
Hierarchical Latent Class Models for Cluster Analysis

Nevin L. Zhang
�

Department of Computer Science
Hong Kong University of Science and Technology

lzhang@cs.ust.hk

Abstract

Latent class models are used for cluster analysis of cat-
egorical data. Underlying such a model is the assump-
tion that the observed variables are mutually indepen-
dent given the class variable. A serious problem with
the use of latent class models, known as local depen-
dence, is that this assumption is often untrue. In this
paper we propose hierarchical latent class models as
a framework where the local dependence problem can
be addressed in a principled manner. We develop a
search-based algorithm for learning hierarchical latent
class models from data. The algorithm is evaluated us-
ing both synthetic and real-world data.

Keywords: Model-based clustering, latent class models,
local dependence, Bayesian networks, learning.

Introduction
Cluster analysis is the partitioning of similar objects into
meaningful classes, when both the number of classes and the
composition of the classes are to be determined (Kaufman
and Rousseeuw 1990; Everitt 1993). In model-based clus-
tering, it is assumed that the objects under study are gener-
ated by a mixture of probability distributions, with one com-
ponent corresponding to each class. When the attributes of
objects are continuous, cluster analysis is sometimes called
latent profile analysis (Gibson 1959; Lazarsfeld and Henry
1968; Bartholomew and Knott 1999; Vermunt and Magid-
son 2002). When the attributes are categorical, cluster anal-
ysis is sometimes called latent class analysis (LCA) (Lazars-
feld and Henry 1968; Goodman 1974b; Bartholomew and
Knott 1999; Uebersax 2001). There is also cluster analysis
of mixed-mode data (Everitt 1993) where some attributes are
continuous while others are categorical.

This paper is concerned with LCA, where data are as-
sumed to be generated by a latent class (LC) model. An LC
model consists of a class variable that represents the clusters
to be identified and a number of other variables that repre-
sent attributes of objects 1. The class variable is not observed
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1Latent class models are sometimes also referred to as Naive

and hence said to be latent. On the other hand, the attributes
are observed and are called manifest variables.

LC models assume local independence, i.e. manifest vari-
ables are mutually independent in each latent class, or equiv-
alently, given the latent variable. A serious problem with the
use of LCA, known as local dependence, is that this assump-
tion is often violated. If one does not deal with local de-
pendence explicitly, one implicitly attributes it to the latent
variable. This can lead to spurious latent classes and poor
model fit. It can also degenerate the accuracy of classifi-
cation because locally dependent manifest variables contain
overlapping information (Vermunt and Magidson 2002).

The local dependence problem has attracted some atten-
tion in the LCA literature (Espeland & Handelman 1989;
Garrett & Zeger 2000; Hagenaars 1988; Vermunt & Magid-
son 2000). Methods for detecting and modeling local de-
pendence have been proposed. To detect local depen-
dence, one typically compares observed and expected cross-
classification frequencies for pairs of manifest variables. To
model local dependence, one can join manifest variables, in-
troduce multiple latent variables, or reformulate LC models
as loglinear models and then impose constraints on them.
All existing methods are preliminary proposals and suffer
from a number of deficiencies (Zhang 2002).

Our work

This paper describes the first systematic approach to the
problem of local dependence. We address the problem in
the framework of hierarchical latent class (HLC) models.
HLC models are Bayesian networks whose structures are
rooted trees and where the leaf nodes are observed while
all other nodes are latent. This class of models is chosen for
two reasons. First it is significantly larger than the class of
LC models and can accommodate local dependence. Second
inference in an HLC model takes time linear in model size,
which makes it computationally feasible to run EM.

We develop a search-based algorithm for learning HLC
models from data. The algorithm systematically searches for
the optimal model by hill-climbing in a space of HLC mod-
els with the guidance of a model selection criterion. When

Bayes models. We suggest that the term “naive Bayes models” be
used only in the context of classification and the term “latent class
models” be used in the context of clustering.



there is no local dependence, the algorithm returns an LC
model. When local dependence is present, it returns an HLC
model where local dependence is appropriately modeled. It
should be noted, however, that the algorithm might not work
well on data generated by models that neither are HLC mod-
els nor can be closely approximated by HLC models.

