Journal of Applied Intelligence, 9, 173-184 (1998)

© 1998 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Computational Properties of
Two Exact Algorithms for Bayesian Networks

NEVIN LTIANWEN ZHANG
Department of Computer Science, University of Science € Technology, Hong Kong, China

Abstract. This paper studies computational properties of two exact inference algorithms for Bayesian
networks, namely the clique tree propagation algorithm (CTP) ! and the variable elimination algorithm
(VE). VE permits pruning of nodes irrelevant to a query while CTP facilitates sharing of computations
among different queries. Experiments have been conducted to empirically compare VE and CTP. We
found that, contrary to common beliefs, VE is often more efficient than CTP, especially in complex

networks.
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1. Introduction

Bayesian networks (BNs)? (Pearl 1988) are a
knowledge representation framework widely used
by AI researchers for reasoning under uncertainty.
There is a rich collection of exact and approxi-
mate algorithms for inference in BNs. This paper
studies computational properties of two exact al-
gorithm, namely clique tree propagation (CTP)
and variable elimination (VE).

CTP was developed over a few years by Pearl
(1988), Lauritzen and Spiegelhalter (1988), Shafer
and Shenoy (1990), and Jensen et al (1990). VE
is conceptually much simpler than CTP. It has its
roots in the work of Shachter (1986, 1988). The
underlying ideas are implicit in many papers (e.g.
Shenoy 1992 and Shafer 1996). The algorithm was
first made explicit by Zhang and Poole (1994) and
was extended to exploit independence of causal
influence® (Heckerman 1993) by Zhang and Poole
(1996). Dechter (1996) also calls it bucket elimi-
nation.

VE and CTP have different computational fea-
tures; VE permits pruning of nodes irrelevant to

a query (Section 3) while CTP facilitates sharing
of computations among different queries (Section
4). The two features are conflicting to each other.
If one prunes irrelevant nodes, then one needs to
work with different subnetworks of a BN when an-
swering different queries, which precludes compu-
tation sharing.

CTP is the most popular exact inference algo-
rithm for BNs. It is widely believed to be the
most efficient. Experiments have been conducted
with the CPCS networks (Pradhan and Provan
1994) to empirically compare VE and CTP. We
found that, contrary to common beliefs, VE is of-
ten more efficient than CTP. More specifically, we
found that

1. VE takes much less time than or roughly the
same time as CTP when computing the poste-
rior probabilities of twenty or less query vari-
ables given a set of observations consisting of
twenty or less observations.

2. As network complexity increases, VE com-
pares more and more favorably to CTP.

3. There are networks where VE can answer
queries in real time while CTP cannot make
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any inference at all due to large memory con-
sumption.

On the other hand, we also found that the aver-
age performance of CTP increases with the num-
ber of observations and the number of query vari-
ables given a set of observations, while the average
performance of VE decreases with them. Conse-
quently, CTP can be more efficient than VE in
situations where there is a large number of ob-
servations and there is a large number of query
variables given a set of observations. We argue
that there are many applications where such sit-
uations do not arise. In influence diagram eval-
uation, for instance, observations correspond to
relevant informational predecessors of a decision
node and query nodes correspond to components
of utility function that are influenced by a deci-
sion node (Zhang 1997). There are usually only a
few of them*. Also if the end user is a human be-
ing instead of some other programs, the numbers
of observations and query variables should not be
large. It is difficult for a human being to manually
enter a large number of observations and examine
the posterior probabilities of a large number of
variables.

We will briefly review CTP and VE, discuss
their computational properties, and report on our
experiments.

2. Bayesian networks and inference

This section briefly reviews the concept of
Bayesian networks and discusses inference in
Bayesian networks.

2.1. Bayesian networks

A Bayesian network (BN) (Pearl 1988) is an an-
notated directed acyclic graph, where each node
represents a random variable and is attached with
a conditional probability of the node given its par-
ents. We will use the terms “nodes” and “vari-
ables” interchangeably hereafter.

