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Abstract. We propose a novel generative model for classification called
latent tree classifier (LTC). An LTC represents each class-conditional dis-
tribution of attributes using a latent tree model, and uses Bayes rule to
make prediction. Latent tree models can capture complex relationship
among attributes. Therefore, LTC can approximate the true distribu-
tion behind data well and thus achieve good classification accuracy. We
present an algorithm for learning LTC and empirically evaluate it on 37
UCI data sets. The results show that LTC compares favorably to the
state-of-the-art. We also demonstrate that LTC can reveal underlying
concepts and discover interesting subgroups within each class.
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1 Introduction

Classification is one of the most active areas in machine learning research. The
task is to predict the class label of an instance based on a set of attributes that
describe the instance. Approaches to this problem divide into two categories:
Generative and discriminative [19]. Let C be the class variable and X be the
set of attributes. Generative approaches build models for the joint distribution
P (C,X), compute the posterior distribution P (C|X) using Bayes rule, and as-
sign an instance to the most likely class. In contrast, discriminative approaches
directly model P (C|X). In this paper, we focus on generative approaches and
assume categorical attributes.

The simplest generative model is the naive Bayes (NB) classifier [8]. It as-
sumes that attributes are mutually independent given the class label. All depen-
dencies among attributes are ignored. Despite its simplicity, NB has been shown
to be surprisingly effective in a number of domains [7].
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Fig. 1. An example latent tree classifier. C is the class variable with 3 classes, X1–X4

are four attributes. Each rectangle contains a latent tree model for a specific class, in
which Y1 and Y2 are latent variables.

The conditional independence assumption underlying NB is rarely true in
practice. Violating this assumption could lead to poor prediction. The past
decade has seen a large body of work on relaxing this unrealistic assumption.
To mention two successful instances, tree augmented naive Bayes (TAN) [10]
builds a Chow-Liu tree [5] to model the attribute dependencies, while averaged
one-dependence estimators (AODE) [21] constructs a set of tree models over the
attributes and averages them to make prediction.

In this paper, we propose a novel approach to model the relationship among
attributes. Our approach is based on latent tree models. A latent tree model

(LTM) [23] is a tree-structured Bayesian network in which variables at leaf nodes
are observed and called manifest variables, whereas variables at internal nodes
are hidden and called latent variables. The model represents a set of complex
relationship among the manifest variables in a compact way. To see this point,
consider eliminating all the latent variables from the model. This will result in
a fully connected Bayesian network over all the manifest variables.

In our approach, we treat attributes as manifest variables and build LTMs to
model the relationship among them. The relationship could be different across
classes. Therefore, we build an LTM for each class. We refer to the collection
of LTMs plus the prior class distribution as a latent tree classifier (LTC). An
example is shown in Fig. 1. Each rectangle in the figure contains the LTM for
a class. Since the LTMs can model complex relationship among attributes, we
expect LTC to approximate the true distribution behind data well and thus to
achieve good classification accuracy. We empirically verify this hypothesis in the
experiments.

In addition to good classification performance, building LTCs on the basis
of LTMs also makes it possible to discover latent structures behind data. In
particular, we will demonstrate that the latent variables introduced during the
learning process can reveal concepts embedded in data as well as interesting
subgroups within each class. This merit can boost user confidence in LTCs.

The rest of this paper is structured as follows. We formally define LTC in
Sect. 2 and present an algorithm for learning LTC in Sect. 3. In Sect. 4, we



empirically evaluate LTC on 37 UCI data sets, and compare it with a spectrum
of generative classifiers as well as C4.5 [18]. In Sect. 5, we demonstrate that LTC
can discover appealing latent structures using an example. We discuss some
related work in Sect. 6 and finally conclude this paper in Sect. 7.

2 Latent Tree Classifier

We start by briefly reviewing latent tree models (LTMs). An LTM is a pair
M = (m,θ). The first component m denotes the rooted tree and the set of car-
dinalities of the latent variables. The second component θ denotes the collection
of parameters in M. It contains a conditional probability table (CPT) for each
node given its parent.