The motivation for this work originates from an appli-
cation in traditional Chinese medicine. In the application,
model quality is of utmost importance and it is reasonable
to assume abundant data and computing resources. So we
take a principled (as opposite to heuristic) approach when
designing our algorithm and we empirically show that the al-
gorithm yields models of good quality. In subsequent work,
we will explore ways to scale up the algorithm.

Related literature
This paper is an addition to the growing literature on hid-
den variable discovery in Bayesian networks (BN). Here is
a brief discussion of some of this literature. Elidan et al.
(2001) discuss how to introduce latent variables to BNs con-
structed for observed variables by BN structure learning al-
gorithms. The idea is to look for structural signatures of
latent variables. Elidan and Friedman (2001) give a fast al-
gorithm for determining the cardinalities — the numbers of
possible states — of latent variables introduced this way.
Meila-Predoviciu (1999) studies how the so-called tree H
models can be induced from data, where a tree H model is
basically an LC model with each observed variable replaced
by an undirected tree of observed variables. This work is
based on the method of approximating joint probability dis-
tributions with dependence trees by Chow and Liu (1968).

The algorithms described in Connolly (1993) and Martin
and VanLehn (1994) are closely related the algorithm pre-
sented in this paper. They all aim at inducing from data a
latent structure that explains correlations among observed
variables. The algorithm by Martin and VanLehn (1994)
builds a two-level Bayesian network where the lower level
consists of observed variables while the upper level consists
of latent variables. The algorithm is based on tests of asso-
ciation between pairs of observed variables. The algorithm
by Connolly (1993) constructs exactly what we call HLC
models. Mutual information is used to group variables, a
latent variable is introduced for each group, and the cardi-
nality of the latent variable is determined using a technique
called conceptual clustering. In comparison with Connolly’s
method, our method is more principled in the sense that it
determines model structure and cardinalities of latent vari-
ables using one criterion, namely (some approximation) of
the marginal likelihood.

The task of learning HLC models is similar to the recon-
struction of phylogenetic trees, which is a major topic in bi-
ological sequence analysis (Durbin et al. 1998). As a matter
of fact, phylogenetic trees are special HLC models where
the model structures are binary (bifurcating) trees and all
the variables share the same set of possible states. However,
phylogenetic trees cannot be directly used for general cluster
analysis because the constraints imposed on them. And tech-
niques for phylogenetic tree reconstruction do not necessar-
ily cover over to HLC models. For example, the structural

Figure 1: An example HLC model. The ��� ’s are latent vari-
ables and the ��� ’s are manifest variables.

EM algorithm for phylogenetic tree reconstruction by Fried-
man et al. (2002) does not work for HLC models because
we do not know, a priori, the number of latent variables and
their cardinalities.

HLC models should not be confused with model-based hi-
erarchical clustering (e.g. Hanson et al. 1991, Fraley 1998).
In an LC model (or similar models with continuous manifest
variables), there is only one latent variable and each state of
the variable corresponds to a class. HLC models generalize
LC models by allowing multiple latent variables. An HLC
model contains a hierarchy of latent variables; In model-
based hierarchical clustering, on the other hand, one has a
hierarchy of classes. Conceptually there is only one latent
variable. Classes at different levels of the hierarchy corre-
spond to states of the variable at different levels of granular-
ity.

Hierarchical latent class models

A hierarchical latent class (HLC) model is a Bayesian net-
work where

1. The network structure is a rooted tree; and

2. The variables at the leaf nodes are observed and all the
other variables are not 2.

Figure 1 shows an example of an HLC model. Following
the LCA literature, we refer to the observed variables as
manifest variables and all the other variables as latent vari-
ables. In this paper we do not distinguish between variables
and nodes. So we sometimes speak also of manifest nodes
and latent nodes. For technical convenience, we assume that
there are at least two manifest variables.

We use � to refer to the collection of parameters in an
HLC model � and use � to refer to what is left when the
parameters are removed from � . So we usually write an
HLC model as a pair �
	��������� . We sometimes refer to
the first component � of the pair also as an HLC model.
When it is necessary to distinguish between � and the pair
�������� , we call � an unparameterized HLC model and the
pair a parameterized HLC model. The term HLC model
structure is reserved for what is left if information about car-
dinalities of latent variables are removed from an unparam-
eterized model � . Model structures will be denoted by the
letter � , possibly with subscripts.

