
A Novel LTM-based Method for Multi-partition Clustering

Tengfei Liu, Nevin L. Zhang, Kin Man Poon, Hua Liu
The Hong Kong University of Science and Technology

{liutf, lzhang, lkmpoon, aprillh}@cse.ust.hk

Yi Wang
National University of Singapore

wangy@comp.nus.edu.sg

Abstract

Early research work on clustering usually assumed that there was one true clustering of
data. However, complex data are typically multifaceted and can be meaningfully clustered
in many different ways. There is a growing interest in methods that produce multiple
partitions of data. One such method is based on latent tree models (LTM). But previous
methods for learning general LTM are computationally inefficient. In this paper, we
propose a fast algorithm for learning LTM. Empirical results on two real world datasets
are given to show that our method can produce rich and meaningful partitions.

1 Introduction

There are several clustering methods that pro-
duce multiple partitions. We refer to them as
multi-partition clustering (MPC) methods. M-
PC methods, according to the way that parti-
tions are found, can be divided into two cate-
gories: sequential MPC methods and simulta-
neous MPC methods.

Sequential MPC methods produce multiple
partitions sequentially. One such kind of
method is known as alternative clustering (Cui
et al., 2007; Gondek and Hofmann, 2007; Qi and
Davidson, 2009). It aims to discover a new clus-
tering that is different from a previously known
clustering. The key issue is how to ensure the
novelty of the new clustering. One can repeat-
edly apply such methods to produce a sequence
of clusterings.

Simultaneous MPC methods, on the other
hand, produce multiple partitions simultane-
ously. Both distance-based and model-based
methods have been proposed. The distance-
based methods (Jain et al., 2008; Niu et al.,
2010) require as inputs the number of parti-
tions and the number of clusters in each par-
tition. They try to optimize the quality of each

individual partition while keeping different par-
titions as dissimilar as possible. Model-based
methods fit data with a probabilistic model that
contains multiple latent variables. Each laten-
t variable represents a soft partition. Unlike
distance-based methods, model-based method-
s can automatically determine the number of
partitions and the number of clusters in each
partition based on statistical principles.

Among the model-based methods, Galimber-
ti and Soffritti (2007) and Guan et al. (2010)
assume that each latent variable, which gives
one view of data, is associated with a subset
of attributes. The subsets for different latent
variables are disjoint. A latent variable is in-
dependent of all the other latent variables and
all the attributes that are not associated with
it. On the other hand, Zhang (2004) and Poon
et al. (2010) use latent tree models (LTM). Dif-
ferent from aforementioned methods, the latent
variables in LTM are connected and form an in-
terpretable tree structure.

This paper is concerned with the use of LTM
for producing multiple partitions of categorical
data. Currently, there is a lack of efficient algo-
rithms for learning general LTM. In this paper
we propose a fast algorithm to learn LTM. Em-

pirical results are also given to show that the
new algorithm can produce rich and meaning-
ful clustering results.

2 Latent Tree Model

Technically an LTM is a Markov random field
over an undirected graph, where variables at
leaf nodes are observed and variables at internal
nodes are hidden. For technical convenience,
we often root an LTM at one of its latent n-
odes and regard it as a directed graphical model,
i.e., a Bayesian network. An example of LTM is
shown in Figure 1. In the example model, the
Y-variables are latent variables. The number in
parenthesis is called cardinality which indicates
the number of states of the latent variable. The
leaf nodes in this example are different word-
s which take binary values to indicate presence
or absence of the word.

Throughout the paper, we use the term ‘node’
interchangeably with ‘variable’, and term ‘leaf
node’ interchangeably with ‘attribute’. A set of
attributes that are connected to the same latent
variable is called a sibling cluster. Attributes in
the cluster are said to be siblings. For example,
in Figure 1, attributes austin, utexas , texas and
ut form one sibling cluster because they are all
connected to latent node Y1.

The numerical information of LTM includes a
marginal distribution P (Y1) for the root Y1 and
one conditional distribution for each edge. For
example, for the edge Y2 → object, we have dis-
tribution P (object | Y2). The product of these
distributions defines a joint distribution over all
the latent and observed variables.