Let X and Y be the set of manifest variables and the set of latent variables in
M, respectively. We use P (X,Y|M) to denote the joint distribution represented
by M. Two LTMs M and M′ are marginally equivalent if they share the same
set of manifest variables X and P (X|M) = P (X|M′).

Let |Z| denote the cardinality of variable Z. For a node Z in M, we denote
the set of its neighbors by nb(Z). An LTM is regular if for any latent node

Y , |Y |≤
∏

Z∈nb(Y )|Z|

maxZ∈nb(Y )|Z| , and the inequality strictly holds when Y has only two

neighbors. As shown by [23], an irregular model M is over-complicated and can
be reduced to a regular model M′ which is marginally equivalent but contains
fewer parameters than M. Henceforth, we consider only regular models.

We consider the classification problem where each instance is described using
n attributes X = {X1, X2, . . . , Xn}, and belongs to one of the r classes C =
1, 2, . . . , r. A latent tree classifier (LTC) consists of a prior distribution P (C) on
C and a collection of r LTMs over the attributes X. We denote the c-th LTM by
Mc = (mc,θc) and the set of latent variables in Mc by Yc. The LTC represents
a joint distribution over C and X, ∀c = 1, 2, . . . , r,

P (C = c,X) = P (C = c)P (X|Mc)

= P (C = c)
∑

Yc

P (X,Yc|Mc) . (1)

Given an LTC, we classify an instance X = x to the class c⋆, where

c⋆ = argmax
C

P (C|X = x)

= argmax
C

P (C,X = x) . (2)

Note that, according to (1), this requires us to sum out all the latent variables
Yc for each class c. Thanks to the tree structures of LTMs, the summation could
be done in linear time in the number of attributes, as formalized below.

Proposition 1. The time complexity of classifying an unlabeled instance with

an LTC is O(rnv2), where r is the number of classes, n is the number of at-

tributes, and v is the maximum cardinality of variables in the LTC.



Proof. The time complexity of summing out all the latent variables Yc from the
c-th LTM Mc is O

(

(|Yc|+n)v2c
)

[17], where vc denotes the maximum cardinality
of the variables in Mc. It is know that a regular LTM contains less than n latent
variables [23]. Therefore, the overall time complexity for classifying an instance
is O(rnv2). ⊓⊔

3 A Learning Algorithm

Given a labeled training set D, we consider how to learn a good LTC from D.
This amounts to learning the prior distribution P (C) and a good LTM Mc for
each class c = 1, 2, . . . , r.

The prior P (C) can be easily estimated from D by counting the number
of instances belonging to each class. In the following, we focus on the more
challenging task of learning the LTMs.

3.1 Model Selection

We first partition D by class label and obtain r data sets {Dc|c = 1, 2, . . . , r}.
Each Dc contains only the attributes X. We then learn an LTM Mc from each
Dc independently.

The LTM is of high quality if it is close to the true distribution underlying
Dc. Nonetheless, the true distribution is unknown. Therefore, we use AIC score
[1] for model selection,

AIC(mc|Dc) = −2 logP (Dc|mc,θ
⋆
c) + 2d(mc) , (3)

where θ⋆
c is the maximum likelihood estimate to the parameters θc, and d(mc) is

the number of free parameters in model mc. The AIC score is an approximation
to the expected KL divergence of Mc from the true distribution. The lower the
score, the smaller the difference between Mc and the true distribution, and the
better the LTM.

In literatures, BIC score is used more often for learning Bayesian network
classifiers [10]. However, BIC score over-penalizes complex models and can lead
to poor approximation to the true distribution. In a preliminary study [20], we
empirically compared AIC with BIC for learning LTCs. We observed that AIC
produces LTMs that better fit unseen data. The LTCs learned using AIC also
achieve better classification accuracy than those learned using BIC.