2The concept of a variable being observed is always w.r.t some
given data set. A variable is observed in a data set if there is at least
one record that contains the state for that variable.



Parsimonious HLC models
In this paper we study the learning of HLC models. We as-
sume that there is a collection of identical and independently
distributed (i.i.d.) samples generated by some HLC model.
Each sample consists of states for all or some of the man-
ifest variables. The task is to reconstruct the HLC model
from data. As will be seen later, not all HLC models can
be reconstructed from data. It is hence natural to ask what
models can be reconstructed. In this subsection we provide
a partial answer to this question.

Consider two parameterized HLC models � 	 ��������
and � � 	 �� � ��� � � that share the same manifest variables
��� , ��� , . . . , ��� . We say that � and � � are marginally
equivalent if the probability distribution over the manifest
variables is the same in both models, i.e.� � ��� �
	�	�	 � ���� ������� 	 � � ��� ��	
	�	 � ����� � � � � � ��	 (1)

Two marginally equivalent parameterized models are
equivalent if they also have the same number of independent
parameters. Two unparameterized HLC models � and � �
are equivalent if for any parameterization � of � there ex-
ists a parameterization � � of � � such that � � � ��� and � � � � � �
are equivalent and vice versa. Two HLC model structures
� � and � � are equivalent if there are equivalent unparame-
terized models � � and � � whose underlying structures are
��� and ��� respectively.

A parameterized HLC model � is parsimonious if there
does not exist another model � �

that is marginally equiva-
lent to � and that has fewer independent parameters than
� . An unparameterized HLC model � is parsimonious if
there exists a parameterization � of � such that � � � ��� is
parsimonious.

Let � be a parameterized HLC model and � be a set
of i.i.d. samples generated by � . If � is not parsimo-
nious, then there must exist another HLC model whose pe-
nalized loglikelihood score given � (Green 1998, Lantern-
man 2001) is greater than that of � . This means that, if
one uses penalized loglikelihood for model selection, one
would prefer this other parsimonious models over the non-
parsimonious model � . The following theorem states that,
to some extent, the opposite is also true, i.e. one would pre-
fer � to other models if � is parsimonious.

Theorem 1 Let � and � � be two parameterized HLC
models with the same manifest variables. Let � be a set
of i.i.d. samples generated from � .

1. If � and � � are not marginally equivalent, then the log-
likelihood � � ��� � � of � is strictly greater than the log-
likelihood � � � � � � � of � � when the sample size is large
enough.

2. If � is parsimonious and is not equivalent to � �
, then the

penalized loglikelihood of � is strictly larger than that of
� � when the sample size is large enough.

The proofs of all theorems and lemmas in this paper can
be found in Zhang (2002).

Model equivalence
In this subsection we give an operational characterization of
model equivalence. Let ��� be the root of a parameterized

Figure 2: The operation of root walking.

HLC model � � . Suppose � � is a child of � � and it is a la-
tent node (see Figure 2). Define another HLC model ��� by
reversing the arrow ����� ��� and, while leaving the values
for all other parameters unchanged, defining for

����� �� � �
and

����� � � � � � � � as follows:����� �� � � 	 � �� �!�  � � � ��� � ������ �� � � � � � 	 "$#&%  (' �  *) � �*+#&% � ' � �,+ if
� � � ���� �.-0/�1 �  1 otherwise,

where
� �  � �2� ����� � 	 � �  ��2� � � �  � ���3� �4� � . We use the

term root walking to refer to the process of obtaining � �
from ��� . In the process, the root has walked from �5� to
�6� .
Theorem 2 3 Let �7� and �8� be two parameterized HLC
models. If �8� is obtained from ��� by one or more steps of
root walking, then ��� and �9� are equivalent.

The two HLC models shown in Figure 3 are equivalent to
the model in Figure 1. The model on the left is obtained by
letting the root of the original model walk from � � to � � ,
while the model on the right is obtained by letting the root
walk from �2� to �6: .

In general, the root of an HLC model can walk to any
latent node. This implies the root node cannot be determined
from data 4. A question about the suitability of HLC models
for cluster analysis naturally arises. We take the position
that the root node can be determined from the objective in
clustering and domain knowledge. Moreover we view the
presence of multiple latent variables an advantage because
it enables one to cluster data in multiple ways. Note that
multiple clusterings due to multiple latent variables are very
different from multiple clusterings in hierarchical clustering.
In the latter case, a clustering at a lower level of the hierarchy
is a refinement of a clustering at a higher level. The same
relationship does not exist in the former case.

