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Abstract

Model complexity is an important factor
to consider when selecting among graphical
models. When all variables are observed,
the complexity of a model can be measured
by its standard dimension, i.e. the num-
ber of independent parameters. When hid-
den variables are present, however, standard
dimension might no longer be appropriate.
One should instead use effective dimension
(Geiger et al. 1996). This paper is con-
cerned with the computation of effective di-
mension. First we present an upper bound on
the effective dimension of a latent class (LC)
model. This bound is tight and its computa-
tion is easy. We then consider a generaliza-
tion of LC models called hierarchical latent
class (HLC) models (Zhang 2002). We show
that the effective dimension of an HLC model
can be obtained from the effective dimensions
of some related LC models. We also demon-
strate empirically that using effective dimen-
sion in place of standard dimension improves
the quality of models learned from data.

1 INTRODUCTION

Learning graphical models from data has been widely
studied in recent years. Two aproaches to learning
have been developed: one uses independence tests to
search among models and the other uses a score to
search for the best model - a procedure known as model
selection.

Cooper & Herskovits (1992) derived a formula for com-
puting the exact Bayesian score (p(D|G), marginal
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likelihood of a model structure G given data D) in the
case of complete data and showed that exact compu-
tation of the score is intractable when hidden variables
are present. In such a case asymptotic approximations
of the marginal likelihood such as Bayesian Informa-
tion Criterion (BIC) (Schwarz 1978) and Cheeseman-
Stutz Criterion (CS) (Cheeseman & Stutz 1995) are
usually employed.

The BIC score has two parts: one evaluates the fit
of the model to the data and the other penalizes the
model according to its dimension. The standard di-
mension might not be correct when hidden variables
are present. Consider the model O→X with two vari-
ables - observed O and hidden X. All the parameters
in P (X|O) are irrelevant as they do not influence the
fit of the model to the (observed) data. Thus there is
no reason to penalize the model for such parameters.

Geiger et al. (1996) introduced the effective dimen-
sion for models with hidden variables and related it to
the rank of the Jacobian matrix of the transformation
between the parameters of the model and the param-
eters of the distribution over the observed variables.
They modified the BIC and CS scores by accounting
for the dimension correction. They computed the rank
numerically for some models and conjectured that the
differences between the standard and effective dimen-
sion are rare for LC models (they found just one such
model).

Settimi & Smith (1998, 1999) studied effective dimen-
sion for the special case of trees with binary variables
and for the special case of two observed and one hid-
den variable. They fully described these two special
cases.

In this paper we first study the effective dimension of
LC models. We present many LC models in which the
standard and effective dimensions differ. We introduce
three natural upper bounds and show that the mini-
mum of these is a tight upper bound approximation.
We discuss in which situations which upper bound ap-



plies. We have found only two LC models for which
the effective dimension is not equal to the upper bound
derived - in both cases the bound overestimates the
number of effective parameters by one.

We then study the effective dimension of HLC mod-
els which generalize the LC models by enabling local
dependencies among the observed variables. We show
that the true number of effective parameters of an HLC
model can be computed, by use of a simple rule, from
the number of effective parameters of some LC models
which are local parts of the HLC model.

Most researchers (e.g. Chickering & Heckerman 1997,
Zhang 2002) leave the dimension correction out of the
learning. We empirically demonstrate that accounting
for the dimension correction leads to better approx-
imation of the probability distribution over the ob-
served variables for LC models. However, dimension
correction applies to only few LC models of practical
interest. We show that the better approximation is ob-
served for HLC models as well and it concerns many
HLC models of practical interest.

2 BASIC CONCEPTS

In this section we review basic concepts of graphs,
graphical models, latent class models, scores used for
model selection and known results concerning effective
dimension of models with hidden variables.