3.2 Model Search

We adopt a recently developed hill-climbing algorithm called EAST [3] to search
for high scoring LTMs. EAST explores the model space using five search opera-
tors. They are node introduction (NI), node deletion (ND), node relocation (NR),
state introduction (SI), and state deletion (SD). Given an LTM, NI applies to a
latent variable and two of its neighbors. It adds a new latent variable to mediate
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Fig. 2. Illustration of NI, ND, and NR operators.

the latent variable and the two neighbors, and sets its cardinality to the same
as the existing latent variable. Figure 2 shows such an example. The model m2

is obtained from m1 by introducing a new latent variable Y3. ND is the reverse
of NI. It applies to two neighboring latent variables, removes one of them and
links its neighbors to the other. In Fig. 2, by deleting Y3 one goes from m2 back
to m1. NR operator adjusts the connections in an LTM. It considers two latent
variables, disconnects a neighbor from the first latent variable, and links it to
the second latent variable. In Fig. 2, one relocates X3 in m2 from Y1 to Y3 and
obtains m3. The last two operators modify domains of latent variables. SI adds
a new state to a latent variable. SD does the reverse.

Given a data set, EAST starts with the simplest LTM, i.e., the LTM that
contains only one latent variable whose cardinality equals to 1, and greedily
improves the model. In each search step, it applies some operators to the current
model, obtains a collection of candidate models, evaluates them using the AIC
score, and picks the best one to seed the next search step. The process repeats
itself until the model score ceases to increase. Note that, if EAST never improves
the initial model, the final LTC reduces to NB.

In each search step, one could apply all the five operators to the current
model. This could, however, produce a large number of candidate models. Eval-
uating them could take a long time. Therefore, the search procedure in EAST is
structured into three phases: Expansion, simplification, and adjustment. In each
phase, we consider only one or two operators and thus obtain much fewer candi-
date models. In the expansion phase, we only apply NI and SI. Both operators
make the current model more expressive and thus improve the first term in AIC
score. In the simplification phase, we consider only ND and SD. Both operators
simplify the current model and thus improve the second term in AIC score. In
the adjustment phase, we apply NR to adjust the structure of the current model.
It helps avoid local maxima. EAST iteratively goes through these three phases
and alternatively improves the two terms in AIC score.

To evaluate a candidate model, one needs to run the EM algorithm [6] to
compute the MLE θ

⋆. EM is known to be expensive. To speed up the evalua-
tion process, we run local EM instead. The key observations are that (1) the
parameters of the current model have already been optimized, and (2) a can-



didate model only differs from the current model in a small part. Therefore, in
local EM, we fix the parameters of the unaltered part, and optimize only the
parameters that are foreign to the current model. Consider the model m2 in Fig.
2 that is obtained from m1 using NI. In local EM, we only optimize the CPTs
of Y3, X1, and X2. In our implementation, we run local EM for a predetermined
number of iterations. It might not converge, but the obtained estimation is ac-
curate enough for ranking candidate models. After we obtain the best candidate
model, we optimize its parameters using full EM before comparing it with the
current model.

4 Empirical Evaluation

In this section, we empirically compare LTC with a spectrum of generative clas-
sifiers, ranging from the simplest NB, to more advanced TAN and AODE, and
to the most general Bayesian network augmented naive Bayes (BAN) [10]. We
also include C4.5 decision tree [18] in the comparison as a reference.

4.1 Experimental Settings

We used the 37 UCI data sets [2] that are recommended by WEKA [22] in our
experiments. The learning algorithms of TAN and AODE proposed by [10] and
[21] do not handle missing values. Thus, we removed incomplete instances from
the data sets. TAN, AODE, BAN, and LTC require discrete attributes. There-
fore, we discretized the data sets using the supervised discretization method pro-
posed by [9]. Table 1 summarizes the characteristics of the data sets obtained
after preprocessing.

