
The Role of Operation Granularity in

Search-Based Learning of Latent Tree Models

Tao Chen1, Nevin L. Zhang2, and Yi Wang3

1 Shenzhen Institute of Advanced Technology
Chinese Academy of Sciences

Shenzhen, China
{tao.chen}@siat.ac.cn

2 Department of Computer Science & Engineering
The Hong Kong University of Science & Technology

Clear Water Bay, Kowloon, Hong Kong
lzhang@cse.ust.hk

3 Department of Computer Science
National University of Singapore
Singapore 117417, Singapore
wangy@comp.nus.edu.sg

Abstract. Latent tree (LT) models are a special class of Bayesian net-
works that can be used for cluster analysis, latent structure discovery
and density estimation. A number of search-based algorithms for learn-
ing LT models have been developed. In particular, the HSHC algorithm
by [1] and the EAST algorithm by [2] are able to deal with data sets with
dozens to around 100 variables. Both HSHC and EAST aim at finding
the LT model with the highest BIC score. However, they use anoth-
er criterion called the cost-effectiveness principle when selecting among
some of the candidate models during search. In this paper, we investigate
whether and why this is necessary.

1 INTRODUCTION

Latent tree (LT) models are tree-structured Bayesian networks where internal
nodes represent latent variables while leaf nodes represent manifest variables. In
this paper we assume that all variables are categorical. LT models were previ-
ously known as hierarchical latent class models [3]. They are interesting for three
reasons:

1. They relax the local independence assumption of latent class (LC) models [4]
and hence provide a more general framework for cluster analysis of categor-
ical data. LT analysis can find meaningful classes along multiple dimensions
while the LC analysis always clusters data in one single way.

2. LT analysis can reveal latent structures behind data. Using LT models, re-
searchers have found interesting latent structures from stocks data [5], mar-
keting data [6] and medical data [7].

3. LT models are computationally simple to handle and at the same time can
model complex interactions among manifest variables [8]. Those two proper-
ties make LT models a good tool for estimating joint distributions of discrete
variables [9].

This paper is concerned with the induction of LTmodels from data. A number
of search-based algorithms have been developed. Some of them can deal with data
sets with only a few variables [3]. The first algorithm that can handle dozens of
manifest variables was published in 2004 and is called HSHC (Heuristic Single
Hill Climbing) [1]. Recently [2] have published another algorithm called EAST
(Expansion, Adjustment, Simplification until Termination) which, in comparison
with HSHC, is conceptually simpler, yet is more efficient and finds better models.

Both HSHC and EAST aim at finding the LT model with the highest BIC
score. However, they use another criterion called the cost-effectiveness principle
when selecting among some of the candidate models during search. This is to
deal with the issue of operation granularity, which refers to the phenomenon
that, in search-based learning of LT models, some operations might increase the
complexity of the current model much more than other operations.

However, it is not well understood whether and why it is necessary to use
the cost-effectiveness principle. In this paper we seek to clarify the issue through
empirical investigation.

2 SEARCH-BASED LEARNING OF LT MODELS

Figure 1 (a) shows the structure of an example LT model. Let D be a data set
on some manifest variables. To learn an LT model from D means to find a model
m that maximizes the BIC score:

BIC(m|D) = max
θ

logP (D|m, θ)−
d(m)

2
logN,

where θ denotes the set of model parameters, d(m) the number of independent
parameters, and N the sample size. 4 It has been shown that edge orientations
cannot be determined from data [3]. So we can learn only unrooted latent tree
models, which are latent tree models with all directions on the edges dropped.
An example is given in Figure 1 (b). From now on when we speak of LT models
we always mean unrooted LT models unless it is explicitly stated otherwise.

2.1 SEARCH OPERATORS

The basic building blocks of a search-based algorithm are the search operators.
We adopt with minor modification five operators from [1]. They are: state intro-
duction (SI), node introduction (NI), node relocation (NR), state deletion (SD),

4 Geiger et al. [10] argue that the BICe score should be used instead of the BIC score
when latent variables are present. However, the BICe score is currently impractical
to use due to the lack of efficient methods for computing effective dimensions of
models.

