Communication Parameter Tests and Parallel
Back Propagation Algorithms
on iPSC/2 Hypercube Multiprocessor

Brian K. Mak *

Speech Technology Laboratory,
3888 State Street,

Santa Barbara, CA 93105

Abstract

The communication complezity on Intel’s second gen-
eration iPSC/2 hypercube and its effect on paralleliza-
tion of Back Propagalion type iraining algorithms for
neural networks are explored. On 1PSC/2, different
broadcasting methods are iested and three inter-node
communication schemes are evaluated based on their
performance on vector addition. These communica-
tion schemes are then utilized on parallel versions of
the Back Propagation training algorithm. The perfor-
mance of the resulting parallel variants of Back Prop-
agation are analyzed using two medium size problems:
vowel classification and English text-to-speech conver-
sion (NETtalk data).

Introduction

Massive parallelism is believed to be essential for
achieving human-like performance in fields such as
speech and image recognition. Simulation of massive
parallelism can be considered in at least three con-
texts: parallelism in modeling, computation, and al-
gorithm design. Artificial Parallel Distributed Pro-
cessing (PDP) neural network models attempt to en-
capsulate the model parallelism. On the other hand,
computation parallelism can now be attained in many
new parallel machines, such as Intel’s iPSC/2 hyper-
cube multiprocessor.

In this paper we concentrate on utilizing different
communication mechanisms of Intel’s second genera-
tion hypercube, iPSC/2(Intel’s Personal Supercom-
puter generation 2) to parallelize the Back Propaga-

*Research partially supported by fundings from UCSB Mi-
cro Proposal No. 615287; Agency Award No. 583002 (ESL
Incorporated).

1353

0-8186-2113-3/90/0000/1353%01 00N ® 190N IFFF

Omer Egecioglu

Department of Computer Science,
University of California,

Santa Barbara, CA 93106

tion (BP) training algorithm and its corresponding
Steepest Descent (SD) version for feed-forward neural
networks. First, different broadcasting methods are
tested and three inter-node communication schemes
are evaluated on iPSC/2, based on their performance
on vector addition: ‘

o Alternate Direction Exchange (ADE),
e Hypercube Gathering (HG),
o Nearest Neighbor Communication (NNC).

Communication parameters such as start-up time
and data transmission rates for iPSC/2 are -deter-
mined. Each of inter-node communication schemes
is then used in parallelized variations of BP and SD.
The design issues of the resulting alternate methods
center around enhancing computational parallelism,
providing relaxation, determining the frequency of re-
quired updates, and minimizing communication costs
on message-passing multiprocessors.

A summary of the performance of the resulting par-
allel algorithms on vowel classification and English
text-to-speech conversion is given.

Hypercube Communication

It is well known that running an application on a
message-passing parallel machine has to take into ac-
count message-passing costs, as the processors must
communicate with one another to co-ordinate activi-
ties. Theoretically, the communication time may be
expressed as:

T=pf+0clL (1)
where T' = total communication time in ms;
B = communication start-up time in ms,

o = data transmission rate in us/byte; and,
L = size of message body in bytes.

If L is small, B > Lo, and it is wiser to pack several
small messages into one (if the application permits)

and send only once. Some useful and well known al-
gorithms for global communication in a hypercube are
described below:

1. Hypercube Broadcast

Aim: To send the same piece of data of size L
from the node labeled 0¢ to all other nodes
in a d-cube.

Algorithm: Broadcast from root down to the
leaves in a hypercube spanning tree.

STEP 1 Node 09 sends data to 09~11 of level
1 in the spanning tree.

sTep 2 Fork =2,3,...,d, all nodes at lev-
els less than k send simultaneously the

data received to their own. children at
level k.

Theoretical Time: d{(8+ Lo) in d steps.

2. Hypercube Gathering

Aim: All nodes send their own piece of data to
a particular node labeled 04 in a d-cube.

Algorithm: Gather from the leaves up the hy-
percube spanning tree to the root.

STEP 1 Fork=d,d~1,...,1, each node at

level k, labeled 09-%1a;_, where ag_q -

represents any (k—1)-bit binary number,
sends its own accumulated data to its
parent labeled 04-%+1q;_;.