We implemented LTC in Java. The detailed settings are as follows. We ran 40
iterations of local EM to evaluate each candidate model. For the best candidate
model, we ran full EM to optimize its parameters. The EM was terminated if
the improvement in loglikelihoods is smaller than 0.01, or the number of itera-
tions reaches 500. For both local and full EM, we adopted the pyramid strategy
proposed by [4] to avoid local maxima. The number of starting points was set
at 16 and 64, respectively.

We used the WEKA implementations of the other classification algorithms
in our experiments. Some details are given below:

– AODE: We set the frequency limit on super parents at 30 as suggested by
[21].

– BAN: We set the initial models to be naive Bayes and used hill-climbing to
search for good BANs with high AIC scores. The Markov blanket correction
built in WEKA was conducted on the final models to ensure every attribute
is in the Markov blanket of the class variable.

Following the common practice in machine learning, we smoothed the pa-
rameters for all the trained generative classifiers using Laplace correction. We
set the smoothing factor α = 1. Preliminary experimental results show that the



Table 1. The 37 data sets used in the experiments, their characteristics (columns 2-4),
and the classification accuracy of various algorithms (columns 5-10). For each data set,
the best accuracy is highlighted in boldface.

Domain Attr. Class Size LTC NB TAN AODE BAN C4.5

anneal 38 6 898 97.78±1.96 96.10±2.54 98.66±1.15 98.33±1.59 97.99±1.47 98.77±0.98

australian 14 2 690 85.36±4.29 85.51±2.65 85.22±5.33 86.09±3.50 85.51±4.10 85.65±4.07
autos 25 7 159 85.50±8.44 72.88±10.12 79.25±8.84 81.08±7.39 77.29±6.40 78.58±8.54

balance-scale 4 3 625 70.24±3.10 70.71±4.08 71.03±3.51 69.59±4.01 70.24±4.44 69.59±4.27
breast-cancer 9 2 277 72.87±9.31 75.41±6.44 71.11±5.14 76.49±7.96 71.42±6.54 74.39±7.34

breast-w 9 2 683 97.51±1.54 97.51±2.19 96.63±2.08 97.36±2.04 97.07±1.95 95.76±2.61
corral 6 2 128 100.00±0.00 85.96±7.05 99.23±2.43 89.10±8.98 97.69±3.72 94.62±8.92
credit-a 15 2 653 86.38±4.38 87.29±3.53 86.84±3.02 87.59±3.51 85.31±3.44 86.99±4.48
credit-g 20 2 1000 73.20±3.97 75.80±4.32 74.00±4.40 77.10±4.38 74.90±3.54 72.10±4.46
diabetes 8 2 768 76.44±2.44 77.87±3.50 78.77±3.32 78.52±4.11 78.91±3.62 78.26±3.97
flare 10 2 1066 83.21±2.77 80.30±3.42 82.84±2.27 82.46±2.31 82.93±2.33 82.09±1.80
glass 9 7 214 76.19±7.41 74.37±8.97 76.19±9.88 76.19±7.41 74.46±11.28 73.94±9.76
glass2 9 2 163 85.18±9.44 83.97±8.99 85.18±9.89 83.97±9.91 85.18±9.89 84.01±7.32
heart-c 13 5 296 82.46±4.66 84.11±7.85 82.80±5.74 83.10±7.17 83.10±6.99 74.66±6.49

heart-statlog 13 2 270 81.85±9.63 83.33±6.36 82.22±6.94 81.85±6.86 80.00±7.65 81.85±5.91
hepatitis 19 2 80 88.75±12.43 85.00±15.37 88.75±13.76 85.00±12.91 87.50±11.79 90.00±14.19

ionosphere 34 2 351 94.31±2.99 90.60±3.83 93.17±3.60 92.31±2.34 93.17±4.07 89.17±5.35
iris 4 3 150 94.00±5.84 94.00±5.84 94.67±5.26 93.33±5.44 94.00±5.84 94.00±4.92