Y1

X2X1

X4

Y2

X3 X6X5

Y3

X7

(a) m (rooted)

Y1

X2

X1

X4

Y2

X3

X6

X5

Y3

X7

(b) m (unrooted)

X5X1

X4

X3X2 X7X6

Y2

Y1

Y3 Y4

(c) m′

Fig. 1. Rooted latent tree model, unrooted latent tree model and latent tree model
obtained by the node introduction of Y4.

Y1

X7 X6

X2

X1

X4

X5

X3

Y2

(a) m1

Y1

X7 X6

X2

X1

X4

X5

X3

Y2

Y3

(b) m2

Y1

X7 X6

X3

X2

X4

X5

Y2

Y3

X1

(c) m3

Fig. 2. m2 is a latent tree model obtained by applying NI to m1. m3 is a latent tree
model by applying NR to m2

and node deletion (ND). Given an LT model and a latent variable in the model,
the SI operator creates a new model by adding a new state to the domain of
the variable. The SD operator does the opposite. The NI operator involves one
latent node Y and two of its neighbors. It creates a new model by introducing
a new latent node Y ′ to mediate the latent variable and the two neighbors. The
cardinality of Y ′ is set to be that of Y . In m1 of Figure 2 (a), introducing a
new node Y3 to mediate Y1 and its neighbors X1 and X2 results in m2. For the
sake of computational efficiency, we do not consider introducing a new node to
mediate Y and more than two of its neighbors. The ND operator is the opposite
of NI. The NR operator involves two latent nodes Y1 and Y2 and a neighbor Z
of Y1. It creates a new model by relocating Z from Y1 to Y2, i.e. removing the
link between Z and Y1 and adding a link between Z and Y2. In m2 of Figure 2
(b), relocating X3 from Y1 to Y3 results in m3.

The search operators can be divided into three groups. The NI and SI op-
erators make the current model more complex and hence are expansion opera-
tors. The ND and SD operators make the current model simpler and hence are
simplification operators. The NR operator rearranges connections between the
variables and hence is an adjustment operator.

2.2 A SEARCH PROCEDURE

Figure 3 presents a search procedure for learning LT model [2]. Called EAST0,
the procedure adopts the grow-restructure-thin strategy that has emerged from

EAST0(m,D)
Repeat until termination:

m1 ← expand(m,D).
m2 ← adjust(m1,D).
m3 ← simplify(m2,D).
If BIC(m3|D) ≤ BIC(m|D), return m;
Else m← m3.

expand(m,D)
Repeat until termination:

m1 ← argmaxm′∈NI(m)∪SI(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), return m.
If m1 ∈ NI(m), m← enhanceNI(m1,m,D);
Else m← m1

adjust(m,D)
Repeat until termination:

m1 ← argmax
m′∈NR(m) BIC(m′|D).

If BIC(m1|D) ≤ BIC(m|D), return m;
Else m← m1.

simplify(m,D)
Repeat until termination:

m1 ← argmaxm′∈ND(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), return m;
Else m← m1.

Repeat until termination:
m1 ← argmaxm′∈SD(m) BIC(m′|D).
If BIC(m1|D) ≤ BIC(m|D), break;
Else m← m1.

Fig. 3. EAST0 is the basic version of the EAST search procedure. It does not handle
operation granularity.

the literature on learning Bayesian networks without latent variables (e.g., [11]).
The search procedure of EAST0 has a number of rounds. Every round is divided
into three stages: expansion, adjustment and simplification. At the expansion
stage, EAST0 searches with the expansion operators until the BIC score ceases
to increase. To understand the motivation, recall that the BIC score consists of
two terms. The first term is the maximized likelihood, which measures model
fit. The second term penalizes model complexity. Our objective is to optimize
the BIC score. Suppose we start with a model that does not fit the data at all.
Then improving model fit is the first priority at the initial phase of the search.
EAST0 does so by searching with the expansion operators.

