, video
processing, pornography detection, etc. In total, there are
364 container instances running in the cluster. Each service
container contains both an ML model and a complicated
pre/post-processing pipeline, such as data compression, fea-
ture extraction, legality check, etc. The services are hence
more demanding in CPUs than the service containers run-
ning open-source models (§6.1).
Search Space for Configuration Tuning. In our evalua-
tion, we use T4 GPUs, which provide the best performance-
cost ratio according to our experience. We use Morphling to
tune three configuration knobs for each inference service:
(1) CPU cores, (2) GPU memory size, and (3) GPU timeshare.
As mentioned before, Alibaba has developed a GPU sharing

CPU Cores

1 2 43 5

1

2

4

8

16

32

64

128

B
a
tc

h
 S

iz
e

1

2

345

6

89

10

1

2 6

7 8

4

5

910

3

7

Search Path

un.se.en

effic.5

(a) CPU cores and batch size.

Step un.se.en effic.5

1 Tesla M60 T4

2 Tesla M60 Tesla V100*

3 T4* Tesla V100

4 T4 Tesla V100

5 T4 Tesla V100

6 T4 Tesla M60

7 T4 Tesla V100

8 Tesla M60 Tesla V100

9 T4 Tesla V100

10 T4 Tesla V100

(b) GPU type.

Figure 10. Search paths of two open-source models in Mor-
phling. Optimal configurations are marked with stars (*).

technique that allows a GPU to be time-multiplexed by mul-
tiple containers, while ensuring a strong isolation between
those containers. With this technique, GPUs can be allocated
to containers the same way as CPUs. Table 4 summarizes
the possible choices for each configuration knob. In total, we
have 100 configuration options in the search space.

Objective. We set the same configuration tuning objective
as in previous studies, that is, maximizing the service RPS
per monetary cost (Eq. (7)). We assume the same cost model
specified in §6.1, with a new term added to reflect the cost of
GPU timeshare. Formally, we define Cost = base cost + GPU
Mem. price × GPU Mem. + GPU SM price × GPU Timeshare
+ CPU price × # of CPU cores, where we break down the
T4 price into 0.2 USD for GPU SM and 0.2 USD for GPU
Memory. All the other settings remain the same as in §6.1.

Algorithm Settings and Metrics. We use five inference
services, three for image classification and two for video pro-
cessing, as the training set for a tuning algorithm. The other
25 services are used for evaluation. Each tuning algorithm

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian He, and Liping Zhang

Table 4. Configuration search space for production services.

Configuration Candidate Choices
CPU cores 2, 4, 6, 8

GPU memory 12.5%, 25%, 37.5%, 50%, 62.5%
GPU timeshare 20%, 40%, 60%, 80%, 100%

10/100 20/100 40/100 60/100
Sampling Budget/Search Space

40

50

60

70

80

90

100

No
rm

. P
er

f.
w.

r.t
. B

es
t C

on
f.

(%
)

Morphling
Fine-Tuning
Vizier

BO
Ernest

(a) The normalized performance of the identified con-
figurations for the evaluated inference services under
varying sampling budgets.

Methods0

20

40

60

80

100

of

 S
am

pl
in

gs
 to

 fi
nd

 th
e

Be
st

 C
on

f.

(b) Search costs to
find the optimal con-
figurations.

Figure 11. Evaluations of search quality and search costs
of production inference services. (a) Boxes depict the 25th,
50th, and 75th percentiles, respectively; whiskers depict the
10th and the 90th percentiles, respectively. (b) Bars depict the
median; error bars measure the 10th and the 90th percentile.

initially samples four fixed configurations covering the max-
imum and the minimum values of both CPU cores and GPU
memory, where the GPU timeshare is set to 20%.2 For each
inference service tuned by an algorithm, we normalize the
measured performance by the optimum found by exhaustive
search.