2.1 GRAPHS AND GRAPHICAL MODELS

A graph G is a pair (N,E), where N is a set of nodes
and E is a set of edges, i.e. subset of N×N of ordered
pairs of distinct nodes. Each node X ∈ N , denoted
by an upper-case letter, represents a discrete variable.
We denote the number of states of a variable X by |X|
and a particular state of a variable X by a lower-case
letter x. We often use a set of variables R ⊆ N to
represent a joint variable over its elements which has
number of states |R| =

∏
X∈R |X|.

An Acyclic Directed Graph (DAG) is a graph where
all edges are directed and there are no cycles. If a
graph has directed edge A → B, then the node A is
parent of the node B, i.e. A ∈ Pa(B), and B is child
of A, i.e. B ∈ Ch(A). The union of children and
parents of a node is called neighbours, i.e. Ne(A) =
Pa(A) ∪ Ch(A).

A tree is a connected undirected graph without cycles.
A directed tree is a DAG obtained from a tree by choos-
ing a root node and directing all edges away from this
node. A tree has one edge less than the number of
nodes. It has a unique path between any two vertices.
We say that two sets of nodes R, T ∈ N are separated

by S ∈ N in a graph G if every path from R to T in
G contains a node from S.

A Bayesian network is a pair (G, θG) where G is a
DAG and θG are parameters. The parameters are con-
ditional probabilities for each node X ∈ N given its
parents Pa(X), i.e. P (X|Pa(X)). The standard num-
ber of (free, independent) parameters ds in a Bayesian
network is

ds(G) =
∑

X∈N

(|X| − 1) ∗
∏

Y ∈Pa(X)

|Y |.

A Bayesian network represents a joint probability dis-
tribution P (N |G, θG) over all variables N using the
factorization formula

p(N |G, θG) =
∏

X∈N

p(X|pa(X)).

A node A in a tree is separated by its neighbours
Ne(A) from all other nodes. Thus each distribution,
which factorizes according to a tree, satisfies the con-
ditional independence N\A\Ne(A) ⊥⊥ A|Ne(A), i.e.
P (N) ∗ P (Ne(A)) = P (N\A) ∗ P (A ∪Ne(A)).

We say that two graphical models are equivalent if they
represent the same class of probability distributions
over all observed variables.

2.2 LC AND HLC MODELS

A Latent Class (LC) model (see Figure 1) is a graphical
model with one hidden variable X and observed vari-
ables O. It can be represented as a directed or undi-
rected tree where the observed nodes coincide with
nodes having exactly one neighbour. We refer to in-
stances of the LC model by |X| : |O1|, ..., |Oi|, ...|On|.
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Figure 1: Latent Class model

A Hierarchical Latent Class (HLC) model (see Fig-
ure 2) is a graphical model with observed nodes O
and hidden nodes H. HLC models are an extension of
LC models introduced in (Zhang 2002) which enable
modelling of local dependencies (dependencies among
subsets of observed variables). An HLC model can be
represented as a directed or undirected tree where the
observed nodes coincide with nodes having exactly one
neighbour. We refer to instances of the particular HLC
model in Figure 2 by |H1|, |H2|, |H3| : |O1|, ..., |O5|.



Each hidden node Hi in an HLC model induces, to-
gether with its neighbours Ne(Hi), a local LC model.
It has hidden variable Hi and observed variables
Ne(Hi).
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Figure 2: Hierarchical Latent Class model

2.3 SCORES FOR MODEL SELECTION

All the scores are approximations of the marginal log
likelihood log p(D|G) of data D given the graphical
model structure G. They use the maximum likelihood
(ML) or maximum aposterior probability (MAP) esti-
mate θ̂G of the model parameters θG. Maximum like-
lihood estimates in the case of missing data or hidden
variables can be obtained by use of EM algorithm or
gradient descent methods. Some scores use the com-
pleted data D̂ obtained from D using θ̂G. Note that
the p(D̂|G) can be evaluated by use of the formula for
exact marginal likelihood. We denote by de(G) the ef-
fective dimension of the model with hidden variables.
Note that the standard dimension of the model and
the effective dimension of the model with all variables
observed are both ds(G).