To learn an LTM from a dataset D, one need-
s to determine: (1) the number of latent vari-
ables, (2) the cardinality of each latent variable,
(3) the connections among the latent and ob-
served variables, and (4) the probability param-
eters. We use m to denote the information for
the first three items and θ to denote the collec-
tion of parameter values. We aim at finding the
pair (m, θ∗) where θ∗ is the maximum likelihood
estimate of the parameters and m maximizes
the BIC score (Schwarz, 1978):

BIC(m | D) = logP (D | m, θ∗)−
d(m)

2
logN

where d(m) is the number of free parameters in
m and N is the sample size.

Several algorithms for learning LTM have
been proposed. The latest algorithm for learn-
ing general LTM is the one called EAST (Chen
et al., 2012, 2008). It is a search-based method
and is capable of producing good models for da-
ta sets with dozens of attributes. However, it is
not efficient enough for data sets with more than
100 attributes. There are two other algorithm-
s that are more efficient than EAST, but they
focus on special LTM. Harmeling and Williams
(2010) consider only binary trees, while Choi
et al. (2011) assume all the variables share the
same domain. Neither methods are intended for
cluster analysis.

3 The Bridged Islands Algorithm

We now set out to present a new algorithm for
learning general LTM that is more efficient than
previous algorithm EAST. The new algorithm
proceeds in four steps:

1. Partition the set of attributes into sibling
clusters;

2. For each sibling cluster introduce a laten-
t variable and determine the number of s-
tates of this variable;

3. Determine the connections among the la-
tent variables so that they form a tree;

4. Refine the model.

If we imagine the sibling clusters formed in Step
1, together with the latent variables added in
Step 2, as islands in an ocean, then the islands
are connected in Step 3. So we call the algorith-
m the bridged islands (BI) algorithm.

3.1 Determining Sibling Clusters

The sibling cluster determination is the first
step of the new algorithm. It is based on two
intuitions: First, in an LTM, attributes from
the same sibling cluster tend to be more close-
ly correlated than those from different sibling
clusters; Second, if two attributes are siblings in
the optimal LTM for one set of attributes, they
should also be siblings in the optimal LTM for
a subset of the attributes. We determine the

Figure 1: An example of latent tree model. The width of edges represent strength of probabilistic dependence.

first sibling cluster as follows. There is a work-
ing subset of attributes. Initially, it contains the
pair of attributes with the highest mutual in-
formation (MI). Here MI is computed from the
empirical distribution of the data. The method
grows the working subset by adding other at-
tributes into it one by one. At each step, we
choose the attribute that has the highest MI
with the current subset (The first intuition is
used here). The MI between a variable X and
a set S is estimated as follows:

I(X;S) = max
Z∈S

I(X;Z)

= max
Z∈S

∑

X,Z

P (X,Z) log
P (X,Z)

P (X)P (Z)

We determine when to stop expanding the work-
ing subset by using a Bayesian statistical test
called unidimensionality test or simply the UD-
test. When UD-test fails, the expansion stops.

We first project original data set onto the at-
tributes in the working subset and get a data
set Dp. The UD-test is done by comparing t-
wo models learned from Dp: an unidimensional
model m1 and a multidimensional model m2.
Model m1 and m2 are the best models, in terms
of the BIC score, that contain 1 and 2 latent
variables respectively. We say UD-test fails if
the BIC score of m2 exceeds that of m1 by a
threshold δ and passes otherwise. i.e.,

BIC(m2 | Dp)−BIC(m1 | Dp) ≥ δ

The left hand side of the inequality is an approx-
imation to the logarithm of Bayes factor (Kass
and Raftery, 1995) for the two models. When it
exceeds the threshold, we conclude that correla-
tions among the attributes cannot be appropri-
ately modeled using one single latent variable.
And these attributes in the working subset can-
not all be in one sibling cluster in the final model
according to the second intuition.

When UD-test fails, model m2, which has two
latent variables, gives us two potential sibling
clusters. If one of them contains both the two
initial attributes, we pick it as our first sibling
cluster. Otherwise, we pick the one with more
attributes and break ties arbitrarily. Attributes
in the cluster are then removed from the data
set and the process repeats to find other sibling
clusters. We apply EAST algorithm to learn the
m1 and m2 models. For computational efficien-
cy, EAST is restricted to examine only models
with 1 or 2 latent variables.

To illustrate the process, suppose that we
start with an initial working subset which
contains X1 and X2. Two attributes X3

and X4 are successfully added. Then X5 is
added. Suppose the best models m1 and m2

for {X1,X2,X3,X4,X5} are as shown in Fig-
ure 2. And the BIC score of m2 exceeds that
of m1 by threshold δ. Then UD-test fails and
we stop growing the subset. The sibling clus-
ter {X1,X2,X4} of model m2 is picked as the
sibling cluster for the whole algorithm.