The inability of determining the root node from data also
have some technical consequences. We can never induce
HLC models from data. Instead we obtain what might be
called unrooted HLC models. An unrooted HLC model is an

3A similar but different theorem was proved by Chickering
(1996) for Bayesian networks with no latent variables. In Chicker-
ing (1996), model equivalence implies equal number of parameters.
Here equal number of parameters is part of the definition of model
equivalence.

4In the case of phylogenetic trees, this is a well-known fact
(Durbin et al. 1998).



Figure 3: HLC models that are equivalent to the one in Fig-
ure 1.

Figure 4: The unrooted HLC model that corresponds to the
HLC model in Figure 1.

HLC model with all directions on the edges dropped. Fig-
ure 4 shows the unrooted HLC model that corresponds to the
HLC model in Figure 1. An unrooted HLC model represents
a class of HLC models; members of the class are obtained
by rooting the model at various nodes and by directing the
edges away from the root. Semantically it is a Markov ran-
dom field on an undirected tree. The leaf nodes are observed
while the interior nodes are latent. The concepts of marginal
equivalence, equivalence, and parsimony can be defined for
unrooted HLC models in the same way as for rooted models.

From now on when we speak of HLC models we always
mean unrooted HLC models unless it is explicitly stated oth-
erwise.

Regular HLC models
In this subsection we first introduce the concept of regular
HLC models and show that all parsimonious models must
regular. We then show that the set of unparameterized regu-
lar HLC models for a given set of manifest variables is finite.
This provides a search space for the learning algorithm to be
developed in the next section.

For any variable � , use �
�

and � ��� to denote its domain
and cardinality respectively. For a latent variable � in an
HLC model, enumerate its neighbors as � � , � � , . . . , ��� .
An HLC model is regular if for any latent variable � ,� � ��� � ����!� � � �*�

	�
� ���� � � � � � � (2)

and when � has only two neighbors,� � ��� � �2� � � ���&�� �4� ��� � ���3���� 	 (3)

Note that this definition applies to parameterized as well as
unparameterized models. The first condition was suggested
by Kocka and Zhang (2002).

Theorem 3 Irregular HLC models are not parsimonious

In the rest of this section, we give three lemmas and one
theorem that exhibit several interesting properties of regular
HLC models.

A latent node in an HLC model has at least two neighbors.
A singly connected latent node is one that has exactly two
neighbors.

Lemma 1 In a regular HLC model, no two singly connected
latent nodes can be neighbors.

This lemma inspires the following two definitions. We
say that an HLC model structure is regular if no two singly
connected latent nodes are neighbors. If there are no singly
connected latent nodes at all, we say that the model structure
is strictly regular.

Lemma 2 Let � be an HLC model structure with � manifest
variables. If � is regular, then there are fewer than �� latent
nodes. If � is strictly regular, then there are fewer than �
latent nodes.

Lemma 3 There are fewer than � :*� � different regular HLC
model structures for a given set of � manifest nodes.

Theorem 4 The set of all regular unparameterized HLC
models for a given set of manifest variables is finite.

Searching for optimal models
In this section we present a hill-climbing algorithm for learn-
ing HLC models. Hill-climbing requires a scoring met-
ric for comparing candidate models. In this work we ex-
periment with four existing scoring metrics, namely AIC
(Akaike 1974), BIC (Schwarz 1978), the Cheeseman-Stutz
(CS) score (Cheeseman and Stutz 1995), and the holdout
logarithmic score (LS) (Cowell et al. 1999) .

Hill-climbing also requires the specification of a search
space and search operators. According to Theorem 3, a nat-
ural search space for our task is the set of all regular (unpa-
rameterized) HLC models for the set of manifest variables
that appear in data. By Theorem 4, we know that this space
is finite.

Instead of searching this space directly, we structure the
space into two levels according to the following two sub-
tasks and we search those two levels separately:

1. Given a model structure, find optimal cardinalities for the
latent variables.

2. Find an optimal model structure.

This search space restructuring is motivated by the fact that
natural search operators exist for each of the two levels,
while operators for the flat space are less obvious.