Theoretical Time: dB+(2%—1)Lo in d steps,
assuming that all original data owned by
each node are of size L.

3. Alternate Direction Exchange

Aim: All nodes exchange their own local data
with all the others so that finally every node
has all the data.

Algorithm: - Split the d-cube into two (d — 1)-
subcubes in each of the d directions suc-
cessively. During each split, each node of
the two subcubes exchanges its accumulated
data with its counterpart in the other sub-
cube.

sTEP 1 For k = 1,2,...,d, a node whose
kth bit is 1, exchanges its accumulated
data with its opposite node — the node
with the same label except. that its kth
bit is 0. In other words each node la-
beled ag_rlag..1 where a; denotes a j-
bit binary number, sends its accumu-
lated data to its counterpart labeled
ag_;0ay_1.

1354

Theoretical Time: 2[d3 + (2¢ — 1)Lo] in d
steps, assuming that all original data owned
by each node are of size L.

Refer to [SS88], [SS85], and [BT89] for detailed de-
scription of a number of other communication methods
and topological properties of hypercubes.

Evaluation of Intel’s iPSC/2
Hypercube Communication
Parameters

The main distinction between iPSC/2 and its ances-
tor iPSC/1 is its Direct-Connect Routing System (See
[Int88] for details of iPSC/2 architecture). Briefly, in
iPSC/2 each node has its own Direct-Connect rout-
ing module (DCM) which routes and relays messages
throughout the system, freeing the node processor for
local processing. The only time that a node processor
is involved with communication is at the source (ini-
tiation) or the destination (reception) of the message.
Each DCM supports 8 bidirectional serial communi-
cation channels. Each channel is independent from
the others, and has a bandwidth of 2.8Mbytes/sec
in each direction. It may route up to 8 messages,
and simultaneous transmission and reception of mes-
sages is possible. The DCM also provides almost uni-
form message latency for communication between all
nodes (neighboring or non-neighboring nodes). This is
because the time needed to set the switching mecha-
nism at each intermediate node on a communication
channel is only about 1 or 2 ps. Actually it is claimed
that multiple node communication takes at most 10%
longer than neighboring node communication does
[Dun88]. Consequently, the hypercube may be treated
like an ensemble of fully interconnected processors for
node-to-node communication, but not necessarily for
global communication operations [Int88, Dun88].

In the following, the parameters of the iPSC/2 com-
munication channels and the performance of different
hypercube communication methods are determined!.

Echo Test

To find the values of # and o of the iPSC/2 commu-
nication channel, an echo test was performed. Mes-
sages of various lengths are sent from node 0 to another
node, which then echoes back the received message.

1The actual tests were performed on 8/10/89 on the Ad-
vanced Computing Facility (ACF) of Cornell Theory Center.
The ACF receives funding from New York State and members
of the Corporate Research Institute.

The test is looped for 50 times and the average time
is taken. This is repeated for 5 times and the median
value is noted. A similar procedure is applied to all of
the tests in this section.

Observations :

1. For the same Hamming distance node-node com-
munication, the results are similar on cubes of all
dimensions (d = 1 to d = 5). The results for com-
munication in a 5-cube is shown in Table 3 and
Graphs 1 and 2.

. From Graph 1, we see that messages of size less
than 100 bytes require a fixed amount of time. For
message size above 100 bytes the expected linear
relationship between T and L is validated. The
values of 8 and o for different Hamming distance
node-node communication are found by linear re-
gression. These are summarized in Table 4.

. These results indicate that we have a fixed data
transmission rate of 0.3593us/byte, and a vary-
ing communication start-up time. A linear rela-
tionship between the start-up time and Hamming
distance is observed (Graph 3) with a correlation
coefficient of 0.9981 as:

B =0.6744+ 0.03123 x H(ms) .)

Thus each additional hop requires 0.03123ms for
routing.

. Because of the small magnitude of the delay in
multi-hop communication, 5-hop communication
of a 1Kbyte message requires only ~10% longer
than 1-hop communication of the same message
(the longer the message, the smaller the percent-
age). Thus Intel’s claim that for most applica-
tions, the nodes in iPSC/2 hypercube may be con-
sidered as fully connected from the point of view
of node-to-node communication is justified.