X2

Y1(2)

X1 X3 X4 X5 X2

Y1(2)

X1 X4

Y2(2)

X3 X5

m1 m2

Figure 2: Model m1 and model m2 that are considered
in UD-test.

3.2 Remaining Steps

We have described Step 1 in Section 3.1. In
the following, we describe the remaining steps.
Step 2: A latent class model (LCM) is an LTM
with only one latent variable. Model m1 in Fig-
ure 2 is an example of LCM. It is a commonly
used finite mixture model for discrete data. At
Step 2, BI learns an LCM for each sibling clus-
ter. It starts with an initial LCM with a binary

latent variable. The model parameters are opti-
mized by running the EM algorithm (Koller and
Friedman, 2009). Then it considers repeatedly
increasing the cardinality. After each increase,
model parameters are re-optimized. The pro-
cess stops when the BIC score ceases to increase.

Step 3: After the first two steps, BI obtained
a collection of LCMs. In this step, we link up
these LCMs in a tree formation by adding edges
between the latent variables.

Chow and Liu (1968) give a well-known al-
gorithm for learning tree-structured models a-
mong observed variables. It first estimates the
MI between each pair of variables from data,
then constructs a complete undirected graph
with the MI values as edge weights, and finally
finds the maximum spanning tree of the graph.
The resulting tree model has the maximum like-
lihood among all tree models. Chow-Liu’s al-
gorithm can be adapted to link up the latent
variables of the aforementioned LCMs. We on-
ly need to specify how the MI between two la-
tent variables from two disjoint LCMs is to be
estimated.

Given an LCM L1 with latent variable Y1, we
can first estimate probability P (Y1 | L1,di) for
each datacase di. We can do this for all latent
variables. In this way, we completed the data
by using these LCMs. Assume another LCM
L2 with latent variable Y2. We can calculate
the MI between Y1 and Y2 from the completed
data. More specifically, the mutual information
I(Y1; Y2) is computed from the following joint
distribution:

P (Y1, Y2 | D, L1, L2)

= C
N
∑

i=1

P (Y1 | L1,di)P (Y2 | L2,di)

where C is the normalization constant, and di

(i ∈ {1, 2, . . . , N}) is the ith datacase in dataset
D.

Step 4: The sibling clusters and the cardinal-
ities of the latent variables were determined in
Steps 1 and 2. Each of those decisions was made
in the context of a small number of attributes.
In Step 4, BI tries to detect the possible mis-
takes made in those steps. More specifically, BI
checks each attribute to see whether it should

be relocated and each latent variable to see if
its cardinality should be changed.

In this step, BI first optimizes the probabil-
ity parameters of the model resulted from the
previous step using EM algorithm. The opti-
mized model is denoted by m̂. Then, similar
to Step 3, for one latent variable Yi in m̂, we
can estimate probability P (Yi | m̂,di) for each
datacase di. Some message passing algorithms
(Koller and Friedman, 2009) can be used to fa-
cilitate this task. We can do this for all latent
variables in the whole model m̂. Then the data
is re-completed by using the whole model. For
each observed variable X and each latent vari-
able Y , BI computes their mutual information
I(X;Y) from the completed data. Specifically,
MI is computed from the following joint distri-
bution:

P (X,Y | D, m̂) = C ′

N
∑

i=1

P (X | di)P (Y | m̂,di)

where C ′ is the normalization constant. Let Ŷ
be the latent variable that has the highest MI
with X. If Ŷ is not the current parent node of
X in m̂, then it is deemed beneficial to relocate
X from its parent node to Ŷ .

To determine whether a change in the cardi-
nality of a latent variable is beneficial, BI freezes
all the parameters that are not affected by the
change, runs EM locally (Chen et al., 2012) to
optimize the parameters affected by the change,
and recalculates the BIC score. The change is
deemed beneficial if the BIC is increased. BI
starts from the current cardinality of each la-
tent variable and considers increasing it by one.
If it is beneficial to do so, further increases are
considered.

All the potential adjustments are evaluat-
ed with respect to m̂. The beneficial adjust-
ments are executed in one batch after all the
evaluations. Adjustment evaluations and ad-
justment executions are not interleaved because
that would require parameter optimization after
each adjustment and hence be computationally
expensive.