In addition to the explicitly represented con-
ditional probabilities, a BN also implicitly repre-
sents conditional independence assertions. Let x1,
Ts, ..., Tn be an enumeration of all the nodes in
the BN such that each node appears after its par-

ents, and let 7, be the set of parents of a node
x;. The following assertions are implicitly repre-
sented:

For i=1,2,...n, x; is conditionally inde-
pendent of variables in {z1, %2, ...,%;—1 }\7q,
given variables in 7.

The conditional independence assertions and
the conditional probabilities together entail a joint
probability over all the variables. As a matter of
fact, by the chain rule, we have

n
P(.’L’l,.’L'z,...,.’En) HP(Z‘,’|.€L’1,$2,...,.’L'1'_1)
=1

= [ Pil..), M
i=1

where the second equation is true because of the
conditional independence assertions. The condi-
tional probabilities P(z;|m,,) in (1) are given in
the specification of the BN.

2.2. Inference in Bayesian networks

Inference refers to the process of computing the
posterior probability P(z|Y'=Y}) of a query node
x after obtaining some observations or evidence
Y=Y;,. Here Y is the list of observed variables and
Yy is the corresponding list of observed values.

In theory, P(z|Y=Yp) can be obtained from
the marginal probability P(z,Y’), which in turn
can be computed from the joint probability
P(x1,z2,...,T,) by summing out variables out-
side {z}UY one by one. In practice, this is not vi-
able because summing out a variable from a joint
probability requires an exponential number of ad-
ditions.

The key to more efficient inference lies in the
concept of factorization. A factorization of a
joint probability is a list of factors (non-negative
functions of variables) from which one can con-
struct the joint probability. Because of equa-
tion (1), a BN represents a factorization of a
joint probability. For example, the Bayesian net-
work in Figure ?? factorizes the joint probability
P(a,b,c, e, ea,e3) into the following list of factors:

P(a),P(b),P(C),P(61|a,b,c),P(€2|CL,b,C),P(€3|€1,€2).



Properties of two exact algorithms for Bayesian networks 175

The product of the factors is the joint probability.

Suppose a joint probability P(y1,ys,---,Ym) iS
factorized into a list of factors F={f1, fo, ...,
fm}- While obtaining P(ya,...,¥m) by summing
out y1 from P(y1,y2,...,Ym) requires an exponen-
tial number of additions, obtaining a factorization
of P(ya,...,ym) can be done with much less com-
putation. Both CTP and VE makes use of this
fundamental fact. To be specific, suppose the y;
appears in and only in factors f1, fa, ..., fr. Then

P(y27"'7ym) = ZP(y17y27---;ym)
Y1

Zﬁfi

y1 =1

k m
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Y1 i=1 i=k+1

Thus, a factorization of P(ys,...,¥,) can be ob-
tained by calling the following procedure with y;
and F.

Procedure sum-out(z, F):

e Inputs: F — alist of factors, z — a variable.
¢ Qutput: Another list of factors.

1. Remove from F all the factors, say fi, ..., fk,
that contain z.

2. Add the new factor ), Hle fito F.

3. Return F.

Only variables appearing in the factors that
contain z take part in the computation. Those

can be only a small portion of all the variables.
This is why inference in a BN can be tractable.

3. The variable elimination algorithm

This section reviews the VE algorithm and dis-
cusses its computational properties.

3.1.  The algorithm

Let f(x,A) be a function of variable z and vari-
ables in set A. Instantiating x to a particular
value « in f(x,A) yields f(z=a, A), which is a
function of variables in A.

VE computes the posterior probability P(z|Y =Y)
in a BN A by eliminating nodes outside {z}UY
one by one.

Procedure VE(z, Y=Yy, )

1. Let F be the set of conditional probabilities
in V. Instantiate the observed nodes to their
corresponding observed values in all factors in
F.

2. Find an ordering p of all nodes outside {z}UY".

3. While p is not empty,

(a) Remove the first variable z from p,
(b) F= sum-out(z,F). Endwhile

4. Multiply all the factors in F. (The product is
a function f(x) of z.)

5. Return f(x)/ ), f(x). (Renormalization)

Let Z be the set of unobserved nodes. VE
is correct because after step 1, the product
of all factors in F is the probability function
P(Z,Y=Y;,). By repeatedly using equation (2),
one can show that the function f(z) obtained at
step 4 is P(x,Y =Yy). Hence f(x)/ ", f(x) must
be P(z|Y=Yy).