. Our results are very close to those cited in
[Dun88].

Broadcast Tests

As many parallel applications require broadcasting a
piece of message from one node to all others, e.g. send-
ing an initial condition to all processors, it is useful to
find an optimal broadcasting method. Three broad-
cast tests were performed on iPSC/2:

e using the Build-In Broadcast Function (BIBF);
¢ using the Hypercube Broadcast (HB) algorithm;
and,

¢ Sequentially Sending (SS) the message to all nodes
in the hypercube.

1355

Node 0 (= 0¢) is chosen to broadcast the message, and
the farthest node is required to send an acknowledge-
ment of 0 byte back before the next round, to prevent
any pipelining effect. Here we assume that the farthest
node is the last node to receive the message (which
may not be absolutely true because of unpredictable
communication delay for other nodes.)

The time required for messages of various sizes
broadcast in a 5-cube is plotted in Graph 4, while
Table 5 shows those results in smaller cubes. These
results include the acknowledgement time as well.

Observations :

1. All three methods perform almost equally well in
l-cube broadcast as expected since in this case
we are basically sending a 1-hop message. The
slightly longer broadcast time required for BIBF
and HB can be attributed to their algorithmic so-
phistication.

For broadcasting in a cube of dimension greater
than 1, the three methods are ranked in decreas-
ing order of performance as:

BIBF >HB> SS.

BIBF and HB give almost the same results. For
a message of 16 Kbytes, HB is only 3% slower. It
seems that BIBF is actually implemented with the
Hypercube Broadcast algorithm. Heavy commu-
nication contention accounts for the poor perfor-
mance of SS.

Vector Addition Tests

The reverse of broadcasting is message gathering. As
an application usually needs to gather information
from various nodes to compute some kind of global
quantity, a purely gathering test is not that meaning-
ful. Instead we do a floating-point vector addition test
by the following three methods:

e the Alternate Direction Exchange(ADE) algo-
rithm,;

¢ the Hypercube Gathering (HG) algorithm; and,

e Random Collecting (RC), in which the messages

are sent by all nodes directly to one particular
node.

Again node 0 is chosen as the gathering node. Each
node sends its own vector to node 0. At the conclu-
sion, at least node 0 will contain the sum of all the
vectors. To synchronize the gathering, node 0 first
sends a starting signal of 0 byte to all the nodes by
the Built-In Broadcast Function to initiate the gath-
ering algorithm. The floating-point addition is done

while the gathering algorithm is being executed. Thus
the measured time is actually the sum of time spent on
floating-point vector initialization, broadcasting, gath-
ering, and floating-point vector addition.

The ADE algorithm is worth testing -since the
iPSC/2 communication channels are bidirectional,
thus nodes may exchange data by sending their own
data and receiving data from their counterparts simul-
taneously.

The results for additions of vectors of various dimen-
sions in a 5-cube are plotted in Graph 5. Table 6 is a
summary of all of the results obtained.

Observations :

1. All three methods give similar result for 1-cube
vector addition as this involves only the sending
of a 1-hop message. ADE requires slightly longer
time.

. For broadcasting in a cube of dimension greater
than 1, the three methods are ranked in decreas-
ing order of performance as

HG > ADE > RC.

. ADE performs only slightly poorer than HG. Even
for floating-point vectors of dimension 4096 or
16 Kbytes, ADE is only 10% slower.
ADE has two advantages over HG:

However

(a) At the conclusion, not only node 0 but all
nodes have the total sum.

(b) In applications where every node needs the
sum for further computation, the sum must
be broadcast back to each node in HG. How-
ever by employing ADE, this step may be
avoided. If we add to those results of HG
the time needed to broadcast the vector sum
back to each node, the adjusted times are
greater than those of ADE as shown in Ta-
ble 6(e).

The bidirectional nature of the iPSC/2 communi-
cation channels does not seem to be as beneficial
as expected.

Once again RC suffers from heavy communication
contention.