After model refinement, we run EM algorithm
on the whole model one more time to optimize
the parameters.

4 Empirical Results

We test our algorithm on two real world dataset-
s. The first one is a text data known as We-
bKB data. It consists of web pages collected
in 1997 from the computer science departments
of 4 universities: Cornell, Texas, Washington
and Wisconsin. Four categories of web pages
are used, namely student, faculty, project and
course. There are 1041 pages and the number
of words was reduced to 336. Stop words and
words with a low occurrence frequency are re-
moved. The word attributes take binary values
which indicate the presence or absence of the
words. The second dataset is a survey data ob-
tained from ICAC which is the anti-corruption
agency of Hong Kong. This survey aims to un-
derstand public opinion towards corruption and
the work performance of ICAC. After prepro-
cessing, the dataset consists of 31 questions and
1200 records. There are missing values since
some respondents do not answer all questions.

In all our experiments, parameter δ in UD-
test is set to 3 which is a suggested threshold
by Kass and Raftery (1995).

4.1 Results on Text Data

On the WebKB data set, BI produced an LT-
M with 75 latent variables. Each latent vari-
able represents a partition. Two big questions
are: (1) Are those latent variables represent-
ing meaningful partitions? (2) How can users
quickly identify the desired partitions? To an-
swer the questions, convenient tools are needed
to inspect the meaning of latent variables. One
such GUI tool called Lantern1 is developed for
this task. Given an LTM, one can easily view
the tree structure, draw the information curves
of each latent variable and examine class condi-
tional probability distributions (CCPDs) by us-
ing Lantern.

Information curves: To grasp the mean-
ing of a partition, it suffices to ask on which
attributes the classes differ significantly. The
information curves can help us to find the most
informative attributes. For example, we draw
the information curves of Y28 as shown in Fig-

1http://www.cse.ust.hk/∼lzhang/ltm/index.htm

0%

20%

40%

60%

80%

100%

0.00

0.14

0.28

0.43

0.57

0.71

PMI

CMI

M
u

tu
a

l
In

fo
rm

a
ti

o
n

 In
fo

rm
a

tio
n

 C
o

v
e

ra
g

e

Figure 3: Information curves of latent variable Y28.

ure 3. There are two curves in the figure. The
lower curve shows the pairwise mutual infor-
mation (PMI) I(Y28;Xi) between Y28 and each
attribute Xi (i = 1, 2, . . . , n). We sorted the
attributes in decreasing order of PMI. The up-
per curve shows the cumulative mutual infor-
mation (CMI) I(Y28;X1−Xi) (i = 2, 3, . . . , n)
between Y28 and the first i attributes. The ra-
tio I(Y ;X1−Xi)/I(Y ;X1−Xn) is the cumula-
tive information coverage (IC) of the first i at-
tributes. Only the top 8 attributes are shown
here. The IC of the first 8 attributes is around
95%. Intuitively, this means that the differ-
ences among the different clusters on the first
8 attributes account for 95% of the total differ-
ences. So, according to the information curves,
we can say that the partition is primarily based
on these attributes. Here, it is clear that the
partitions represented by Y28 is about program-
ming.

Y28: IC=95%
cluster 1 2 3 4
programming 1 .77 .06 .72
oriented .16 0 0 1
object .51 .05 .02 .91
languages .12 .41 .01 .5
language .81 .34 .05 .61
program .92 .29 .09 .31
programs .53 .23 .04 .17
compiler .31 .18 .01 .17
Size .04 .21 .69 .06

CCPDs: To further examine how the classes
differ on the attributes, we can check its class
conditional probability distributions (CCPDs),
i.e., the distributions of attributes in the class.
For latent variable Y28, it has 4 states, each of
which represents a cluster. The table above
shows part of its CCPDs. To save space, on-
ly the occurrence frequencies of the words in
each cluster are shown. For example, the value
in line 2 and column 3 indicates the probability
that word programming appears in class Y28 = 2

is 0.77, i.e., P (programming = 1 | Y28 = 2) =
0.77. Probability for the absence of the word
in this class is omitted. The CCPDs show that
Y28=4 identifies web pages on objected-oriented
programming (OOP) since the probabilities of
all words are high, while Y28=2 identifies we-
b pages on programming but not mentioning
OOP. Those might be web pages of OOP cours-
es and of introductory programming courses re-
spectively. Y28=1 seems to correspond to we-
b pages of other courses that involve program-
ming, while Y28=3 seems to mean web pages not
on programming.