The BIC score in (Schwartz 1978), the CS score in
(Cheeseman & Stutz 1995), the CS and BIC scores
with dimension correction in (Geiger et al. 1996) are

BIC(D|G) ≈ log p(D|G, θ̂G)− ds(G)/2 ∗ log |D|

CS(D|G) ≈ log p(D̂|G)−log p(D̂|G, θ̂G)+log p(D|G, θ̂G)

CS+(D|G) ≈ CS(D|G) + (ds(G)− de(G))/2 ∗ log |D|

BIC+(D|G) ≈ log p(D|G, θ̂G)− de(G)/2 ∗ log |D|.

The scores with dimension correction were never used
in practice because there are no methods for comput-
ing the effective dimension de.

2.4 EFFECTIVE DIMENSION

A graphical model G transforms its parameters θG

into a probability distribution P (O) over all observed
variables O (marginal of P (N)). We will denote by

JO(θG) = [Jjk] = [∂p(oj)
∂θk

] the Jacobian matrix of this
transformation. Rows of JO(θG) correspond to states
in the observed space O of the model G and columns
to the parameters θG. Geiger et al. (1996) showed
that the effective dimension de(G) of a model G is the
rank of JO(θG). The rank in general is a function of
θG but was shown to be constant almost everywhere.
We use JO(θ) ; θ ⊆ θG to denote a matrix which has
only a subset of columns in JO(θG).

This suggests the following numerical approach to
computing de: generate random θ, compute the Jaco-
bian and its rank with sufficient numerical precision.
We performed this computation for many LC and HLC
models in Maple. We repeated each computation ten
times in our experiments and we corroborate the ob-
servation in (Geiger et al. 1996) that none of the ran-
domly chosen parameters θ accidentally reduced the
rank.

The rank of a matrix is a number of (row or column)
vectors in a basis of the matrix. A basis is a set of
linearly independent vectors such that all other vectors
can be expressed as a linear combination of the vectors
in the basis. Thus

de ≤ ds and de ≤ dc

where dc is the number of parameters in the complete
model over all observed variables O

dc =
∏

X∈O

|X| − 1.

Moreover there are two special cases for which theo-
rethical solution for de is known.

Theorem 1 (Settimi & Smith 1998)
The LC model O1←X→O2 where |X| ≤
min(|O1|, |O2|) has |X| ∗ (|X| − 1) unidentifiable
parameters, i.e. de = ds − |X| ∗ (|X| − 1). If
|X| ≥ min(|O1|, |O2|), then the hidden variable does
not impose any restriction on the observed marginal
P (O1, O2) and thus de = dc.

Theorem 2 (Settimi & Smith 1999)
An HLC model with all variables binary and k hidden
nodes with less than three neighbours has 2∗k uniden-
tifiable parameters, i.e. de = ds− 2 ∗ k.

3 DIMENSION OF LC MODELS

We have already seen two general upper bounds on
de, namely ds and dc. In this section we introduce
another upper bound for LC models. We combine all
these into one upper bound and show that it is a very
tight upper bound for LC models. Then we show how
to reduce the space of all LC models without changing
its modelling power.



3.1 UPPER BOUNDS

Theorem 3
Let M be an LC model with observed variables O and
hidden variable X. Let M∗ be another LC model with
two observed variables U1, U2 and hidden variable X.
Let O′ ⊂ O, U1 = O′ and U2 = O\O′. If |X| <
min(|U1|, |U2|), then de(M) ≤ de(M∗) = ds(M∗) −
|X| ∗ (|X| − 1), else de(M) ≤ de(M∗) = dc(M∗) =
dc(M).

Proof: The two LC models M and M∗ have the same
joint observed space O and the same hidden variable.
Any probability distribution over O represented by the
model M can be represented by the model M∗ as well.
de(M) ≤ de(M∗) because the model M applies some
additional constraints in comparison with the model
M∗. The rest follows directly from Theorem 1.