Evaluation Results. Fig. 11a compares the normalized per-
formance of the configurations recommended by different
algorithms for the 25 inference services under varying sam-
pling budgets. Fig. 11b further compares the search costs re-
quired by those algorithms to find the optimal configurations.
Morphling leads the five baselines in both the configuration
performance and the search cost. In particular, Morphling
identifies the optimal configurations with a median of 9 sam-
plings and a maximum of 19, much more efficient than the
baselines, among which Fine-Tuning is a front-runner, fol-
lowed by Google Vizier, BO, Ernest, and random search. This
result is in line with the previous evaluations (§6.1). For
Morphling, the search cost of tuning production services (a
median of 9 samplings out of 100 options) is slightly higher
than tuning open-source models (a median of 18 samplings
out of 720 options). This is expected as the latter has more
configuration knobs and thus a larger search space, for which

2These fixed initial points lead to the optimal performance for the five
baselines, while Morphling is insensitive to the initial choices.

meta-learning usually exhibits a higher performance advan-
tage than the existing search approaches.
Overhead. In Morphling, the configuration tuning over-
head mainly comes from the trials (§5.1), each taking around
10-15 minutes, including launching the service and client
containers, stress-testing the peak RPS, and results collec-
tion(Fig. 5). Among these operations, service launching is
usually the most time-consuming, due to the complex de-
ployment dependencies in the production environments. In
comparison, the computation time for meta-model adapta-
tion is negligible, which takes several seconds to complete.
As for meta-model training, it usually converges within a
few thousands of iterations in less than 10 minutes. Note
that such overhead is offline as the meta-model only needs
to be trained once, which can then be reused to adapt to a
new service online via few-shot learning.

7 Discussion
Application to Other Configuration Problems. We find
that the meta-learning based search approach is not limited
to tune inference services, but can also be extended to other
cloud configuration problems. In fact, with some modifica-
tions, we have successfully used Morphling to tune config-
uration parameters and resource allocations of cloud stor-
age services like Redis [13]. Having said that, meta-learning
is not a good fit for problems where the tuneable knobs
vary in different compute tasks, or the knowledge about one
task cannot be easily transferred to another. For example,
when tuning neural network architectures [37, 58, 71, 72],
hyper-parameters like the cell structure can be potentially
generalized between datasets, but the network’s width and
depth critically depend on the current training task. For these
hyper-parameters, knowledge transfer offers little help to
accelerate the tuning process [37, 72].
Generalizability of the Meta-Model. One common con-
cern about meta-learning is whether the meta-model gen-
eralizes to diverse inference services. Fortunately, we find
that the identified hardware and runtime configurations (e.g.
CPU cores and GPU memory) have a rather stable perfor-
mance impacts to a broad range of inference services. For
example, both image classification and language models can
be well fitted by adapting a common meta-model, although
their sensitivities to those configurations may differ. In case
that a new configuration knob other than the identified ones
needs to be tuned, one can simply re-train the meta-model
over a small number of services, which can complete in a
short period of time (e.g., less than ten minutes as mentioned
in §6.1).
Other Important Model Serving Configurations. In ad-
dition to the identified hardware configurations, resources
like RAM (main memory) and disk storage can also affect
the quality of inference services. Yet, these resources are
usually over-provisioned in a machine. For example, in EC2,

Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving SoCC ’21, November 1–4, 2021, Seattle, WA, USA

a g4dn.4xlarge instance provides one T4 GPU along with
64 GB RAM and 225 GB storage, while a model serving
container typically requires only several GBs of RAM and
storage. Such resource over-provisioning is also found in
Alibaba’s production clusters [66]. We therefore do not tune
their allocations. Previous work [68] also indicates that a
well-tuned degree of parallelism (i.e., the number of threads)
indirectly improves the quality of ML inference services, as
it enables concurrent request processing, thus fully utilizing
the CPUs with pipelines. However, we observe no noticeable
performance difference when configuring a different number
of serving threads in our experiments. We also note that net-
work and I/O bandwidth can have significant performance
impact to inference services. We choose not to include them
because their allocations cannot be easily enforced at con-
tainer level in production clusters and public clouds like EC2,
though our algorithm can easily include them as another
configuration knobs for auto-tuning.