Similar analysis can be done to other latent
variables. Two more examples are given below.
The most informative attributes are also select-
ed based on information coverage.

Y55: IC=96%
cluster 1 2 3
networks .88 .43 .01
communication .03 .39 .01
neural .77 0 .01
protocols 0 .23 0
protocol 0 .19 0
intelligence .68 .03 .05
artificial .66 .03 .05
parallel .2 .43 .11
network .14 .33 .06
architecture .15 .33 .07
high .17 .38 .09
performance .17 .36 .09
Size .04 .14 .82

Y57: IC=100%
cluster 1 2
intelligence .03 .59
artificial .03 .58
knowledge .03 .6
ai .02 .49
intelligent .01 .34
planning .01 .32
reasoning .01 .33
learning .05 .31
logic .05 .3
neural .02 .19
lisp .01 .11
networks .09 .26
Size .93 .07

We can see that Y55 seems to be related with
networks. The probabilities of four words, i.e.
networks, neural, artificial and intelligence, are
high in state 1 and low in other two states.
Y55=1 seems to mean the networks in AI area
(i.e. neural networks) and Y55=2 is about net-
works in networking and high performance com-
puting area. Y57=2 seems to identify web pages
belonging to faculty members who work in ar-
tificial intelligence area.

We can use Lantern to quickly identify dozen-
s of meaningful partitions from the LTM pro-
duced by BI. To show the richness of partitions,
ten other partitions are listed in Table 1. Only
the words of each partition are shown. The first
4 variables Y10, Y47, Y46 and Y35 correspond to
4 universities. Y6, same as Y28, is a partition
about course. Y73 and Y49 are partitions related
to faculty homepages. Latent variables Y69, Y71

and Y59, same as Y55 and Y57, represent parti-
tions of different research areas.

4.1.1 Comparison with Alternative

Methods

In this section, we compare BI with four other
MPC algorithms: orthogonal projection (OP)
(Cui et al., 2007), singular alternative cluster-
ing (SAC) (Qi and Davidson, 2009), DK (Jain
et al., 2008) and EAST. For DK, OP and SAC,
they were told to find two partitions each with
four clusters, because it is known that there are
two true class partitions each with four class-
es. One of true class partitions divides the web
pages into four classes according to the four u-
niversities. BI has recovered the four university
classes. However, they were given in the for-
m of four latent variables instead of one. For
comparability, we transformed the 4-class uni-
versity partition into four logically equivalent
binary class partitions. Each binary class parti-
tion divides the web pages according to whether
they are from a particular university. The same
transformation was applied to the other true
class partition and the partitions obtained by
the alternative algorithms. After the transfor-
mations, we matched up the binary class par-
titions with the obtained partitions and com-
puted the normalized mutual information (N-
MI)(Strehl et al., 2002) of each matched pair.
The NMI between two partitions C and Y is
given by NMI(C;Y) = I(C;Y)/

√

H(C)H(Y),
where I(.) stands for the mutual information
and H(.) stands for the entropy. The results
are shown in following table. The average was
taken over 10 runs of the algorithms.

DK SAC OP BI
course .43±.01 .47±.01 .47±.02 .63±.02

faculty .18±.04 .17±.07 .18±.01 .30±.01

project .04±.00 .04±.00 .05±.04 .07±.00

student .18±.00 .20±.00 .20±.01 .25±.01

cornell .22±.15 .09±.02 .36±.24 .34±.01
texas .31±.18 .20±.20 .45±.23 .61±.02

washington .22±.13 .41±.23 .56±.25 .59±.12

wisconsin .38±.12 .16±.12 .45±.13 .55±.11

We see that the NMI is the highest for BI
in almost all cases. We also tested EAST on
WebKB data. However, it did not finish in 14
days. In contrast, BI took only 1.1 hour.

4.2 Results on Survey Data

On the survey data, BI produced an LTM with
7 latent variables. The structure of the model
is shown in Figure 4. Similar as in Section 4.1,

Table 1: 10 other partitions found by BI. We cut the words when IC ≥ 95% and only nine words at most are shown.