The ordering p at step 2 is usually called an
elimination ordering. It determines the com-
plexity of VE. The problem of finding an op-
timal elimination ordering is known to be NP-
complete (Arnborg et al 1987). In practice,
two heuristics called minimum deficiency search
(Bertele and Brioschi 1972) and maximum cardi-
nality search (Tarjan and Yannakakis 1982) are
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commonly used. See Kjserulff (1990) for empirical
comparisons of various heuristics.

3.2.  Pruning irrelevant nodes

VE processes one query at a time and hence al-
lows pruning of nodes that are irrelevant to the
query. This subsection summarizes work on ir-
relevant nodes (Shachter 1988, Geiger et al 1990,
Lauritzen et al 1990, and Baker and Boult 1990)
and provides new and simple proofs for the results.
We will need to deal with more than one BN. For
clarity, we will use Py (.) to refer to probabilities
in a BN V.

In a BN N, a node z is an ancestor to an-
other node y if there is a directed path from
xz to y. The ancestral set an(A) of a set A of
nodes consists of nodes in A and ancestors of those
nodes. The following proposition says that nodes
outside an({z}UY) are irrelevant to the query
Py (z|Y =Yp).

Proposition 1. Let N; be the BN obtained

from a BN N by pruning nodes outside an({z}UY).

Then

Py (2|Y=Y0) = Py, (2|Y =Yp).

Proof: It suffices to show that Py, (an({z}UY"))
Py (an({z}UY)). Let x1, ..., z) be an enumera-
tion of all nodes in an({z}UY") such that each node
appears after all its parents. Such an enumeration
is possible because all the parents of each node in
an({z}UY") are also in the set. Then

k
Py(a1,...,5) = [[ Px(@ilar,... i)
i=1
k

= [[ v (@il

i=1

k
= I 2w (@ilms,)

i=1

= PNl(J}l,...,JIk), (3)

where the second equation is due to the condi-
tional independence assumptions of BNs (see Sec-
tion 2) and the third equation is due to the fact

that the conditional probability of each z; given
its parents is the same in both A" and N;. The
proposition is proved. o

The moral graph (Lauritzen and Spiegelhalter
1988) of a BN is obtained by marrying the parents
of each node (i.e adding an edge between each pair
of parents) and then dropping all directions. Two
nodes x and y are m-separated by a set A if, in the
moral graph, every path connecting them contains
at least one node in A. Note that A m-separates
each z€ A from each y¢A. Roughly speaking, the
following proposition says that nodes that are m-
separated from z by Y are irrelevant to the query
Py, (z|Y=Yp).

Proposition 2. Let Z; be the set of nodes in
a BN N that are m-separated from = by Y, with
nodes in 'Y excluded. Let Zy be the set of remain-
ing nodes outside Y. Let Y1 be the set of nodes in
Y that do not have parents in Zy and let Yo=Y \Y;.
Suppose N> is the BN obtained from Ny by

1. Removing all the nodes in Z,

2. Removing arcs into and conditional probabili-
ties of nodes in 'Yy (thereafter those nodes have
no parents), and

3. Setting the probabilities of nodes in Yy to be
the uniform distributions.

Then

Py, (#|Y=Y0) = Py, (z|Y=Y0).
Proof: By definition of the set Z,, we
have z€Z,. Hence it suffices to show that

PNQ(ZQ;YvQD/l) = PNI (Z2JY§|}G) Let T1, -5 T
be an anumeration of nodes in ZUY> such that z;
is not an ancestor of z; if j > ¢. By the definitions
of Z1, Zs, and Y5, none of the z;’ have parents in
Z. Hence, all parents of each x; must be in the
set {z1,...,z;—1}UY1. Consequently,

k
Pry (oo mul¥) = [ Ps(olans. . i, V)
=1
k
H Py, (@i|ma,),

i=1

where the second equation is due to the condi-
tional independence assumptions of BN (see Sec-
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tion 2). Similarly,

k
PN2($1,...,33k|Y1) = HPNz(ZﬂWzZ)

i=1

Since the conditional probability of each z; given
its parents is the same in both N; and N>, the
proposition follows. O

From now on, we assume that VE always prunes
the irrelevant nodes identified by the foregoing
propositions before proceeding to answer a query.