Estimating cardinalities of latent variables
The search space for the first subtask consists of all the reg-
ular models with the given model structure. To hill-climb in
this space we start with the model where the cardinalities of
all the latent variables are the minimum. In most cases, the
minimum cardinality for a latent variable is 2. For a latent
variable next to a singly connected latent node, however, the
minimum possible cardinality is 4 because of the inequality
(3). At each step, we modify the current model to get a num-
ber of new models. The operator for modifying a model is to
increase the cardinality of a latent variable by one. Irregular
new models are discarded. We then evaluate each of the new



Figure 5: Illustration of structural search operators.

models and picks the best one to seed the next search step.
To evaluate a model, one needs to estimate its parameters.
We use the EM algorithm for this task.

Search for optimal model structures
The search space for the subtask of finding an optimal model
structure consists of all the regular HLC model structures
for the given manifest variables. To search this space, we
start with the simplest HLC model structure, namely the LC
model structure (viewed as an unrooted HLC model struc-
ture). At each step, we modify the current structure to con-
struct a number of new structures. The new structures are
then evaluated and the best structure is selected as the start-
ing point for the next step. To evaluate a model structure,
one needs to estimate the cardinalities of its latent variables.
This issue is addressed in subtask 1.

We use three search operators to modify model structures,
namely node-introduction, node-elimination, and neighbor-
relocation.

Node introduction To motivate the node-introduction op-
erator, we need to go back to rooted models. Consider the
rooted HLC model � � shown in Figure 5. Suppose vari-
ables ��� and ��� are locally dependent. A nature way to
model this local dependence is to introduce a new parent
for � � and � � , as shown in � � .

When translated to unrooted model structures, the new
parent introduction operator becomes the node-introduction
operator. Let � be a latent node in an unrooted model struc-
ture. Suppose � has more than two neighbors. Then for any
two neighbors of � , say � � and ��� , we can introduce a new
latent node � to separate � from � � and � � . Afterwards, �
is no longer connected to � � and � � . Instead � is connected
to � and � is connected to � � and � � . To see an example,
consider the model structure � �� in Figure 5. Introducing a
new latent node � � to separate � from � � and � � results in
the model structure � �� .

In the case of rooted model structures, we do not consider
introducing new parents for groups of three or more nodes
for the sake of computational efficiency. This constraint im-
plies that the model �8: in Figure 5 cannot be reached from
�7� in one step. In the case of unrooted model structures,
we do not allow the introduction of a new node to separate a
latent node from three or more of its neighbors. This implies
that we cannot reach � �: from in Figure 5 cannot � �� in one
step.

Node-introduction is not allowed when it results in irregu-
lar model structures. This means that we cannot introduce a
new node to separate a latent node � from two of its neigh-
bors if it has only one other neighbor and that neighbor is
a singly connected latent node. Moreover, we cannot intro-
duce a new node to separate a singly connected latent node
from its two neighbors. 5

Node elimination The opposite of node-introduction is
node-elimination. We notice that a newly introduced node
has exactly three neighbors. Consequently we allow a latent
node be eliminated only when it has three neighbors. Of
course, node elimination cannot be applied if there is only
one latent node.

Neighbor relocation In Figure 5, we cannot reach � �:
from either � �� or � �� using node-introduction and node-
elimination. To overcome this difficult, we introduce the
third search operator, namely neighbor-relocation. Suppose
a latent node � has a neighbor � that is also a latent node.
Then we can relocate any of the other neighbors �

�
of � to

� , which means to disconnect �
�

from � and reconnect it
to � . To see an example, consider the model structure � ��
in Figure 5. If we relocate the neighbor � : of � to � � , we
reach � �: .

For the sake of computational efficiency, we do not al-
low neighbor relocation between two non-neighboring la-
tent nodes. In Figure 4, for example, we cannot relocate
neighbors of �4� to ��: and vice versa. Moreover neighbor
relocation is not allowed when it results in irregular model
structures. To be more specific, suppose � is a latent node
that has a latent node neighbor � . We cannot relocate an-
other neighbor �

�
of � to � if � has only three neighbors

and the third neighbor is a singly connected latent node. The
relocation is not allowed, of course, if � has only two neigh-
bors. Finally note that the effects of any particular neighbor
relocation can always be undone by another application of
the operator. 6

Theorem 5 Consider the collection of regular HLC model
structures for a given set of manifest variables. One can
go between any two structures in the collection using node-
introduction, node-elimination, and neighbor-relocation.