Universities Course Faculty Homepage Research Areas

Y10 Y47 Y46 Y35 Y6 Y73 Y49 Y69 Y71 Y59

ithaca washington utexas wisc assignments journal ph image management high
ny cse texas madison instructor pp fax video database performance

cornell uw austin wisconsin hours vol research vision systems hardware
upson ut dayton syllabus conference professor images system software
hall wi class proceedings university pattern databases instruction

grading international publications digital storage parallel
pm symposium interests applications large network

lecture acm support architecture
homework workshop applications cache

Table 2: The CCPDs of Y1. The information coverage of the four attributes is around 98%. The states of Income:
s0 (none), s1 (less than 4k), s2 (4-7k), s3 (7-10k), s4 (10-20k), s5 (20-40k), s6 (more than 40k). The states of Age:
s0 (15-24), s1 (25-34), s2 (35-44), s3 (45-54), s4 (above 55). The states of Education: s0 (none), s1 (primary), s2
(Form 1-3), s3 (Form 4-5), s4 (Form 6-7), s5 (diploma), s6 (degree). The states of Sex: s0 (male), s1 (female).

Y1 = 1
Size: 0.37

P(· | Y1) s0 s1 s2 s3 s4 s5 s6

Income .02 0 .04 .1 .42 .28 .14
Age .05 .35 .39 .17 .03

Education 0 0 .04 .41 .09 .09 .37
Sex .57 .43

Y1 = 2
Size: 0.24

P(· | Y1) s0 s1 s2 s3 s4 s5 s6

Income .43 .29 .24 .04 0 0 0
Age .03 .08 .41 .35 .13

Education .05 .29 .35 .26 .04 0 .01
Sex 0 1

Y1 = 3
Size: 0.22

P(· | Y1) s0 s1 s2 s3 s4 s5 s6

Income .1 .11 .17 .25 .31 .07 0
Age 0 .07 .22 .4 .3

Education .02 .29 .43 .19 .05 .01 0
Sex .8 .2

Y1 = 4
Size: 0.17

P(· | Y1) s0 s1 s2 s3 s4 s5 s6

Income .02 .78 .08 .09 .03 0 0
Age .99 .01 0 0 0

Education 0 0 .08 .47 .21 .1 .16
Sex .5 .5

we can identify the meaning of each partition
by checking the information curves and CCPDs
of each latent variable. We first look at latent
variables Y1 and Y2. The most informative at-
tributes of Y1 are Income, Age, Education and
Sex. These attributes are also selected based on
information curves. It is clear that Y1 partitions
people based on demographic information. The
CCPDs of Y1 are given in Table 2. It has 4 s-
tates, each of which represents a cluster. We
begin with cluster Y1 = 4. It consists people
aged between 15 and 24. The the average in-
come is significantly low. So Y1 = 4 represents
a class of low income youngsters. Cluster Y1 = 2
only consists of women. Between the remaining
two clusters, Y1 = 1 has, on average, higher ed-
ucation and higher income than Y1 = 3. Hence
Y1 = 1 represents a class of people with good
education and good income, while Y1 = 3 rep-
resents a class of people with poor education
and average income.

The most informative attributes of Y2 are C-
NextY (change in the level of corruption next
year) and C-PastY (change in the level of cor-
ruption in the past year). So Y2 is about people’s
view on the change of corruption level. The C-
CPDs of Y2 is given in Table 3. Take Y2 = 2
as an example. It represents a group of peo-

ple (51%) who think the corruption level has
remained the same in the past year (86%) and
will remain the same next year (94%).

Table 3: The CCPDs of Y2. The states of C-NextY:
s0 (increase), s1 (decrease), and s2 (same). The states
C-PastY: s0 (increased), s1 (decreased), and s2 (same).

P (Y2 = 1) = 0.21
P(· | Y2) s0 s1 s2

C-NextY .03 .84 .13
C-PastY .07 .5 .43

P (Y2 = 2) = 0.51
s0 s1 s2

.01 .05 .94

.06 .08 .86

P (Y2 = 3) = 0.28
s0 s1 s2

.79 0 .21

.66 .04 .31

Similar analysis can be done to other laten-
t variables, we will find that Y3 is a partition
about people’s tolerance towards corruption, Y4

and Y5 are about ICAC’s performance and ac-
countability, Y6 relates to different corruption
scene, Y7 partitions people on their view about
economy.

As an advantage, the relationship between
partitions can be also inferred from the result-
ing LTM. For example, the relationship between
Y1 and Y2 is revealed by the conditional prob-
ability P (Y2 | Y1) which is associated with the
edge Y1 → Y2.