8 Conclusion
In this paper, we presented Morphling, a fast, near-optimal
auto-configuration framework for cloud-native model serv-
ing. We first identified a number of important configuration
knobs that critically determine the performance and cost of
an inference service, such as CPU cores, GPU memory, GPU
timeshare, GPU type, and batch size. We showed that there is
a general configuration-performance trend in a broad range
of ML models. Based on this observation, we proposed to
automatically tune the configuration of an inference service
using meta-learning, which we have implemented in Mor-
phling. Morphling trains a meta-model offline to capture
the general performance trend under varying configurations.
The meta-model is then used as an initial regression model
to direct configuration search for a new inference service.
Morphling iterates between fitting the model and using it to
determine which configuration to explore, until the sampling
budget runs out. We evaluated Morphling with popular open-
source models and Alibaba’s production inference services.
Evaluation results show that Morphling supports various
tuning objectives, quickly identifying the optimal configura-
tion for a new inference service with much smaller sampling
overhead than the existing auto-configuration approaches.

Acknowledgement
We thank our shepherd Alekh Jindal and the anonymous
reviewers for their valuable comments that help improve the
quality of this work. We are also grateful to the colleagues
from the Alibaba Machine Vision Application Platform for
providing the production service data and setting up the
experimental environments. This research was supported in
part by RGC RIF grant R6021-20, and RGC GRF grants under
the contracts 16213120, 16206417 and 16207818.

References
[1] 2021. Custom Resources. https://kubernetes.io/docs/concepts/extend-

kubernetes/api-extension/custom-resources/.
[2] 2021. Deliver high performance ML inference with AWS Inferentia.

https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deliver_
high_performance_ML_inference_with_AWS_Inferentia_CMP324-
R1.pdf.

[3] 2021. Docker. https://www.docker.com.
[4] 2021. Httperf. https://github.com/httperf/httperf.
[5] 2021. Jmeter. https://jmeter.apache.org/.
[6] 2021. Kubernetes: Production-Grade Container Orchestration. https:

//kubernetes.io/.
[7] 2021. Machine Learning on AWS. https://aws.amazon.com/machine-

learning.
[8] 2021. Module: Tensorflow Keras Applications. https://www.tensorflow.

org/api_docs/python/tf/keras/applications.
[9] 2021. NVIDIA Data Center Deep Learning Product Perfor-

mance. https://developer.nvidia.com/deep-learning-performance-
training-inference.

[10] 2021. NVIDIA TensorRT Inference Server. https://github.com/triton-
inference-server/server.

[11] 2021. NVIDIA TESLA M60 GPU ACCELERATOR. https:
//www.nvidia.com/content/dam/en-zz/Solutions/design-
visualization/solutions/resources/documents1/nvidia-m60-
datasheet.pdf.

[12] 2021. Nvidia Virtual GPU Technology. https://www.nvidia.com/en-
us/data-center/virtual-gpu-technology/.

[13] 2021. Redis: an open source, in-memory data structure store. https:
//redis.io.

[14] 2021. Siege. https://www.joedog.org/siege-home/.
[15] 2021. TensorFlow Hub. https://tfhub.dev/.
[16] 2021. TensorFlow Serving for model deployment in production. https:

//www.tensorflow.org/serving/.
[17] Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and Liang

Zhang. 2014. Laser: A scalable response prediction platform for online
advertising. In Proc. ACM WSDM, 2014.

[18] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram
Venkataraman, Minlan Yu, and Ming Zhang. 2017. Cherrypick: Adap-
tively unearthing the best cloud configurations for big data analytics.
In Proc. USENIX, 2017.

[19] Léon Bottou. 2012. Stochastic gradient descent tricks. In Neural
networks: Tricks of the trade. Springer, 421–436.