kr-vs-kp 36 2 3196 96.62±1.19 87.89±1.81 92.21±2.30 91.18±0.83 97.06±0.92 99.44±0.48

letter 16 26 20000 92.71±0.47 74.04±1.04 85.61±0.63 88.91±0.50 85.01±0.84 78.63±0.62
lymph 18 4 148 89.14±6.65 83.67±6.91 85.10±7.01 85.62±8.66 87.05±9.99 78.33±10.44

mofn-3-7-10 10 2 1324 94.48±2.48 85.35±1.53 91.16±1.79 89.05±2.53 100.00±0.00 100.00±0.00

mushroom 22 2 5644 100.00±0.00 97.41±0.72 99.81±0.26 100.00±0.00 99.95±0.09 100.00±0.00

pima 8 2 768 77.35±3.92 78.13±4.24 78.65±4.62 78.65±3.81 77.87±4.53 78.38±2.90
primary-tumor 17 22 132 45.60±11.04 47.14±11.59 41.04±12.56 46.37±10.12 45.60±8.64 43.24±10.55

satimage 36 6 6435 89.57±1.24 82.42±1.51 88.50±0.89 89.26±0.59 87.91±1.01 84.37±1.34
segment 19 7 2310 95.67±1.47 91.52±1.60 95.32±1.74 95.63±1.23 95.06±1.80 95.32±1.63

shuttle-small 9 7 5800 99.88±0.14 99.34±0.27 99.81±0.15 99.84±0.13 99.86±0.11 99.59±0.19
sonar 60 2 208 82.31±9.19 85.62±5.41 86.60±7.72 87.07±6.31 80.29±8.85 79.81±8.14

soybean 35 19 562 93.78±2.52 91.64±4.44 93.41±3.38 91.99±4.22 92.17±4.70 91.82±3.75
splice 61 3 3190 94.51±2.07 95.36±1.00 95.30±1.41 96.21±1.07 94.48±1.40 94.36±1.58
vehicle 18 4 846 74.94±4.29 62.65±4.15 73.99±4.44 73.06±4.65 72.94±5.00 71.99±3.45
vote 16 2 232 95.86±3.38 89.91±4.45 94.03±4.72 94.03±4.07 93.81±4.93 95.18±4.48
vowel 13 11 990 80.30±3.02 67.07±6.14 87.37±2.94 81.92±4.11 82.22±3.96 80.91±2.31

waveform-21 21 3 5000 86.02±1.99 81.76±1.49 83.10±1.46 86.60±1.26 83.10±1.25 75.44±2.10
waveform-5000 40 3 5000 86.06±1.39 80.74±1.38 82.02±1.26 86.36±1.65 82.44±1.21 76.48±1.47

zoo 17 7 101 94.18±6.60 93.18±7.93 95.18±8.15 95.09±5.18 96.09±5.05 92.18±8.94

Mean 86.49±4.26 83.12±4.72 85.80±4.43 85.85±4.40 85.66±4.41 84.32±4.59
# Wins 15 3 4 11 3 5

parameter smoothing leads to significant improvement in classification accuracy
[20].

4.2 Classification Accuracy

We estimated the classification accuracy of an algorithm using stratified 10-fold
cross validation [12]. All the algorithms were run on the same training/test splits.
The mean and the standard deviation of accuracy are shown in Table 1. For each
data set, the best accuracy is highlighted in boldface. For each algorithm, Table
1 also reports its average accuracy over all the data sets and the number of wins,
i.e., the number of data sets on which it achieves the best accuracy.



Table 2. The number of times that LTC significantly wins, ties with, and loses to the
other algorithms.

NB TAN AODE BAN C4.5

# Wins 17 8 5 5 11
# Ties 19 27 29 29 24
# Loses 1 2 3 3 2

(a) Mt (b) Mf

Fig. 3. The structures of the LTMs for corral data. The numbers in the parentheses
denote the cardinalities of the latent variables. The width of an edge denote the mutual
information between the incident nodes.