P (Y2 | Y1) Y2 = 1 Y2 = 2 Y2 = 3
Y1 = 1 .06 .59 .34
Y1 = 2 .30 .42 .28
Y1 = 3 .27 .39 .33
Y1 = 4 .34 .60 .06

We can see from the last line of above table,
among the youngsters (Y1 = 4), 34% of them
have the positive view on the change of corrup-

Figure 4: The structure of LTM learned by BI from the ICAC data. The width of edges represent strength of
probabilistic dependence. Abbreviations: C-Corruption, I-ICAC, Y-Year, Gov-Government, Bus-Business Sector.
Meanings of attributes: Tolerance-C-Gov means ‘tolerance towards corruption in the government’; C-City means
‘level of corruption in the city’; C-NextY means ‘change in the level of corruption next year’; I-Effectiveness means
‘effectiveness of ICAC’s work’; I-Powers means ‘ICAC powers’; etc.

tion level (Y2 = 1), while 6% of them have the
negative view (Y2 = 3) on the same issue. This
kind of information may be useful for users to
understand the data.

For this unlabeled data, we also run EAST on
it and compare the quality of models produced
by both methods in terms of BIC score. EAST
takes 11312±965 seconds to learn the model.
The average is take over 10 runs. The average
BIC score of the learned model is -26042±28. BI
takes 562±39 seconds on average. The average
BIC score for the learned model is -26096±13.
BI archived comparative performance in much
less time. For other alternative methods DK,
OP and SAC, their results are not included s-
ince they can not handle datasets with missing
values.

5 Conclutions

In this paper, we propose a greedy method for
learning LTM. The new method is faster than
previous algorithms. Empirical results are pre-
sented to show that our method is able to pro-
duce rich and meaningful partitions. An GUI
tool is also provided to facilitate the analysis of
these partitions.

Acknowledgments

Research on this paper was supported by China
National Basic Research 973 Program project
No. 2011CB505101 and Guangzhou HKUST
Fok Ying Tung Research Institute.

References

Chen T, Zhang N.L, Wang Y (2008) Efficient model eval-
uation in the search-based approach to latent struc-
ture discovery. In: PGM-08, 57-64

Chen T, Zhang N.L, Liu T.F, Poon K, Wang Y (2012)
Model-based multidimensional clustering of categori-
cal data. Artif Intell 176:2246–2269

Choi M.J, Tan V.Y.F, Anandkumar A, Willsky A.S
(2011) Learning latent tree graphical models. Journal
of Machine Learning Research 12:1771–1812

Chow C.K, Liu C.N (1968) Approximating discrete prob-
ability distributions with dependence trees. IEEE
Transactions on Information Theory 14(3):462–467

Cui Y, Fern X.Z, Dy J.G (2007) Non-reduntant multi-
view clustering via orthogonalization. In: ICDM-07

Galimberti G, Soffritti G (2007) Model-based methods
to identify multiple cluster structures in a data set.
CSDA-07 52:520–536

Gondek D, Hofmann T (2007) Non-redundant data clus-
tering. KAIS-07 12(1):1–24

Guan Y, Dy J.G, Niu D, Ghahramani Z (2010) Varia-
tional inference for nonparametric multiple clustering.
In: MultiClust Workshop, KDD-2010

Harmeling S, Williams C.K.I (2010) Greedy learning of
binary latent trees. TPAMI-10

Jain P, Meka R, Dhillon I.S (2008) Simultaneous unsu-
pervised learning of disparate clusterings. SDM-08

Kass R.E, Raftery A.E (1995) Bayes Factors. Journal of
the American Statistical Association 90(430):773–795

Koller D, Friedman N (2009) Probabilistic Graphical
Models: Principles and Techniques. MIT Press

Niu D, Dy J.G, Jordan M.I (2010) Multiple non-
redundant spectral clustering views. In: ICML-10

Poon K.M, Zhang N.L, Chen T, Yi W (2010) Variable
selection in model-based clustering: To do or to facil-
itate. In: ICML-10

Qi Z, Davidson I (2009) A principled and flexible frame-
work for finding alternative clusterings. In: KDD-09

Schwarz G (1978) Estimating the dimension of a model.
The Annals of Statistics 6(2):461–464

Strehl A, Ghosh J, Cardie C (2002) Cluster ensembles -
a knowledge reuse framework for combining multiple
partitions. JMLR 3:583–617

Zhang N.L (2004) Hierarchical latent class models for

cluster analysis. JMLR-04 5:697–723