Note the a subroutine named enhanceNI is called after each application of
the NI operator. This is to compensate for the constraint imposed on the NI
operator. Consider the model m1 in Figure 2. We can introduce a new latent
node Y3 to mediate Y1 and two of its neighbors, say X1 and X2, and thereby
obtain the model m2. However, we are not allowed to introduce a latent node to
mediate Y1 and more than two of its neighbors, say X1, X2 and X3, and thereby
obtain m3. To remedy the situation we consider, after each application of the
NI operator, enhancements to the operation. As an example, suppose we have
just applied NI to m1 and have obtained m2. What we do next is to consider
relocating the other neighbors of Y1 in m1, i.e. X3, X4, X5 and Y2, to the new
latent variable Y3. If it turns out to be beneficial to relocating X3 but not the
other three nodes, then we obtain the model m3. We use enhanceNI(m2,m1,D)
to denote this subroutine.

After model expansion ceases to increase the BIC score, EAST0 enters the
adjustment stage. At this stage, EAST0 repeatedly relocates nodes around in the
model until it is no longer beneficial to do so. There are no definite conclusion on
which of the likelihood term and the penalty term in the BIC score is improved.
The intuition in the phase is that the search may make some mistakes in the
expansion phase. For example, a variable is connected to a wrong parent. We
correct such mistakes by relocating nodes. The BIC score is improved slightly in

the resulting model. However, we come back to the right path to proceed. The
adjustment stage is followed by the simplification stage. At this stage, EAST0
first repeatedly applies ND to the current model until the BIC score ceases to
increase and then it does the same with SD. By considering ND and SD, we
focus on the improvement of the penalty term in the BIC score. If model score
is improved in any of the three stages, EAST0 repeats the circle with the best
model obtained so far as the initial model.

2.3 COMPARISON WITH HSHC

EAST0 places no restriction on how far away a node can be relocated. Conse-
quently it might need to evaluate a large number of candidate models, especially
towards the end of the search process. Although expensive, unrestricted node
relocation is necessary in EAST0 because model adjustment takes place after
multiple expansion steps. Two nodes that should be neighbors might be located
far away from each other after a series of NI operations and their enhancements.
On the other hand, HSHC considers node relocation after each model expansion
operation. It also considers more node relocations after a node has just been
relocated. As such, it cannot afford to use unrestricted node relocation. So it
restricts that a node can be relocated only one step away. Determining the pros
and cons of the two options is another basic issue concerning search-based learn-
ing of LT models. In [12] we have shown that HSHC is more likely to end up
at local maxima than EAST0. Hence we use EAST0 as the platform of study in
this paper.

2.4 EFFICIENT MODEL EVALUATION

Each of the argmax operators in EAST0 examines a list of candidate models
and picks one of them as output. The BIC score is used as the objective function
for the selection. To calculate the BIC score of a candidate model, one needs to
maximize its likelihood function, which requires the expectation-maximization
(EM) algorithm due to the presence of latent variables. EM is known to be
computationally expensive. Hence it is prohibitive to compute the BIC scores of
a large number of candidate models. Hence it is necessary to replace the BIC
score with other objective functions that are easy to compute. In this section
we present one such objective function. It is obtained from the BIC score by
replacing its first term with what we call the maximum restricted loglikelihood.

Conceptually EAST0 works with unrooted LT models. In the implemen-
tation, however, we represent unrooted models as rooted models. Rooted LT
models are BNs and their parameters are clearly defined. This makes it easy to
see how the parameter composition of a candidate model m′ is related to that of
the current model m. Consider the models m and m′ in Figure 1 (a) and (c). The
latter is obtained from m by introducing a new latent variable Y4 to mediate Y3

and two of its neighbors X6 and X7. The two models share the parameters for
describing the distributions P (Y1), P (Y2|Y1), P (X1|Y2), P (X2|Y2), P (X3|Y2),

P (X4|Y1), P (Y3|Y1) and P (X5|Y3). On the other hand, the parameters for de-
scribing P (Y4|Y3), P (X6|Y4) and P (X7|Y4) are peculiar to m′ while those for
describing P (X6|Y3) and P (X7|Y3) are peculiar to m.