This result introduces a whole class of upper bound
limits. We denote the lowest one by

dp(M) = minM∗ de(M∗) ; |X| < min(|U1|, |U2|)
= dc(M) otherwise.

By combining the upper bounds we get the following
theorem.

Theorem 4
For any LC model M,

de(M) ≤ db(M) = min(ds(M), dc(M), dp(M)).

Proof: It follows from the definition of de and Theo-
rem 3.

The next lemma states when db(M) = ds(M) and thus
simplifies the computation of db(M).

Lemma 3.1
For an LC model with observed variables O and hidden
variable X, if |X| < 2 ∗

√
|O| −

∑n
i=1 |Oi| + (n − 1)

and |X| < |O|∑n

i=1
|Oi|−(n−1)

, then ds < dp and ds < dc.

Proof: Follows directly from the definition of ds, dc
and dp togehter with the fact that dp ≥ |X| ∗ (2 ∗√
|O| − |X|)− 1 as |U1|+ |U2| ≥ 2 ∗

√
|O|.

We can see from Lemma 3.1 that for many observed
variables and a reasonably small number of states of
all variables, the standard dimension ds applies. How-
ever, for models with few observed variables (see Table
1) this is not the case. There are many models where
de 6= ds. Table 1 suggests that the upper bound db
from Theorem 4 is tight. We have found only two
LC models (3:2,2,2,2 and 4:3,3,3) for which the upper
bound db overestimates the true de by one. Note that
all three bounds ds, dc, dp apply when evaluating db.

Table 1: Comparison of the effective dimension de
computed numerically in Maple, bound db from
Theorem 4 (bold if db 6= de), standard dimension ds,
complete dimension dc and pairwise dimension dp
from Theorem 3 (bold if ds, dc, dp = db) for selected
LC models (see Figure 1).

LC model de db ds dc dp

2:2,2 3 3 5 3 dc
2:2,2,2 7 7 7 7 dc
3:2,2,2 7 7 11 7 dc
4:2,2,2 7 7 15 7 dc
2:3,3 7 7 9 8 7

2:3,3,3 13 13 13 26 19
3:3,3,3 20 20 20 26 dc
3:4,5 17 17 23 19 17

4:3,3,3 25 26 27 26 dc
5:3,3,3 26 26 34 26 dc
6:3,3,3 26 26 41 26 dc

2:2,2,2,2 9 9 9 15 11
3:2,2,2,2 13 14 14 15 14
4:2,2,2,2 15 15 19 15 dc
5:2,2,2,2 15 15 24 15 dc
6:2,2,2,2 15 15 29 15 dc
3:5,2,2 17 17 20 19 17
3:4,2,2 14 14 17 15 14
5:3,3,2 17 17 29 17 dc
5:6,3,2 34 34 44 35 34
5:10,3,2 54 54 64 59 54

3.2 REGULAR LC MODELS

Lemma 3.2
Let M be an LC model with observed variables O and
hidden variable X1 where |X1| > |O|

maxi|Oi| . Let M∗

be an LC model with observed variables O and hidden
variable X2 where |X2| = |O|

maxi|Oi| . Then M and M∗

are equivalent models.

Proof: It is obvious that any distribution over O en-
coded by M∗ can be encoded by M as well. We will
show that any distribution over O can be encoded by
M∗. Let |Oj | = maxi|Oi|. Assign P (O\Oj |X2) in
such a way that X2 = O\Oj . Then X2→Oj is a com-
plete model which can encode any distribution.

We say that an LC model is regular if |X| ≤ |O|
maxi|Oi| .

Each irregular LC model is equivalent to some regular
LC model. Thus, the modelling power of the class of
LC models is not reduced if we restrict ourselves to
the class of regular LC models.