[20] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St John, Noah Constant, Mario Guajardo-Céspedes, Steve
Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175 (2018).

[21] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin,
Joseph E Gonzalez, and Ion Stoica. 2017. Clipper: A low-latency online
prediction serving system. In Proc. USENIX NSDI, 2017.

[22] Brian Dalessandro, Daizhuo Chen, Troy Raeder, Claudia Perlich,
Melinda Han Williams, and Foster Provost. 2014. Scalable hands-
free transfer learning for online advertising. In Proc. ACM SIGKDD,
2014.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2018. Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805 (2018).

[24] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and
Rodrigo Fonseca. 2012. Jockey: guaranteed job latency in data parallel
clusters. In Proc. ACM EuroSys, 2012.

[25] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In Proc. PMLR
ICML, 2017.

[26] Peter I Frazier. 2018. A tutorial on Bayesian optimization. arXiv
preprint arXiv:1807.02811 (2018).

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_ 1_Deliver_high_performance_ML_inference_with_AWS_ Inferentia_CMP324- R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_ 1_Deliver_high_performance_ML_inference_with_AWS_ Inferentia_CMP324- R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_ 1_Deliver_high_performance_ML_inference_with_AWS_ Inferentia_CMP324- R1.pdf
https://www.docker.com
https://github.com/httperf/httperf
https://jmeter.apache.org/
https://kubernetes.io/
https://kubernetes.io/
https://aws.amazon.com/machine-learning
https://aws.amazon.com/machine-learning
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://www.tensorflow.org/api_docs/python/tf/keras/applications
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
https://github.com/triton-inference-server/server
https://github.com/triton-inference-server/server
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/nvidia-m60-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/nvidia-m60-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/nvidia-m60-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/solutions/resources/documents1/nvidia-m60-datasheet.pdf
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://redis.io
https://redis.io
https://www.joedog.org/siege-home/
https://tfhub.dev/
https://www.tensorflow.org/serving/
https://www.tensorflow.org/serving/

SoCC ’21, November 1–4, 2021, Seattle, WA, USA Luping Wang, Lingyun Yang, Yinghao Yu, Wei Wang, Bo Li, Xianchao Sun, Jian He, and Liping Zhang

[27] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and D Sculley. 2017. Google vizier: A service for black-box
optimization. In Proc. ACM SIGKDD, 2017.

[28] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S McKinley, and
Björn B Brandenburg. 2017. Swayam: distributed autoscaling to meet
slas of machine learning inference services with resource efficiency.
In Proc. ACM/IFIP/USENIX Middleware, 2017.

[29] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kauf-
mann, Ymir Vigfusson, and Jonathan Mace. 2020. Serving DNNs like
Clockwork: Performance Predictability from the Bottom Up. In Proc.
USENIX OSDI, 2020.

[30] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku
Diril, Dmytro Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia,
Aditya Kalro, et al. 2018. Applied machine learning at facebook: A
datacenter infrastructure perspective. In Proc. IEEE HPCA, 2018.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In Proc. IEEE/CVF CVPR, 2016.

[32] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Iden-
tity mappings in deep residual networks. In Proc. ECCV, 2016.

[33] Trong Nghia Hoang, Quang Minh Hoang, Ruofei Ouyang, and
Kian Hsiang Low. 2018. Decentralized high-dimensional Bayesian
optimization with factor graphs. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 32.

[34] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
2017. Mobilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv preprint arXiv:1704.04861 (2017).

[35] Chin-Jung Hsu, Vivek Nair, Vincent W Freeh, and Tim Menzies. 2018.
Arrow: Low-level augmented bayesian optimization for finding the
best cloud vm. In Proc. IEEE ICDCS, 2018.

[36] Chin-Jung Hsu, Vivek Nair, Tim Menzies, and Vincent W Freeh. 2018.
Scout: An experienced guide to find the best cloud configuration. arXiv
preprint arXiv:1803.01296 (2018).