We write the parameters of a candidate model m′ as a pair (δ1, δ2), where
δ1 is the collection of parameters that m′ shares with m. Similarly, we write the
parameters of the current model m as a pair (θ1, θ2), where θ1 is the collection of
parameters that m shares with m′. Suppose we have computed the MLE (θ∗1 , θ

∗
2)

of the parameters of m. For a given value of δ2, (m
′, θ∗1 , δ2) is a fully specified

BN. In this BN, we can compute P (D|m′, θ∗1 , δ2) =
∏

d∈D P (d|m′, θ∗1 , δ2). As
a function of δ2, this will be referred to as the restricted likelihood function of
δ2. The maximum restricted loglikelihood, or simply the maximum RL, of the
candidate model m′ is defined to be

max
δ2

logP (D|m′, θ∗1 , δ2).

The restricted likelihood (RL) method for model evaluation replaces the like-
lihood term in the BIC score of m′ with its maximum RL and uses the resulting
function to evaluate m′.

There is another method for efficient model evaluation. It first completes
the data set D using the current model (m, θ∗), where θ∗ is the MLE of the
parameters of m. Then it uses the completed data set to evaluate candidate
models. Hence we call it the data completion (DC) method. Determining the
pros and cons of the RL and DC methods for efficient model evaluation is also
a basic issue concerning search-based learning of LT models. In [12] we have
shown that the RL method is more accurate than the DC method and it results
in better models. Hence we use the RL method in this paper.

3 OPERATION GRANULARITY

Operation granularity refers to the phenomenon that some operations might in-
crease the complexity of the current model much more than other operations.
As an example, consider the situation where there are 100 binary manifest vari-
ables. Suppose the search starts with the LC model with one binary latent node
Y . Applying the SI operator to the model would introduce 101 additional mod-
el parameters, while applying the NI operator to the model would increase the
number of model parameters by only 2. The latter operation is clearly of much
finer-grain than the former.

To deal with operation granularity, Zhang and Kočka [1] suggest that we
choose between candidate models generated by NI and SI 5 using the so-called
cost-effectiveness principle. Let m be the current model and m′ be a candidate
model. Define the improvement ratio of m′ over m given data D to be

IR(m′,m|D) =
BIC(m′|D)−BIC(m|D)

d(m′)− d(m)
. (1)

5 Strictly speaking, operation granularity is also an issue for other search operators.
However the issue is much less serious there and hence no special treatment is intro-
duced for simplicity.

3

2

3

a b c

3

d e f

2

3

g h i

3

j k l

2

3

m n o

3

p q r

Fig. 4. One of the test models. Manifest nodes are labeled with variable names. All
manifest variables have 3 states. Latent nodes are labeled with cardinalities.

It is the increase in model score per unit increase in model complexity. The cost-
effectiveness principle states that among all candidate models generated by SI
and NI, choose the one that has the highest improvement ratio. We use EAST
to denote the algorithm that is the same as EAST0 except that it uses the
cost-effectiveness principle for model selection in the expansion subroutine.

4 EMPIRICAL RESULTS

We have conducted experiments on synthetic data to compare EAST0 and
EAST. The data were generated using three manually constructed LT mod-
els that contain 7, 12 and 18 manifest variables respectively. The structure of
the 7-variable model is shown in Figure 1 (a) and that of the 18-variable model is
shown in Figure 4. The structure of the 12-variable model is similar to that of the
18-variable model. The parameters were randomly generated. Three data sets
of sizes 1k, 5k and 10k were sampled from each of the three models. The three
data sets for the 7-variable model are denoted by D7(1k), D7(5k) and D7(10k).
Similar notations are used for other data sets.