4 DIMENSION OF HLC MODELS

In this section we show how to compute the effec-
tive dimension of HLC models. Consider the HLC
model 5,3,3:2,2,2,2,2 (see Figure 2). Its standard di-
mension is 41 while its effective dimension is 23 param-
eters. The difference between the standard and effec-
tive parametrization is 18 parameters. There are three
hidden nodes in the HLC model. They induce local LC
models 3:5,2,2 ; 5:3,3,2 and 3:5,2,2. The differences be-
tween the standard and effective parametrization for
these LC models can be read from Table 1. They are
3, 12 and 3. The sum of these differences is 18. This
equals the difference for the HLC model. The same
rule applies to all HLC models we tested (with dif-
ferent graphical structures). In this section, we prove
that this fact is true in general.

Lemma 4.1
Let M be an HLC model with observed variables O
and hidden variables H where for some Hi ∈ H holds
that |Hi| > |Ne(Hi)|

maxX∈Ne(Hi)|X| . Let M∗ be the same HLC

model as M except that |Hi| = |Ne(Hi)|
maxX∈Ne(Hi)|X| . Then

M and M∗ are equivalent models.

Proof: The LC models induced by the hidden node
Hi (their observed space is Ne(Hi)) in M and M∗ are
equivalent (see Lemma 3.2). In both models M and
M∗ the independence Hi ⊥⊥ N\Hi\Ne(Hi)|Ne(Hi)
holds. Thus M and M∗ are equivalent models as well.

We say that an HLC model is regular if for each hid-
den node Hi holds that |Hi| ≤ |Ne(Hi)|

maxX∈Ne(Hi)|X| and the
strict inequality holds if Hi has exactly two neighbours
Ne(Hi) where Ne(Hi)∩H 6= ∅. Each irregular HLC
model is equivalent to some regular HLC model.

Our task is to estimate the effective dimension de of
a regular HLC model M . If M has just one hidden
node, then it is an LC model and we can use the results
of Section 3. If M has more hidden nodes, then the
theorem below enables us to decompose the problem
into two smaller HLC models.

Theorem 5 Let M be a regular HLC model with ob-
served variables O and hidden variables H. Let X ∈ H
be the root node and Z be a hidden child of X. Let
N1 be the set of nodes separated from Z by X in M ,
and N2 be the set of nodes separated from X by Z
in M . Let M1 and M2 be the HLC models induced
from M by nodes N1∪{X, Z} and N2∪{X, Z} respec-
tively. Then M1 and M2 are regular HLC models and
ds(M)−de(M) = ds(M1)−de(M1)+ds(M2)−de(M2).

Proof: Figure 3 shows the situation. Note that
N1∪N2∪{X, Z} = O∪H. Let O1 = O∩N1 and O2 =

O∩N2. Note that M1 has observed variables O1∪Z
and hidden variables H∩N1∪X and M2 has observed
variables O2∪X and hidden variables H∩N2∪Z. Let
M0 denote the common part of M1 and M2, i.e. the
model X→Z. The three Jacobian matrices for mod-
els M , M1 and M2 are JO(θM ), JO1∪Z(θM1) and
JO2∪X(θM2). Both models M1 and M2 are regular
as the regularity conditions are the same in M .
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Figure 3: HLC model M and its induced submodels

The proof is organized as follows. First we show that
JO(θM0) is basis of its column space. Second we re-
late JO(θM1) and JO1∪Z(θM1), resp. JO(θM2) and
JO2∪X(θM2). Then we show that ds(M) − de(M) ≥
ds(M1)− de(M1) + ds(M2)− de(M2). Third we show
that ds(M)− de(M) = ds(M1)− de(M1) + ds(M2)−
de(M2).

I. The Jacobian JXZ(θM0) of the model M0 is obvi-
ously basis of itself. We prove that JO(θM0) is basis
of its column space by contradiction. Assume that the
column vectors in JO(θM0) are linearly dependent for
any parameters θM . We can choose the parameters
θM1\θM0 in such a way that for any state x of X there
is exactly one unique state o (different o for different x)
in O1 such that p(x|o) = p(o|x) = 1. The same holds
for θM2\θM0 , any state z of Z and O2. This is always
possible because for any hidden node Hi ∈ H in any
regular HLC model |Hi| ≤ |Ch(Hi)| ≤ |Ne(Hi)|

maxY∈Ne(Hi)|Y | .
Thus, for any state xz of XZ there is exactly one state
o of O such that p(xz|o) = 1. This means that all rows
in JXZ(θM0) are in JO(θM0) which contradicts the fact
that JXZ(θM0) is basis of itself.