[37] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Wein-
berger. 2016. Deep networks with stochastic depth. In Proc. ECCV,
2016.

[38] Paras Jain, Xiangxi Mo, Ajay Jain, Harikaran Subbaraj, Rehan Sohail
Durrani, Alexey Tumanov, Joseph Gonzalez, and Ion Stoica. 2018.
Dynamic space-time scheduling for gpu inference. arXiv preprint
arXiv:1901.00041 (2018).

[39] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza.
2019. Dissecting the NVidia Turing T4 GPU via microbenchmarking.
arXiv preprint arXiv:1903.07486 (2019).

[40] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha
Sen, and Ion Stoica. 2018. Chameleon: scalable adaptation of video
analytics. In Proc. ACM SIGCOMM, 2018.

[41] Jiho Kim, Jehee Cha, Jason Jong Kyu Park, Dongsuk Jeon, and Yongjun
Park. 2018. Improving GPU multitasking efficiency using dynamic
resource sharing. IEEE Comput. Archit. 18, 1 (2018), 1–5.

[42] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel,
Piyush Sharma, and Radu Soricut. 2019. ALBERT: A Lite BERT for
Self-supervised Learning of Language Representations. arXiv preprint
arXiv:1909.11942 (2019).

[43] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico
Santambrogio, MarkusWeimer, andMatteo Interlandi. 2018. PRETZEL:
Opening the black box of machine learning prediction serving systems.
In USENIX OSDI, 2018.

[44] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-
sgd: Learning to learn quickly for few-shot learning. arXiv preprint
arXiv:1707.09835 (2017).

[45] Peter Mattson, Vijay Janapa Reddi, Christine Cheng, Cody Coleman,
Greg Diamos, David Kanter, Paulius Micikevicius, David Patterson,
Guenther Schmuelling, Hanlin Tang, et al. 2020. MLPerf: An industry
standard benchmark suite for machine learning performance. IEEE

Micro, 2020 40, 2 (2020), 8–16.
[46] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Effi-

cient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781 (2013).

[47] Valerio Perrone, Huibin Shen, Matthias Seeger, Cedric Archambeau,
and Rodolphe Jenatton. 2019. Learning search spaces for bayesian
optimization: Another view of hyperparameter transfer learning. arXiv
preprint arXiv:1909.12552 (2019).

[48] Alex Poms, Will Crichton, Pat Hanrahan, and Kayvon Fatahalian. 2018.
Scanner: Efficient video analysis at scale. ACM Trans. Graph., 2018 37,
4 (2018).

[49] Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, and Svetha Venkatesh.
2017. High dimensional Bayesian optimization with elastic Gaussian
process. In Proc. PMLR ICML, 2017.

[50] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and Christos
Kozyrakis. 2021. INFaaS: Automated Model-less Inference Serving. In
Proc. USENIX ATC, 2021.

[51] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych,
Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack,
Piotr Witusowski, Steven Hand, et al. 2020. Autopilot: workload au-
toscaling at Google. In Proc. ACM EuroSys, 2020.

[52] Jason Sanders and Edward Kandrot. 2010. CUDA by example: an
introduction to general-purpose GPU programming. Addison-Wesley
Professional.

[53] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proc. IEEE/CVF CVPR, 2018.

[54] Yongzhe Shi, Wei-Qiang Zhang, Meng Cai, and Jia Liu. 2014. Efficient
one-pass decoding with NNLM for speech recognition. IEEE Signal
Process. Lett. 21, 4 (2014), 377–381.

[55] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[56] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical
bayesian optimization of machine learning algorithms. arXiv preprint
arXiv:1206.2944 (2012).

[57] Richard Socher. 2014. Recursive deep learning for natural language
processing and computer vision. Citeseer.

[58] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark San-
dler, Andrew Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware
neural architecture search for mobile. In Proc. IEEE/CVF CVPR.