4. Clique tree propagation

This section briefly reviews CTP and discusses
its computational properties. CTP appears in
several basically equivalent variations (Lauritzen
and Spiegelhalter 1988, Shafer and Shenoy 1990,
Jensen et al 1990). The description of CTP given
below combines features of the variation by Shafer
and Shenoy (1990) and the variation by Jensen et
al (1990). The reader is referred to Shafer (1996)
for a discussion on the subtle differences among
the variations.

4.1. Elementary CTP

In a BN, a clique is simply a subset of nodes. A
clique tree is a tree whose nodes are cliques such
that if a node of the BN appears in two different
cliques, then it also appears in all the cliques on
the path between the two cliques.

CTP compiles a BN into a clique tree at a pre-
processing step. The clique tree must cover the
BN in the sense that for each node in the BN,
there must exist at least one clique that contains
both the node itself and all its parents. Such a
tree can be constructed from an ordering of all
nodes in the BN (e.g. Shafer and Shenoy 1990,
Zhang 1993). The tree is initialized by attaching
the conditional probability of each node to one
clique that contains both the node itself and all
its parents. If a clique is attached with more than
one factor, the factors are multiplied. If a clique is
attached with no factors, the constant factor 1 is
attached to it for uniformity. After initialization,
each clique is associated with one and only one

factor and the product of all factors is the joint
probability of the BN.

Let 7 be the initialized clique tree. Before com-
puting the posterior probability P(z|Y'=Yy) of a
node z, CTP absorbs observations into the tree as
follows.

Procedure absorbEvidence(Y=Yy, T):

¢ For each observation y=yq, create an evidence
factor fy—y,(y) that is 1 when y=y, and 0
otherwise. Find one clique that contains y
and attach fy—,, to the clique.

After evidence absorption, some cliques might
have more than one factor; the factor created at
initialization plus possibly some evidence factors.
Let Z be the set of all the unobserved nodes. Af-
ter evidence absorption, the product of all fac-
tors in the clique tree is the probability function
P(Z,Y=Y}).

CTP computes posterior probabilities by pass-
ing messages around in the clique tree. The mes-
sages are factors (i.e. non-negative functions of
nodes). Let C and C' be two neighbors cliques.
A message can be sent from C to C' as follows
after C' has received messages from all its other
neighbors.

Procedure sendMessage(C, C"):

e (Let f1, ..., fr be the factors attached to C
or sent to C' from all its neighors other than
C'".) Send the following factor to C':

k
> 1%
cnCi=1

where is the summation is taken over all pos-
sible values of the nodes in C'\C.

Message passing is organized as follows (Shafer
1996) to obtain the posterior probability P(z|Y =Y}).
Procedure elemCTP(z,Y =Y, T):

1. Find a clique that contains z. (It will be re-
ferred to as the pivot clique and denoted by
Cy.)
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2. (Propagation) Each clique C waits until it
has received messages from all its neighbors
except for the one, denoted by C’, that is
nearer to the pivot clique than C' and then
calls sendMessage(C,C").

3. (Let g1, --., g be the factors attached to C,
or sent to C, from all its neighors. ) Return

1 !
Zom\{z} [Tiz1 91/ 2 ¢, [Tiz1 95

The propagation step starts at leaf cliques, i.e.
cliques that have only one neighbor, and proceeds
toward the pivot clique. In terms of numerical
computations, it is similar to the while-loop in VE.

To verify the correctness of elemCTP, consider
the cliques that have not sent out messages at
any time during execution. Let Z' be the set of
all the unobserved nodes in those cliques. By us-
ing equation (2) and the property of clique trees
described in the first paragraph of this section?,
one can inductively show that the product of the
factors attached to those cliques and the factors
sent, to them from other cliques is the probability
function P(Z',Y=Yp). In particular, the factor
Hi.zl g in step 3 is P(CL,Y=Y}), where C. is the
set of unobserved nodes in C,. Hence the factor
returned by elemCTP is indeed P(z|Y =Y)).