Empirical Results on Synthetic Data
Our algorithm for learning HLC models has been evaluated
on both synthetic and real-world data. This section reports
the results on synthetic data. The synthetic data were gen-
erated using the HLC model structure in Figure 1. The car-

5Node-introduction is similar to an operator that PROMTL, a
system for inferring phylogenetic trees, uses to search for optimal
tree topologies via star decomposition (Kishino et al. 1990). The
former is slightly less constrained than the latter in that it is allowed
to create singly connected nodes as by-products.

6Neighbor relocation is related to but significantly different
than an operator called branch swapping that PAUP, a system for
inferring phylogenetic trees, uses to search for optimal tree topolo-
gies (Swofford 1998). The latter includes what are called nearest
neighbor interchange; subtree pruning and regrafting; and tree bi-
section/reconnection .
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Figure 6: Logarithmic scores of learned models on testing
data.

dinalities of all variables were set at 3. The model was ran-
domly parameterized. Four training sets with 5,000, 10,000,
50,000, and 100,000 records were sampled. A testing set of
5,000 records was also sampled. Each sample record con-
sists of states for all the manifest variables.

We ran our learning algorithm on each of the four training
sets, once for each of the four scoring metrics BIC, AIC, CS,
and LS. There are hence a total number of 16 settings. For
the LS scoring metric, 25% of the training data was set aside
and used as validation data. Candidate models are compared
using their logarithmic scores on the validation data. The
EM termination threshold was set at 0.01 during model se-
lection and at 0.0001 when estimating parameters for the
final model. Irrespective of the threshold, EM was allowed
to run no more than 200 iterations on any given model. For
local maxima avoidance, we used the Chickering and Heck-
erman (1997) variant of the multiple-restart approach.

The logarithmic scores of the learned models on the test-
ing data are shown in Figure 6. The scores are grouped into
four curves according to the four scoring metrics. The score
of the original model is also shown for the sake of compar-
ison. We see that the scores of the learned models are quite
close to that of the original model in the relative sense. This
indicates that those models are as good as the original model
when it comes to predicting the testing set. We also see that
scores do not vary significantly across the scoring metrics.

The structures of the learned models do depend heavily
on the scoring metrics. With either BIC or CS, our algorithm
obtained, from the 50k and 100k training sets, models whose
structures (unrooted trees) correspond precisely to the orig-
inal structure. In this sense we say that the correct structure
was recovered. From the 5k and 10k training sets, it obtained
models with structures that differ from the original structure
by only one or two search operations. With AIC and LS, our
algorithm also recovered the correct structure from the 50k
and 100k training sets. But the structures it produced for the
5k and 10k differ significantly from the original structures.
7

Although the correct model structure was recovered from
the 50k and 100k training sets regardless of the scoring met-
rics used, different scoring metrics gave different estimates
for the cardinalities of the latent variables. As can be seen

7Structures and other details of the learned models are given in
Zhang (2002).

50k 100k
BIC CS LS AIC BIC CS LS AIC���

2 2 2 2 2 2 2 2���
3 3 3 3 3 3 3 4���
2 2 4 4 3 3 4 4

Table 1: Cardinalities of latent variables in learned models.
In the original model all variables have 3 states.

from Table 1, BIC and CS have the tendency to underesti-
mate while AIC and LS have the tendency to overestimate.
Overall, BIC and CS seem to give better estimates.

In a second experiment, we parameterized the origi-
nal model also in random fashion except that we ensured
each conditional probability distribution have one compo-
nent with mass no smaller than 0.6. Everything else was the
same as in the first experiment. The performance of our al-
gorithm, with BIC or CS, was better here than in the first
experiment. It recovered the correct model structure from
all four training sets. Cardinalities of �2� and ��: were es-
timated correctly in all cases. The cardinality of � : was
estimated correctly in the 100k training set, while it was un-
derestimated by 1 in all other training sets.

When AIC and LS was used, however, the algorithm per-
formed worse in the second experiment than in the first one.
It was not able to recover the correct model structure even
from the 50k and 100k training sets.