[59] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International Conference
on Machine Learning. PMLR.

[60] Takeshi Teshima, Issei Sato, and Masashi Sugiyama. 2020. Few-shot
domain adaptation by causal mechanism transfer. In Proc. PMLR ICCV,
2020.

[61] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin
Recht, and Ion Stoica. 2016. Ernest: Efficient performance prediction
for large-scale advanced analytics. In Proc. USENIX NSDI, 2016.

[62] Wei Wang, Jinyang Gao, Meihui Zhang, Sheng Wang, Gang Chen,
Teck Khim Ng, Beng Chin Ooi, Jie Shao, and Moaz Reyad. 2018. Rafiki:
machine learning as an analytics service system. VLDB Endowment,
2018 12, 2 (2018).

[63] Yu-Xiong Wang and Martial Hebert. 2016. Learning to learn: Model
regression networks for easy small sample learning. In Proc. Springer
ECCV, 2016.

[64] Zhenning Wang, Jun Yang, Rami Melhem, Bruce Childers, Youtao
Zhang, and Minyi Guo. 2017. Quality of service support for fine-
grained sharing on GPUs. In Proc. ACM/IEEE ISCA, 2017.

[65] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando
De Freitas, et al. 2013. Bayesian Optimization in High Dimensions via
Random Embeddings.. In Proc. IJCAI, 2013.

Morphling: Fast, Near-Optimal Auto-Configuration for Cloud-Native Model Serving SoCC ’21, November 1–4, 2021, Seattle, WA, USA

[66] Qizhen Weng, Wencong Xiao, Yinghao Yu, Wei Wang, Chen Wang,
Jian He, Yong Li, Liping Zhang, Wei Lin, and Yu Ding. 2022. MLaaS in
the Wild: Workload Analysis and Scheduling in Large Heterogeneous
GPU Clusters. In Proc. USENIX NSDI, 2022.

[67] Neeraja J Yadwadkar, Bharath Hariharan, Joseph E Gonzalez, Burton
Smith, and Randy H Katz. 2017. Selecting the best vm across multiple
public clouds: A data-driven performance modeling approach. In Proc.
ACM SoCC, 2017.

[68] Feng Yan, Olatunji Ruwase, Yuxiong He, and Evgenia Smirni. 2016.
SERF: efficient scheduling for fast deep neural network serving via
judicious parallelism. In Proc. IEEE SC, 2016.

[69] Peifeng Yu and Mosharaf Chowdhury. 2019. Salus: Fine-grained gpu
sharing primitives for deep learning applications. arXiv preprint

arXiv:1902.04610 (2019).
[70] Chengliang Zhang, Minchen Yu, WeiWang, and Feng Yan. 2019. MArk:

Exploiting Cloud Services for Cost-Effective, SLO-Aware Machine
Learning Inference Serving. In Proc. USENIX ATC, 2019.

[71] Barret Zoph and Quoc V Le. 2016. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578 (2016).

[72] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. 2018.
Learning transferable architectures for scalable image recognition. In
Proc. IEEE/CVF CVPR, 2018.

[73] Corey Zumar. 2018. InferLine: ML Inference Pipeline Composition
Framework. (2018).

	Abstract
	1 Introduction
	2 Background
	3 The Need for Configuration Tuning
	3.1 Identifying Important Configurations
	3.2 Problem Formulation and Objective
	3.3 Prior Arts and Their Inefficiency

	4 Algorithm Design
	4.1 Common Performance Trend
	4.2 Meta-Model Training
	4.3 Directing SMBO Search with Meta-Model
	4.4 Why Do We Use Meta-Learning?

	5 Cloud-Native Implementation
	5.1 Programming Interface and Workflow
	5.2 System Components

	6 Evaluation
	6.1 Serving Open-Source Models in EC2 Clusters
	6.2 Serving Production Models in Alibaba

	7 Discussion
	8 Conclusion
	References