4.2.  Computation sharing in the case of fized ob-
servations

In terms of efficiency, the biggest advantage of
CTP is that it allows computation sharing among
different queries. This subsection discusses com-
putation sharing among queries with the same ob-
servations and the next subsection will extend the
discussions to queries with different observations.

Consider computing the posterior probability of
two different query nodes z; and z» given the same
observations Y=Y;. Let C, and C;, be the pivot
cliques e1emCTP chooses for 1 and o respectively.
Suppose C and C' are two neighboring cliques that
are not both on the path between C,, and Cj,.
Then C' is nearer to Cy, than C if and only if it is
nearer to C,, than C. In other words, a message
needs to be sent from C to C' when computing
P(z1|Y=Yp) if and only if a message needs to be

sent from C to C' when computing P(z2|Y'=Yp).
The contents of the two messages are the same®
and hence can be shared.

To materialize the opportunities of computation
sharing, create, at each clique, a port for each of its
neighbors to store the message from that neighbor
(Shafer and Shenoy 1990). For any two neighbor-
ing cliques C and C', use port(C,C") to denote
the port of C for C'. Tt is initially empty. Modify
elemCTP as follows.

Procedure CTP(z, Y=Yy, T):

1. Same as in elemCTP.

2. For each neighbor C of C,, collectMessage(Cy, C).

Subroutine collectMessage(Cy, C):
o If port(C,,C) is empty,
(a) For each neighbor C" of C other than
Cy, collectMessage(C, C").
(b) sendMessage(C, Cy).
(c) Store the message at port(Cy, C).

3. Same as in elemCTP.

Note that if port(C,, C) is not empty, i.e. if C has
sent a message to C; earlier when processing other
query nodes, collectMessage does nothing. The
earlier message is reused in the current computa-
tion. The collectMessage subroutine is similar

to the collectEvidence procedure of Jensen et
al (1990).

4.3.  Computation sharing in the case of chang-
ing observations

There are practical situations where one needs to
add or delete observations after posterior prob-
abilities have been obtained. CTP allows some
messages computed before the change in observa-
tions be reused after the change in observations.

Addition of observations implies introduction of
new evidence factors to cliques and deletion of ob-
servations implies removal of evidence factors cur-
rently associated with cliques. They both affect
contents of some (but not all) messages.

Suppose we have a new observation z=zy. To
absorb it, we need to add the evidence factor
fr=2,(2) to a clique C, that contains z. Let C
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and C' be two neighboring cliques. Consider the
messages between them before and after absorb-
ing the observation. Suppose C is nearer to C,
than C'. From collectMessage, we see that the
message from C to C' is affected by the new ev-
idence factor, while the message from C’ to C is
not. In other words, the message from C’ to C can
be reused after absorption of the new observation
while the message from C to C' cannot.

The following procedure absorbs the new obser-
vation z=zg into the clique tree 7T, deletes mes-
sages that cannot be reused, and keeps messages
that can.

Procedure addEvidence(z=zp, T):

1. Find a clique C, that contains z and add the
evidence factor f,—,,(z) to C..

2. For each neighbor C of C,, cleanMessage(C,, C).

Subroutine cleanMessage(C,,C):
o If port(C,C}) is not empty,

(a) Clean the message stored at port(C, C.,).

(Afterwards the port is empty).
(b) For each neighbor C' of C other than
C, cleanMessage(C,C").

After applying addEvidence, CTP can be called
to compute new posterior probabilities. Messages
that are not deleted by addEvidence are reused.
As an example, suppose P(z|Y'=Y;) has been
computed previously by CTP. Suppose we compute
the new posterior probability P(z|Y =Yy, z=29)
by first applying addEvidence(z=z¢, T ) and then
calling CTP. Then only the messages along the
path from C, to C, are recomputed. All other nec-
essary messages have been computed earlier and
are recycled in the current computation.

Deletion of observations can be handled in a
similar way. An observation z=zp can be deleted
by using the following procedure.