II. For any θi ∈ θM1 holds that

JO(θi) =
∑
Z

P (O2|Z) ∗ JO1∪Z(θi)

because O2 ⊥⊥ O1|Z, O1∪O2 = O and P (O2|Z) does
not depend on θM1 . The same holds for JO(θM2) and
JO2∪X(θM2). Thus, any set of linearly dependent col-
umn vectors in M1 (M2) is linearly dependent in M
as well. Consequently, columns of JO1∪Z(θM0) are lin-
early independent because columns of JO(θM0) are lin-
early independent. The same holds for JO2∪X(θM0).
Thus, there exists a basis JO1∪Z(θB1) of the column
space of JO1∪Z(θM1) where θM0 ⊆ θB1 ⊆ θM1 . Sim-
ilarly exists JO2∪X(θB2) where θM0 ⊆ θB2 ⊆ θM2 .



Then, there exists a basis JO(θB) of the column space
of JO(θM ) where θB ⊆ θB1∪θB2 . Thus, |θB | ≤
|θB1 | + |θB2 | − |θM0 |. This is equivalent to ds(M) −
de(M) ≥ ds(M1) − de(M1) + ds(M2) − de(M2) be-
cause de(M) = |θB |, de(M1) = |θB1 |, de(M2) = |θB2 |
and |θM0 | = ds(M1) + ds(M2)− ds(M).

III. We prove that JO(θB1∪θB2) is basis of its col-
umn space, i.e. θB = θB1∪θB2 , by contradiction.
Assume that the columns in JO(θB1∪θB2) are lin-
early dependent for any θM and denote by ki the
weight of each column corresponding to the param-
eter θi ∈ θB1∪θB2 in the linear combination which
yields a zero vector. We can choose the parameters
θM1\θM0 in such a way that for any state x of X there
is exactly one unique state ox (different ox for differ-
ent x) in O1 such that p(x|ox) = p(ox|x) = 1. Denote
by Jox,O2(θB1∪θB2) the matrix having all rows from
JO(θB1∪θB2) corresponding to the state ox. The linear
combination of columns in Jox,O2(θB1) is

∑
θi∈θB1

ki ∗
Jox,O2(θi) =

∑
θi∈θB1

ki ∗
∑

Z P (O2|Z) ∗ Jox,Z(θi) =∑
Z P (O2|Z)

∑
θi∈θB1

ki ∗ Jox,Z(θi). There are always
weights k∗j for θj ∈ (θZ|x∪θx) ⊂ θM0 ⊂ θB2 which give
the same linear combination as

∑
θi∈θB1

ki ∗ Jox,Z(θi).

We started with linear dependence of columns in
Jox,O2(θB1 ∪ θB2) and we showed new linear depen-
dence of columns in Jox,O2(θZ|x ∪ θx ∪ (θB2\θM0)) for
each state x in X. Because θZ|x ∪ θx ∪ (θB2\θM0) do
not influence the relation between X and O1, we can
use Jox,O2(θZ|x ∪ θx ∪ (θB2\θM0)) = Jx,O2(θZ|x ∪ θx ∪
(θB2\θM0)). Then we can put together all rows in
Jx,O2(θZ|x∪θx∪(θB2\θM0)) for all states x of X and we
get linear dependence of columns of JO2∪X(θZ|X∪θX∪
(θB2\θM0)). This contradicts the fact that JO2∪X(θB2)
is basis of its column space. Thus θB = θB1 ∪ θB2 and
ds(M)−de(M) = ds(M1)−de(M1)+ds(M2)−de(M2).