From Table 1, we can see that LTC achieves the best overall accuracy, fol-
lowed by AODE, TAN, BAN, C4.5, and NB, in that order. In terms of the
number of wins, LTC is also the best (15 wins), with AODE (11 wins) and C4.5
(5 wins) being the two runners-up.

To compare LTC with the other algorithms, we also conducted two-tailed
paired t-test with p = 0.05. The number of significant wins, ties, and loses is
given in Table 2. It shows that LTC significantly outperforms NB (17 wins/1
loses) and C4.5 (11/2). LTC is also better than TAN (8/2), AODE (5/3), and
BAN (5/3).

5 Discovery of Latent Structures

One advantage of LTC is that it can capture concepts underlying domains and
automatically discover interesting subgroups within each class. In this section,
the readers will see one such example. More examples will be given in an extended
version of this paper.

The example is involved with the corral data [11]. It contains two classes
true and false, and six boolean attributes A0, A1, B0, B1, Irrelevant, and
Correlated. The target concept is (A0 ∧ A1) ∨ (B0 ∧ B1). Irrelevant is an ir-
relevant random attribute, and Correlated matches the class label 75% of the
time.

We learned an LTC from the corral data and obtained two LTMs, one for
each class. We denote the LTMs by Mt and Mf , respectively. Their structures
are shown in Fig. 3. Mt contains one latent variable Yt, and Mf contains two
latent variables Yf1 and Yf2. All the latent variables are binary.



5.1 Main Findings

We first observe that in both models, the four attributes A0, A1, B0, and B1 are
closely correlated to their latent parents. In contrast, Irrelevant and Correlated

are almost independent of their parents (notice the difference in edge widths
in Fig. 3). This is interesting as both models correctly pick the four relevant
attributes to the target concept.

We further studied the meanings of the latent variables and obtained more
appealing findings. The latent variable Yt in Mt takes two values. Therefore, Yt

represents a soft partition over the samples in the true class into two groups,
each group corresponding to one value of Yt. We refer to those groups as latent
groups, and denote them by the corresponding values of Yt. The latent variables
Yf1 and Yf2 inMf also take two values. Similarly, each latent variable represents
a peculiar soft partition over the samples in the false class into two latent groups.

Our analysis in the next subsection will show that:

1. The latent groups Yt = 1 and Yt = 2 correspond to the two components of
the concept, A0 ∧A1 and B0 ∧B1, respectively;

2. The latent groups Yf1 = 1 and Yf1 = 2 correspond to ¬A0 and ¬A1, while
the latent groups Yf2 = 1 and Yf2 = 2 correspond to ¬B0 and ¬B1;

3. The latent variables Yf1 and Yf2 jointly enumerate the four cases when the
target concept (A0 ∧A1) ∨ (B0 ∧B1) does not satisfy.

Before diving into the details, we would like to point out that LTC success-
fully discovering the underlying concept and intra-class subgroups gives rise to
its perfect classification result on the corral data (see Table 1). We argue that
the capability of discovering such latent patterns is one reason why LTC achieves
good classification accuracy.

5.2 Detailed Analysis

To understand the characteristics of each latent group, we examine the condi-
tional distribution of each attribute, i.e., P (X|Y = 1) and P (X|Y = 2) for all
X ∈ {A0, A1, B0, B1} and Y ∈ {Yt, Yf1, Yf2}. Those distributions are plotted in
Fig. 4. The height of a bar indicates the corresponding probability value.