Procedure deleteEvidence(z=zp,7):

1. Find the clique C, that is associated with the
evidence factor f,—,,(z). Remove the factor
from C.,.

2. For each neighbor C of C,, cleanMessage(C,, C).

Afterwards, CTP can be used to compute new pos-
terior probabilities. Again messages that are not
deleted by deleteEvidence are reused.

5. Empirical comparisons

VE and CTP have different computational prop-
erties; VE permits pruning of irrelevant nodes
while CTP facilitates computation sharing. Ex-
periments have been conducted with the CPCS
networks (Pradhan and Provan 1994) to empiri-
cally compare VE and CTP. This section reports
on the experiments. Before diving into the details,
here is a summary of our findings:

1. VE takes much less time than or roughly the
same time as CTP when computing the pos-
terior probabilities twenty or less query nodes
given a set of observations with twenty or less
observations.

2. As network complexity increases, VE com-
pares more and more favorably to CTP.

3. There are networks where VE can answer
queries in real time while CTP cannot make
any inference at all due to its large appetite
for memory.

4. The average performance of CTP increases
with the number of observations and the num-
ber of query nodes given a set of observa-
tions, while the average performance of VE
decreases with them.

5.1. The CPCS networks

The CPCS networks are multilevel, multivalued
BNs for medicine. They are created by Pradhan
and Provan (1994) based on the Computer-based
Patient Case Simulation system (CPCS-PM) de-
veloped by Parker and Miller (1987). The net-
works vary in the number of nodes (NN), and
the average number of parents of a node (ANP),
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and the average number of possible values of a
node (ANV). Four networks were used in our
experiments’. Their complexity attributes are
summarized in the following table.

Networks | NN | ANP | ANV
Network 1 | 145 | 1.14 | 2.27
Network 2 | 245 | 1.45 2.0
Network 3 | 245 | 1.45 2.25
Network 4 | 364 | 2.01 2.0

5.2.  Ezxperiment setups

Two experiments were conducted. The first exper-
iment compares VE and CTP in situations where
one needs to compute the posterior probabilities of
5, 10, or 20 nodes given a fixed set of observation
consisting of 5, 10, or 20 observations. There are
nine combinations (situations). For each situation
(n,m), where n and m are the numbers of obser-
vations and query nodes respectively, a large num-
ber (300 for Networks 1 and 2, 100 for Network 3)
of sets of observations consisting of n observations
were randomly generated. For each set of observa-
tions, m unobserved nodes were randomly selected
to be query nodes. VE and CTP were called to
compute the posterior probability of each of the m
nodes given the set of observations and the total
times VE and CTP took were recorded. The per-
formances of VE and CTP are compared in terms
of the averages of the total times across the sets
of observations.

5.83.  Results for Network 1

The second experiment compares VE and CTP
in the case of changing observations. The sets of
observations and the query nodes used were the
same as in the first experiment, except each set of
observation was modified by replacing one of its
member, which was randomly selected, with a ran-
domly generated new observation. VE and CTP
were called to computed the new posterior prob-
abilities of the query nodes. In the case of CTP,
addEvidence and deleteEvidence were first ap-
plied. While VE is expected to take the same as in
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Fig. 1. Statistics for Network 1. The curve “ve5” , for
instance, depicts that the average times VE took in the
three situations with 5 observations and 5, 10, or 20 query
variables.

the first experiment on average, CTP is expected
to take less time since some messages computed
before the change of observations are reused.

For fairness, subroutines were shared when-
ever possible in the implementations of VE and
CTP. The elimination orderings required by VE
and needed in the construction of a clique tree
were generated using the same heuristic, namely
minimum deficiency search (Bertelé and Brioschi
1972). All experiments were carried out on a SUN
SPARC1000 machine.

Statistics for Network 1 are shown in Figure 1.
In the case of fixed observations, VE took less time
than CTP in all the situations expect for situa-
tions (10, 20) and (20, 20). In particular, VE was
significantly more efficient than CTP in the situa-
tions where there are 5 query nodes or 5 observa-
tions. In situation (5, 5), VE was about 8 times
faster than CTP. In situation (10, 20), VE was
slightly less efficient than CTP and in situation
(20, 20), CTP was 1.6 times faster than VE.