We analyzed the data sets using EAST0 and EAST. 6 Both algorithms s-
tarted with the LC model with a binary latent node. The quality of a learned
model is measured by the empirical KL divergence of the model from the cor-
responding generative model, an approximation to the true KL divergence that
was computed based on 5k testing data. We report results that are averages over
10 runs, along with the standard deviations. The results are given in Table 1.

For convenience we will refer to models obtained by the EAST and EAST0 al-
gorithms as EAST and EAST0 models respectively. Consider the models learned
for the data sets D18(10k), D18(5k) and D12(10k). The divergences of the EAST
models from the generative models are 0.0047, 0.0148 and 0.0032 respectively,
while those of the EAST0 models are 0.0207, 0.0326 and 0.0079. The EAST
models are significantly closer to the generative models than the EAST0 model-
s. So the EAST algorithm reconstructed the generative distributions better than
the EAST0 algorithm.

6 Both EAST0 and EAST have two parameters µ and ν that control a subroutine
for model evaluation. We have run EAST under several settings to determine the
impact of the parameters. The results reported in this paper were obtained under
the setting µ = 8 and ν = 40, the highest setting that we tried.

Table 1. Results of EAST0 and EAST on synthetic data. Quality of a learned model is
measured by its empirical KL divergence from the generative model. The numbers are
averages over 10 runs, along with the standard deviations in parenthesis. Highlighted
in boldface are the cases where the models found by EAST0 are not as good as those
found by EAST.

D7(1k) D7(5k) D7(10k)
KL time (mins) steps KL time (mins) steps KL time (mins) steps

EAST0 .0287(4.3e-6) .7(8.5e-3) 0(0) .0101(4.8e-5) 6.3(0.1) 2.0(0.0) .0058(8.6e-5) 8.4(0.6) 2.0(0.0)
EAST .0287(4.2e-6) .7(1.3e-2) 0(0) .0101(4.5e-5) 7.1(0.1) 2.0(0.0) .0057(1.0e-4) 8.4(0.3) 2.0(0.0)

D12(1k) D12(5k) D12(10k)
KL time (mins) steps KL time (hrs) steps KL time (hrs) steps

EAST0 .1017(1.8e-2) 17.1(1.8) 12.1(0.7) .0311(1.3e-2) 1.0(0.1) 14.1(2.1) .0079(4.7e-3) 1.5(0.1) 13(1.1)
EAST .0999(1.2e-2) 17.2(2.2) 12.0(1.0) .0310(4.9e-5) 1.4(0.0) 19.6(0.5) .0032(2.4e-4) 2.6(0.2) 20.8(1.1)

D18(1k) D18(5k) D18(10k)
KL time (hrs) steps KL time (hrs) steps KL time (hrs) steps

EAST0 .1865(6.3e-6) .6(.01) 20(0) .0326(1.1e-2) 4.4(0.9) 22.4(4.6) .0207(1.2e-2) 10.4(1.7) 24.4(4.0)
EAST .1865(7.5e-6) .7(.02) 20(0) .0148(4.5e-3) 6.0(0.6) 33.8(1.7) .0047(7.0e-4) 18.4(3.9) 37.2(0.8)

To give the reader a concrete feeling about the models, we present in Figure
6 the structures of an EAST model and an EAST0 model for the data set
D18(10k). We see that the structure of the EAST model is almost identical to
that of the corresponding generative model, while the structure of the EAST0
model is quite different. So the EAST algorithm reconstructed the structure of
the generative model much better than the EAST0 algorithm. Moreover the BIC
score of the EAST model is -115108, which is significantly higher than -115500,
the BIC score of the EAST0 model.

In summary, the EAST algorithm learned better models forD18(10k),D18(5k)
and D12(10k) than the EAST0 algorithm. On the other six data sets, the two
algorithms found models of similar or the same quality. The only difference be-
tween EAST and EAST0 is that EAST deals with operation granularity using the
cost-effectiveness principle, while EAST0 does not. So the results imply that it
is indeed necessary to deal with operation granularity and the cost-effectiveness
principle is an effective method for doing so. We investigate the reasons in the
next section.