We start by the latent groups associated with Yt. In latent group Yt = 1, A0

and A1 always take value true, while B0 and B1 emerge at random. Clearly, this
group of instances belong to class true because they satisfy A0∧A1. In contrast,
in latent group Yt = 2, B0 and B1 always take value true, while A0 and A1

emerge at random. Clearly, this group corresponds to the concept B0 ∧B1.
We next examine the two latent variables in Mf . It is clear that A0 never

occurs in latent group Yf1 = 1, while A1 never occurs in latent group Yf1 = 2.
Therefore, the two latent groups correspond to ¬A0 and ¬A1, respectively. Yf1

thus reveals the two cases whenA0∧A1 does not satisfy. Similarly, we find thatB0

never occurs in latent group Yf2 = 1, while B1 never occurs in latent group Yf2 =
2. Therefore, the two latent groups correspond to ¬B0 and ¬B1, respectively. Yf2

thus reveals the two cases when B0 ∧B1 does not satisfy. Consequently, Yf1 and
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Fig. 4. The attribute distributions in each latent group and the corresponding concept.

Yf2 jointly represent the four cases when the target concept (A0∧A1)∨(B0∧B1)
does not satisfy.

6 Related Work

There are a large body of literatures that attempt to improve classification ac-
curacy by exploiting attribute dependencies. They mainly divide into two cate-
gories: Those that directly model relationship among attributes, and those that
capture such relationship using latent variables. TAN, AODE, and BAN fall into
the first category. Another representative from this category is Bayesian multi-
net [10]. It learns a Bayesian network for each class and uses them jointly to
make prediction. Our method is based on the similar idea, but we learn an LTM
to represent the joint distribution of each class.

Our method falls into the second category. In this category, various latent
variable models have been tested for continuous data. To give two examples,
[16] combine finite mixture model with naive Bayes classifier. [13] propose latent
classification model. It uses a mixture of factor analyzers to represent attribute
dependencies.

In contrast, we are aware of much less work on categorical data. The one
that is the most closely related to ours is the hierarchical naive Bayes model
(HNB) [24, 14]. HNB also exploits LTM to model the relationship among at-
tributes. However, it differs from LTC in two aspects. First, attributes in HNB
are usually partitioned into disjoint subsets, while each subset is modeled using a
separate LTM. The root (latent) nodes of those LTMs can be treated as features
extracted from different subsets of attributes, and are put together with the class
variable to form a naive Bayes model for classification. In contrast, LTC builds
one single LTM to connect all attributes for each class. The LTM as a whole
gives a generative model for that class, which is used in the prediction phase to
compute the likelihood of new data points.



Second, HNB assumes homogeneous latent structure, i.e., the LTMs in HNB
are identical throughout all classes. This assumption could be unrealistic in
real world applications. See, for example, the corral data presented in Sect. 5.
Violating this assumption could lead to degenerated classification performance
and failure in latent structure discovery. In contrast, LTC describes different
classes using different LTMs. Therefore, it can accommodate the variance across
different classes.

We did not include HNB in our empirical comparison. The learning algorithm
proposed by [24] can only deal with several attributes and does not scale up to
most data sets used in our experiments. [14] developed a more efficient learning
algorithm but we have not been able to gain access to their implementation.

Recently, [15] extend the latent classification model to discrete domain. The
proposed model only handles binary attributes. Its generalization to multi-valued
categorical attributes is non-trivial.

7 Conclusions

We propose a novel generative classifier, namely, latent tree classifier. It builds
upon the powerful yet compact representation of latent tree models, and respects
the inter-class heterogeneity of the relationships among attributes. We empiri-
cally show that LTC compares favorably to NB, TAN, AODE, BAN, and C4.5
in classification accuracy. We also demonstrate that the learned LTC can reveal
underlying concepts and discover interesting subgroups within each class. As far
as we know, the second feature is unique to our method. We argue that the
capability of discovering such latent patterns is one reason why LTC achieves
good classification performance.

We used a hill-climbing algorithm, EAST, to learn LTC. For most of the
data sets used in the experiments, the training finished within a few seconds
to a few hours. For the 5 large data sets, kr-vs-kp, letter, mushroom, satimage,
and splice, the training took up to a few days. Thus, LTC is currently most
suitable for applications which allow a long offline training phase but demand
good online classification performance. On the other hand, we believe that the
promising results presented in this paper warrant future research on fast learning
algorithms for LTCs.
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