In the case of changing observations, VE was
more efficient than CTP in situations (5, 5), (5,
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Fig. 2. Variances of computation times across sets of ob-
servations for situation (10, 5).

10), (5, 20), (10, 5), and (10, 10). In situation
(5, 5), VE was about 5 times faster than CTP. In
situation (20, 5), VE and CTP took roughly the
same time. CTP was about 1.4 times faster than
VE in situations (10, 20) and (20, 10), and about
2 times faster in situation (20, 20).

Data shown in Figure 1 are computation times
averaged across a large number of sets of obser-
vations. To give the reader a feeling about the
variances, Figure 2 depicts the computation times
for situation (10, 5) as a function of sets of ob-
servation. We see that the variances for CTP are
larger in the case of changing observations than in
the case of fixed observation. This is due to the
fact that there are two more sources of random-
ness in the former case, namely deletion of a ran-
domly selected existing observation and addition
of a randomly generated new observation. They
both affect the amount of computations that can

Fixed Observations

2] -
©
c
o
(%]
[0} -
0
£
[}
£ b
o]
o
o
0 1 1 1 1
5 10 15 20 25 30
Number of query nodes
Changing Observations
0.25 T T T T
2] -
©
c
o
(%]
[} -
0
£
[}
£ b
=]
o
o
0 1 1 1 1
5 10 15 20 25 30

Number of query nodes

Fig. 3. Statistics for Network 2.

be shared before and after the change of observa-
tions.

5.4. Results for Networks 2 and 8

Statistics for Network 2 are shown in Figure 3. In
both the case of fixed observations and the case
of changing observations, VE took less time than
CTP in all the situations expect for situation (20,
20). In particular, VE was significantly more effi-
cient than CTP in the situations where there are 5
query nodes or 5 observations. In situation (5, 5),
VE was about 10 times faster than CTP. In situ-
ation (20, 20), VE was slightly less efficient than
CTP.

Statistics for Network 3 are shown in Figure 4.
In both the case of fixed observations and the case
of changing observations, VE took less time than
CTP in all situations. The differences are signif-
icant in situations where there are 5 or 10 query
nodes. In situation (5, 5), VE was about 50 times
faster than CTP in the case of fixed observations
and about 40 times faster in the case of changing
observations.
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Fig. 5. Performance of VE in Network 4.

Network 2 is more complex than Network 1 be-
cause it has more nodes and the nodes have more
parents. Network 3 is more complex than Network
2 because nodes can take more possible values.
The differences between the performances of VE
and CTP are larger in Network 2 than in Network
1 and are even larger in Network 3. Those sug-
gest that VE compares more and more favorably
to CTP as network complexity increases.

5.5.  Results for Network 4

Network 4 has so far been ignored in the com-
parisons. The reason is that we were unable to col-
lect any data for CTP in the network. The com-
puter ran out of memory (200 megabytes) when
initializing the clique tree for the network.

CTP requires much memory than VE for two
reasons. First, it does not permits pruning of
irrelevant nodes. Second, it stores intermediate
computational results to facilitate computation
sharing®. The big appetite for memory of CTP
limits its usefulness in complex networks such as
Network 4.

To demonstrate the effectiveness of VE in Net-
work 4, we randomly generated 500 queries with
20 or less observations. The times VE took to an-
swer the queries are shown in Figure 5. We see
that VE was able to answer each of the queries in
less than 1 second CPU time. The average time
it took is 0.04 seconds CPU time.

5.6.  Other interesting facts

A couple of other interesting facts emerge from
the results presented above. First, it is always
the case that the curve “ve20” lies above “vel(”
and “velQ” lies above “ve5”. On the other hand,
the curve “ctp20” always lies below “ctpl0” and
“ctpl0” always lies below “ctp5”, except in the
left plot of Figure 1. (This exception is due to
randomness.) Those observations suggest that the
amount of time VE took increases with the num-
ber of observations while the amount of time CTP
took decreases with it. This is expected for the fol-
lowing reasons. As we have learned in Section 3,
to compute P(z|Y'=Y;), VE needs to work with
a subnetwork consisting of nodes in the ancestral
set an({z}UY) that are not m-separated from z
by Y. The size of the ancestral set increases with
the number of observations and hence so does the
amount of time VE takes. In CTP, on the other
hand, more observations means more instantiated
variables in the message factors, which in turn im-
plies CTP takes less time.