Corollary 4.1
Let M be a regular HLC model with observed variables
O and hidden variables H. Let Mi be the local LC
model induced by each hidden node Hi ∈ H in M .
Then the difference between the number of standard
and effective parameters in M is equal to the sum of
the differences over all the Mi models, i.e.

ds(M)− de(M) =
∑

Hi∈H

ds(Mi)− de(Mi).

Thus, we can expect differences between ds and de for
HLC models even in real domains with many observed
variables whenever there is at least one hidden node
with few neighbours.

5 EXPERIMENTS WITH LC

In this section we experimentally demonstrate that ac-
counting for the effective dimension leads to learning
better LC models from data.

We generated ten random parametrizations of each
model from the seven regular LC models 2:2,2,2,2 ;
3: ; ... 8:2,2,2,2 with four binary observed variables.
We produced five data sets of diferent sizes from each
of these parametrizations. We evaluated for each data
set all the models using the four scores introduced in
Section 2 (we used EM for the ML estimates). We se-
lected for each pair of score and data the best model.
In this section we compare the four scores using the av-
erage fit of the best model to the true generative distri-
bution (Kullback-Leibler Information divergence) and
cardinality of the hidden variable.

Results for data generated from the LC model 8:2,2,2,2
(5: ... 7: are similar) are in Figure 4. The CS and BIC
exhibit the same behaviour. They are outperformed
by the BIC+ and CS+ in the fit of data for larger
samples. The differences in the fit of data between
BIC+ and CS+ are not significant. The BIC+ selects
higher cardinalities of X than CS+ and CS+ selects
higher cardinalities than BIC and CS.
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Figure 4: Fit of the generative distribution over O
and cardinality of X for LC models learned from data
generated from the LC model 8:2,2,2,2 .



For data generated from the LC model 4:2,2,2,2 (3: is
similar) all the four scores lead to similar fit. However,
the BIC+ gives significantly higher cardinalitites of the
hidden variable than the other scores. This behaviour
of BIC+ is expected as the likelihood of all the models
with cardinality of the hidden variable higher than 4 is
the same (in practice, thanks to random fluctuations
of the ML estimate, there are some small random dif-
ferences) and the penalty is the same as well. Thus the
BIC+ selects at random among the models 4:2,2,2,2 ...
8:2,2,2,2 .

For data generated from the LC model 2:2,2,2,2 all
the four scores behave in a similar way and produce
the same results in both the cardinality of the hidden
variable and fit of the true distribution.

In general we can say that models with few states of
the hidden variable H usually provide pretty good fit
of the observed data. Large sample sizes are needed to
obtain models with more states of H. The CS+ score
outperforms the standard CS and BIC scores and leads
to higher cardinalities of the hidden variable. BIC+

provides similar fit to the data as CS+ but leads to
more states of H.

One possible reason why we need large sample sizes
to select more complex models is that some of the
randomly generated parameters introduce only weak
dependencies. Thus, we parametrized the LC model
8:2,2,2,2 by deterministic relation between three ob-
served variables and the hidden variable and by ran-
dom parametrization of the remaining parameters.
Note that such a model can still encode any distribu-
tion over the observed variables. With these data we
observe the same behaviour as for the 8:2,2,2,2 model,
however from much smaller sample sizes (see Figure
5). The plus scores are able to reach the same fit of
the true distribution with half the data.
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Figure 5: Fit for LC models learned from data gener-
ated from a LC model with some deterministic rela-
tions.

6 EXPERIMENTS WITH HLC

In this section we experimentally demonstrate that ac-
counting for the effective dimension improves the fit of
data by HLC models. This fact is of practical impor-
tance because for many HLC models de 6= ds.

We generated data sets of different sizes from
fifty random parametrizations of the HLC model
5,3,3:2,2,2,2,2. This model has 41 standard parame-
ters and 23 effective parameters (see Section 4). It is a
regular but not complete model and all its hidden vari-
ables have cardinality smaller than the maximal pos-
sible according to their neighbours (see Lemma 4.1).
Thus, it is a typical example of a model having some
hidden node with few neighbours of such cardinalities
that it creates a difference between the standard and
effective number of parameters.