5 PERFORMANCE DIFFERENCE EXPLAINED

We explain the differences in performance between EAST0 and EAST in four
steps.

5.1 EARLY USE OF SI OPERATIONS

Let us examine one run of EAST0 and one run of EAST on the D18(10k) data
set. Figure 5 (a) shows the change in model complexity over the search steps.

0 5 10 15 20 25 30 35
60

80

100

120

140

160

180

200

Search Step Index

M
od

el
 C

om
pl

ex
ity

EAST
EAST0

(a)

0 5 10 15 20 25 30 35
−1.3

−1.25

−1.2

−1.15
x 10

5

Search Step Index

B
IC

 S
co

re

EAST
EAST0

(b)

Fig. 5. Search processes on D18(10k): Model complexity and score as functions of search
steps.

We see that the curve for EAST0 increases quickly early in the search process.
There are two big jumps, one at Step 1 and another at Step 7. A trace of the
search path reveals that those are the steps where EAST0 applied SI operations.
In contrast the curve for EAST increases slowly and has smaller jumps. The
first jump occurred at Step 23. It was the first time where EAST applied the SI
operator.

So EAST0 applied SI operations much earlier than EAST. This is true not
only for the runs examined above, but also true for all runs on D18(10k) and for
all runs on D12(5k), D12(10k) and D18(5k). We see from Table 1 that EAST0
took fewer steps than EAST to terminate on the four data sets. This is exactly
because EAST0 took large steps by applying SI operation early, while EAST did
not.

In general, EAST0 tends to apply SI operations early while EAST tends
to apply them late. Here are the reasons. First, as discussed in Section 3, SI
operations are often of larger-grain than NI operations at the early stage of
search. Second, although a large-grain operation increases the penalty term of
the BIC score more than a small-grain operation, it often increases the likelihood
term even more early in the search process because model fit is usually poor at
that time. So there are often SI operations with higher scores than NI operations
at the early stage of search. Third, EAST0 selects model based on the BIC score.
It would choose SI operations if they have higher scores than NI operations.
Hence it often chooses SI operations over NI operations early in the search
process. Fourth, EAST is not only concerned with the increase in model score,
but also its “cost”, i.e., the increase in model complexity. It tries to achieve
maximum increase in model score with minimum increase in model complexity.
As such, it is less likely than EAST0 to choose large-grain operations and hence
tends to choose SI operations later than EAST0.

5.2 FAT LATENT VARIABLES

Three models from the aforementioned search path of EAST0 are shown at
the top of Figure 6. We see that a latent variable with 4 states was created
at Step 7, after the second SI operation. Since the variable has more states
than latent variables in the generative model, we call it a fat latent variable.
7 EAST0 introduced three other fat latent variables later. One of them was
subsequently deleted and the cardinality of another was reduced by one. Two fat
latent variables remain in the final model. On the other hand, EAST introduced
no fat latent variables at all.

We say that a latent node is well connected if it is connected to, in a relative
sense, a large number of manifest variables. To account for the interactions
among those manifest variables, or even part of the interactions, the latent node
usually needs to have a large number of states. If its cardinality is currently low,
an increase in its cardinality would greatly improve model fit and hence greatly
increase model score. Hence SI operations, if applied at all, tend to be applied
on well connected latent nodes. Since search starts from LC model, there is only
a few (maybe only one) well connected latent nodes at the early stage of search.
EAST0 tends to apply SI operations at the early stage of search. Hence EAST0
tends to repeatedly increase the cardinality of well connected latent nodes and
consequently tends to create fat latent variables. On the other hand, EAST
usually applies SI operation late in the search process. At that time, a latent
node is usually connected to a small number of manifest variables. Hence there
is less chance to create fat latent variables.