Empirical Results on Real-World Data
We have also evaluated our algorithm on four real-world
data sets taken from the LCA literature. The first data
set is the Hannover Rheumatoid Arthritis data. It involves
five binary manifest variables and consists of 7,162 records.
Kohlmann and Formann (1997) conclude that the best model
for this data set is a four class LC model. Using scoring met-
rics BIC, CS, and AIC, our algorithm discovered exactly the
same model. When LS was used, however, it computed a
very different model which does not fit the data well.

The second data set is known as the Coleman Data (Cole-
man 1964). It involves four binary manifest variables named�

, � , 	 , and � . There are 3,398 records. This data set
has been previously analyzed by Goodman (1974) and Ha-
genaars (1988). Goodman started with a 2-class LC model
and found that it does not fit the data well ( 
 	 ���� 	�� / ,��� 	�� , ��� / 	 /3/ � ). He went on to consider the loglinear
model that is represented by the path diagram M1 in Figure
7. In the model, both ��� and ��� are binary variables. This
model fits data well ( 
 	 �3	 ��� , ��� 	�� , � 	 / 	 ��� ). Ha-
genaars examined several possible models and reached the
conclusion that the loglinear model M2, where � is a binary
variable, best explains the data. This model fits the data very
well ( 
 	 � 	 � � ,

��� 	�� , � 	 / 	  � ).
Using scoring metric BIC, CS, and AIC, our algorithm

found the model M3, where both � � and � � are binary vari-
ables. It’s obvious that M3 is equivalent to M1 and hence fit
data equally well. Our algorithm does not examine model
M2 because it is not an HLC model. Fortunately, M2 is



Figure 7: Models for the Coleman data.

Figure 8: Model for the HIV data.

quite close to M3. Using LS, our algorithm found a model
that is the same as M3 except the number of states of �5� is
3. This model does not fit data well ( 
 	 �3	 ��� , ��� 	 / ,
� 	 / 	 / ).

The third data set is known as the HIV data (Alvord et
al. 1988). It also involves four binary manifest variables
named

�
, � , 	 , and � . There are 428 records. Alvord et

al. (1988) reasoned that there should be two latent classes,
corresponding to the presence and absence of the HIV virus.
However, the two-class LC model does not fit data well ( 
 	
� � 	 � � ,

��� 	 � , � 	 / 	 / � ). This indicates the presence of
local dependence.

The performance of our algorithm on this data set is sim-
ilar to that on the Coleman data set. Using BIC, CS, and
AIC, it found the model in Figure 8, where both latent vari-
ables are binary variables. The model is the same as one of
the equivalent models Uebersax (2000) reached using some
heuristic techniques. The model fit data well ( 
 	 � 	 / � � ,��� 	 � , � 	 / 	������ ). With LS score, our algorithm produced
the same model structure. However the cardinalities of both
latent variables are overestimated by 2. The model fits data
poorly.

The final data set we used is the housing building data
(Hagenaars 1988). It involves four binary manifest variables
and has 283 records. Hagenaars derived several loglinear
models that fit the data well. None of those models are close
to any HLC models, indicating that the data probably was
not generated by an HLC model or a model that can be ap-
proximated closely by an HLC model. As such we expect
our algorithm to perform poorly. This turns out to be the
case. All the models produced by our algorithm fit data
poorly.

Concluding Remarks
We have introduced a new class of models for cluster anal-
ysis, namely HLC models. HLC models are significantly
more general than LC models and can accommodate lo-
cal dependence. At the same time, the simplicity in their
structures makes computation feasible. A search-based al-
gorithm has been developed for learning HLC models from

data. Both synthetic and real-world data have been used to
evaluate the performance of the algorithm with four different
scoring metrics, namely AIC, BIC, CS, and LS. The results
indicate that the algorithm works well with the BIC and CS
scores.

The focus of this paper has been on developing a prin-
cipled search-based method for learning HLC models. Not
much consideration was given to computational complexity.
While not prohibitive, our algorithm is quite expensive com-
putationally. To reduce complexity one can employ various
heuristics to construct initial models for search that hope-
fully are close to the optimal. One can also replace hill-
climbing that generates and evaluates a large number of can-
didate models at each step with heuristic search that inspects
aspects of the current model that need improvement and con-
structs a model for the next step heuristically.
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