Zhang (2002) demonstrated that it is usually much
easier to recover from the data the true generative
structure than the true cardinalities of the hidden vari-
ables. Thus we did not score all regular HLC models in
our experiments. We considered only the HLC mod-
els with the true generative structure and we always
started with all hidden variables binary. We applied
the hillclimbing aproach to learn the cardinality of the
hidden variables, i.e. in each step we increased by one
the cardinality for the hidden node where it caused the
biggest increase in the score (we again used EM to get
the ML estimates). Table 2 summarizes the results of
this experiment.

Table 2: Average Information divergence (*E-03 bits)
for different scores and sample sizes (SS). The best
value for each sample size and all values with no
significant difference (95%) from the best one are bold.

SS BIC BIC+ CS CS+

1k 6.1± .6 7.5± .8 6.0± .6 6.4± .6
3k 2.2± .3 2.5± .3 2.4± .3 2.4± .3
9k .78± .1 .79± .09 .76± .1 .69± .07
27k .49± .08 .33± .05 .5± .09 .38± .06
81k .22± .04 .16± .03 .22± .03 .17± .03
243k .15± .04 .1± .03 .15± .03 .12± .03

It is clear from Table 2 that using the plus scores which
account for the dimension correction leads to better fit
of the data. In our experiment this behaviour is ob-
served for larger sample sizes only. This is probably
due to the random parametrization of the generative
model. We expect that for real data with some deter-
ministic or strong dependencies this behaviour would
be observed for smaller sample sizes as well. How-
ever, for very large sample sizes all the scores should



lead to the same fit of the data, because they have
all dimension penalties proportional to the log of the
sample size which, compared to the linear propotion-
ality of the likelihood, converge to zero. We never
observed this behaviour and we never discovered the
generative model, either. The closest model found is
4,3,3:2,2,2,2,2 and it was selected in one run by the
CS+ score.

There are some problems with the BIC+ score. The
first problem is that for the smallest sample size in
Table 2 it resulted in the worst fit. The second prob-
lem is that the BIC+ score is not able to discriminate
among models with different cardinalities of some hid-
den variable if they have the same effective number of
parameters and if they have the same likelihood (i.e.
the simplest one provides the same fit as the others).
In fact, the first problem may just be a manifestation
of the second problem, as the most frequently learned
models for the smallest sample size were 2,2,2: and
2,3,2:, resp. 2,2,3: . The CS+ score deals well with
such situations and it is clearly the score of choice ac-
cording to our experiments.

7 CONCLUSIONS

When learning graphical models from data, one typi-
cally has to select among multiple models. The BIC
score is a popular scoring metric used for this task.
The score represents a trade-off between fitness-to-
data and model complexity. When all variables are
observed, the complexity of a model can be measured
by its standard dimension, i.e. the number of inde-
pendent parameters. Geiger et al. (1996) argue that,
when hidden variables are present, the standard di-
mension might no longer be appropriate. An alterna-
tive was proposed. We call it the effective dimension.

A procedure for computing the effective dimension of
an LC model is proposed by Geiger et al. (1996). This
procedure involves symbolic differentiation and has to
be programmed for each model. It is hence difficult to
use in practice. Our first contribution in this paper is
the alleviation of this difficulty by providing a bound
that is tight and easy to compute.

HLC models are a generalization of LC models. They
are proposed in (Zhang 2002) to relax the conditional
independence assumption of LC models. As the second
contribution, we show that the effective dimension of
an HLC model can be computed from the effective
dimensions of some related LC models. This result
applies to any tree with hidden variables.

We have also conducted experiments to gauge the im-
pact of the dimension correction on learning. Our re-
sults indicate that dimension correction improves the

quality of induced models. In particular, the CS score
with dimension correction seems to lead to the best
results.
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