5.3 LOCAL MAXIMA

Fat latent nodes do not necessarily lead to local maxima, but they do sometimes.
Use mEAST0 to denote the final model obtained by EAST0. Its BIC score is
-115500. In contrast the BIC score of the model found by EAST is -115108.
So mEAST0 in Figure 6 is a local maxima. In the following we argue that one
reason for EAST0 to be trapped at this local maxima is because Z is a fat latent
variable.

A comparison of mEAST0 with the generative model suggests that it might
be beneficial to introduce a new latent node to mediate Z and its neighbors j

and l. However, EAST0 did not do this. The reasons, we argue, are as follows.
In the generative model the interactions among the manifest variables m, n and
o are accounted for by a latent variable with 3 states. However, the variable
Z in mEAST0 has 4 states. This is more than enough to account for the in-
teractions among m, n and o. In addition, it also accounts for, to some extent,
interaction between j and l and correlations between the two groups of variables.
Consequently there is no strong reason to introduce a new latent node.

7 Intuitively, a fat latent variable is one whose cardinality is larger than necessary. For
the case without a generative model, it can be defined with respect to the model
that has the highest BIC score.

3

a b c d e f g h i j k l m n o p q r

EAST0 Step 1: SI, BIC=-125185

4

3

a b c d e f

g h i j k l m n o p q r

EAST0 Step 7: SI, BIC=-118402

4

3

3

a b c

d e f

g h i k Z(4)

j l m n o 3

p q r

EAST0 Final: BIC=-115500

4

3

3

a b c

d e f

g h i k 3

l Z(3)

j m n o 3

p q r

EAST0 Continued

Step 1: NI, BIC =-115457

4

3

3

a b c

d e f

g h i k 3

j l Z(3)

m n o 3

p q r

EAST0 Continued

Step 2: NI Enhancement, BIC= -115397

2

2

3

a b c

2

3

d f

e

2

3

g h i

3

j k l

2

2

m n o

3

p q r

EAST Final: BIC= -115108

Fig. 6. Top Row: Three models from a search path of EAST0 on the data set D18(10k).
Bottom Row (Left): Continued search by EAST0 from the model that is obtained from
the final EAST0 model by decreasing the cardinality of Z by 1. The search went on for
10 steps. Only two steps are shown here. Bottom Row (Right): Final model obtained
by EAST.

To verify our argument, we decreased the cardinality of Z to 3 and searched
further using EAST0 starting from the resulting model. The trace is shown at
the bottom row of Figure 6. We see that, as expected, a new latent node was
indeed introduced between Z and its neighbors j and l. The local maximum was
escaped. Furthermore the new node is placed close to manifest variables g, h, i
and k. This is ideal because in the generative model j and l are close to those
variables.

Why didn’t EAST0 decrease the cardinality Z as we did manually then?
This is because Z is directly connected not only to m, n and o, but also j and
l. To account for the interactions among m, n and o, three states are sufficient.
However, to account for the correlations among all those 5 variables, three states
are not sufficient. As a matter of fact, if the cardinality of Z is decreased from 4
to 3, the BIC score also decreases from -115,500 to -115,537. So this is a deadlock
situation. To separate j and l from Z by introducing a new node, we need to
first reduce the cardinality of Z; and to reduce the cardinality of Z, we need
to first reduce the number of manifest variables connected to it. This deadlock
would not have occurred had fat latent variables not been introduced.

5.4 IMPACT OF PROBLEM SIZE AND SAMPLE SIZE

Putting together the arguments presented above suggests that EAST0 is more
easily than EAST to get trapped at local maxima. This explains why the models

it found in our experiments are sometimes not as good as those found by EAST.
One thing remains unexplained: Why the differences occurred only on the data
sets D12(10k), D18(5k) and D18(10k) that are more complex than the other data
sets in terms of sample size and the number of manifest variables.