Second, while both the amounts of time VE
and CTP took increase with the number of query
nodes, the former increases faster than the latter.
This is due to computation sharing. In VE, no



Properties of two exact algorithms for Bayesian networks 183

computations are shared among different queries.
The expected time for answering the next ran-
domly generated query remains the same regard-
less of the number of queries processed previously.
In CTP, on the other hand, some computations
carried out when answering earlier queries are
shared when answering later query nodes. Hence,
the expected time for answering the next ran-
domly generated query decreases with the number
of previous queries.

To summarize, the average performance of CTP
increases with the number of observations and the
number of query nodes given a set of observations,
while the average performance of VE decreases
with them.

6. Conclusions

We study computational properties of two ex-
act inference algorithms for BNs, namely VE and
CTP. VE allows pruning of nodes irrelevant to a
query while CTP facilitates sharing of computa-
tions among different queries. These two com-
putational features are conflicting to each other;
pruning of irrelevant nodes implies that one needs
to work with different subnetworks of a BN when
answering different queries, which precludes com-
putation sharing.

Experiments have carried out to empirically
compare VE and CTP. We have a number of find-
ings. First, VE is more efficient than CTP when
the number of observations and the number of
query nodes given a set of observations are not
large. Second, VE compares more and more fa-
vorably to CTP as network complexity increases.
Third, there are networks where VE can answer
queries in real time while CTP cannot make any
inference at all due to its large appetite for mem-
ory. Finally, the average performance of CTP in-
creases with the number of observations and the
number of query nodes given a set of observa-
tions, while the average performance of VE de-
crease with them. Those findings can help practi-
tioners to make the right choice between VE and
CTP for their applications.
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Notes

1. Also known as join tree propagation and junction tree
propagation.

2. Also known as belief networks, probabilistic inference
diagrams, and causal probabilistic networks.

3. Also known causal independence.

4. In influence diagrams, one wants to compute an op-
timal decision rule for each decision node. A decision
rule for a decision node is a mapping from all its rel-
evant informational predecessors to itself. The size of
the decision rule is exponential in the number of rel-
evant informational predecessors. Consequently, there
can only be a few relevant informational predecessors
because otherwise representing the decision rule itself
would be difficulty, to say nothing of computing it.

5. This property guarantees that when computing the
message ZC,\C Hle fi, the nodes in C’\C appear
only in the f;’s. They do not appear in any other fac-
tors in the clique tree.

6. The claim can be proved by induction. First, the claim
is certainly true when C is a leaf clique; the contents
of both messages are EC\C, H;;l fi, where the f;’s
are the factors associated with C. As the induction
hypothesis, assume all the messages sent to C' from all
its neighbors other than C’ have the same contents both
when processing ;1 and z2. Then the contents of the
two messages from C to C’ are both Zo\o' H?:I fi,
where the f;’s are the factors associated with C or sent
to C from all its neighbors other than C’.
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In the networks, conditional probabilities for some
of the nodes are represented as several pieces because
of independence of causal independence. Indepen-
dence of causal independence was ignored in our ex-
periments; The conditional probabilities were first con-
structed from the pieces.

In the case of fixed observations, this demand for mem-
ory space can be reduced; After sending messages to
all its neighbors, a clique can combine all its incoming
messages and its associated factors into one factor and
then delete those messages and factors. It is justified to
do so because, after a clique has sent out messages to
all its neighbors, we need to deal with the clique only
when we want to compute the posterior probability of a
node in the clique, which can be obtained from the com-
bined factor. Jensen et al (1990) completely eliminate
this memory demand for the case of changing observa-
tions. However, their method can only handle addition
of new observations. All messages have to be recom-
puted if an existing observation is deleted. Even with
the aforementioned optimizations, CTP still faces mem-
ory problems when dealing complex networks. In our
experiments, the memory consumption exceeded 200
megabytes when initializing the clique tree for Network
4, before propagation could take place.
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