To understand the phenomenon, let oSI be an SI operation and oNI be an
NI operation. Suppose the oSI is of larger grain than oNI . Then it increases the
penalty term of the BIC score more than the latter. Further suppose that oSI

increases the likelihood term more than oNI . Then which operation EAST0 ends
up choosing depends on how the two terms balance out. It is well known that
the likelihood term increases linearly with sample size, while the penalty term
increase logarithmically. Therefore as the sample size increases, EAST0 would
be more and more likely to choose oSI over oNI . This implies that EAST0 would
be more and more likely to apply SI operations early in the search process and
hence is more and more easily to get trapped at local maxima. This explains
why, in our experiments, EAST0 performed worse and worse as we move from
D18(1k) to D18(5k) and then to D18(10k).

In our experiment, EAST0 performed worse and worse as we move from
D7(10k) to D12(10k) and then to D18(10k). We explain the phenomenon as
follows. When the number of manifest variables increases, SI operations would
be of larger and larger grain relative to NI operations. Consequently, EAST0
would be more and more likely to apply SI operations early in the search process
and hence is more and more easily and get trapped at local maxima.

6 CONCLUSIONS

We have shown that operation granularity often results in local maxima if not
dealt with. This is because that, at the early stage of search, SI operations are
usually of larger grain than NI operations and often have higher BIC scores. If
one simply uses BIC for model selection, then one tends to apply SI operations
early, which often leads to fat latent variables, which in turn might result in local
maxima. When the cost-effectiveness principle is used for model selection, on the
other hand, SI operations are applied much latter. This reduces the chance of
creating fat latent variables and hence the chance of local maxima.

One might suggest that we deal with operation granularity by introducing
additional search operators. After reading Section 5.3 one might, for instance,
suggest a composite search operator that first reduces the cardinality of a latent
variable and then introduces a new latent node. This would complicate algorithm
design and would significantly increase the complexity of the search process. In
contrast the cost-effectiveness principle is a simple and yet effective way to deal
with the issue.

Acknowledgements Research on this work was supported by Hong Kong Re-
search Grants Council GRF Grant #622408, the National Basic Research Pro-
gram of China (aka the 973 Program) under project 2011CB505101 and the
Shenzhen New Industry Development Fund #CXB201005250021A.

References

1. Zhang, N., Kočka, T.: Efficient learning of hierarchical latent class models. In: Proc.
of the 16th IEEE International Conference on Tools with Artificial Intelligence.
(2004)

2. Chen, T., Zhang, N., Wang, Y.: Efficient model evaluation in the search-based
approach to latent structure discovery. In: Proc. of 4th European Workshop on
Probabilistic Graphical Model. (2008)

3. Zhang, N.: Hierarchical latent class models for cluster analysis. J. Mach. Learn.
Res. 5 (2004)

4. Lazarsfeld, P., Henry, N.: Latent structure analysis. Houghton Mifflin, Boston
(1968)

5. Elidan, G., Friedman, N.: Learning hidden variable networks: the information
bottleneck approach. J. Mach. Learn. Res. 6 (2005)

6. Zhang, N.: Discovery of latent structures: Experience with the coil challenge 2000
data set. ICCS (2007)

7. Zhang, N., Yuan, S., Chen, T., Wang, Y.: Latent tree models and diagnosis in
traditional chinese medicine. Artificial Intelligence in Medicine (42) (2008)

8. Pearl, J.: Probabilistic reasoning in intellegent systems. Morgan Kaufmann, San
Mateo (1988)

9. Wang, Y., Zhang, N.L., Chen, T.: Latent tree models and approximate inference in
bayesian networks. Journal of Artificial Intelligence Research 32(879-900) (2008)

10. Geiger, D., Heckerman, D., Meek, C.: Asymptotic model selection for directed
networks with hidden variables. In: Proc. of the 12th Conference on Uncertainties
in Artificial Intelligence. (1996)

11. Chickering, D.M.: Optimal structure identification with greedy search. J. Mach.
Learn. Res. 3 (2002)

12. Chen, T.: Search-based learning of latent tree models. PhD dissertation, The Hong
Kong University of Science and Technology, Department of Computer Science and
Engineering (2009)