PDP Model and Back
Propagation Training

The PDP model that we consider is a multi-layer
perceptron-like feed-forward nonlinear network. The
bottom layer conmsists only of input units, while the
top layer consists only of output units. There may be

1356

more than one layer of hidden units. Output of a unit
in a lower layer is sent only to unit(s) in higher layer(s).
When a training pattern is presented to the input
layer, the inputs propagate forward by the Propaga-
tion Rule and a non-input unit combines all its inputs
by means of a logistic activation function to determine
its activation value. Its output value is then deter-
mined by an identity output function. See [RM86] for
further details.

BP is a supervised training scheme. It is a variant of
the standard gradient descent method, aiming to min-
imize the mean square error between desired outputs
and actual network outputs when a set of training in-
put patterns and the corresponding target patterns are
presented to the network. The cumulative error made
is a function of the connection weights, so that the min-
imization is performed over a very large dimensional
space. The need to parallelize the training rule itself
arises from the time requirements of gradient-descent
based algorithms for neural networks, when the dimen-
sion of the underlying space is large (typically several
thousand).

BP training involves two phases: a forward phase
and a backward phase. During the forward phase, in-
put signals are propagated forward according to the
propagation and activation rules through hidden lay-
ers to the output units. Error of an output unit due
to the difference between the target output and net-
work output values is computed and then propagated
backward to each hidden unit which uses all the er-
ror in the output units to compute its own. The so
called generalized delta rule[RMS86] is used to update
the connection weights in the backward phase.

In the standard steepest descent method, the
weights are updated after each epoch, (i.e. one pre-
sentation of the whole set of patterns to be learned).
However in BP, weights are updated after the presenta-
tion of each individual pattern. In the neural network
folklore, one expects that so far as the learning rate is
small, the deviation from the gradient descent method
should be small as well.

In the following sections we present a summary of
parallel variants of Gradient Descent based training al-
gorithms, along with their performance on two speech
related problems. A detailed analysis can be found in
[EM90].

Parallelized and Modified Back
Propagation Algorithms

The standard BP is modified and parallelized in six
different ways, namely: Parallelized

Standard Back Propagation Method (PSBP);
Pipelining Back Propagation Method (PPBP);
Averaging Back Propagation Method (PABP);
e Standard Steepest Descent Method (PSSD);

Pipelining Steepest Descent Method (PPSD);
and,

. Averaging Steepest Descent Method (PASD).

Patterns are assigned to the processors as evenly as
possible in all cases.

In PSBP, each node learns its own patterns, and
updates its own image of the net after each pattern
presentation as in normal BP. At the end of an epoch,
the nodes send their own total change of each weight
during that epoch to each other by ADE and update
the net according to the generalized delta rule. '

In PPBP, a node is chosen as the Manager, and an
epoch is divided into several, say m (which we will refer
to as the Pipelining Factor) rounds. Each node sub-
divides the learning patterns it receives so as to learn
as evenly as possible on each round. In each round,
the Manager updates the connection weights from the
computation results of the other nodes based on the
old weights of the previous round, broadcasts the new

weights to all nodes, and waits for the new computa- -

tion results from all other nodes. Simultaneously, each
node works on its patterns of that round with the old
weights of the net using BP, and sends its own total
change of each weight to the Manager using HG.

In PABP, each node learns its own patterns, and
updates its own image of the net after each pattern
presentation as in BP. At the end of an epoch, how-
ever, each node sends its own total change of each
weight during that epoch as well as its weights to all
nearest neighbors, while receiving theirs. It updates
each weight by averaging the original values of the
corresponding weights collected from all neighbors (i.e.
those values at the beginning of that epoch), and then
adding to the average all the corresponding weight
changes. :

The remaining three algorithms PSSD, PPSD, and
PASD are Steepest Descent analogues of PSBP, PPBP,
and PABP, respectively.

The hypercube gathering communication mecha-
pism used by each method is summarized in Table 1. It
is interesting to note that the communication scheme
also affects the locality of information. By using ADE,
every node shares its information with each other and
has a global view of the network. In HG, a node
‘knows’ the information that belonges to those chil-
dren on its subtree of the hypercube spanning tree.
The higher a node is in the tree, the more it knows; and

the root knows all. By NNC a node only ‘knows’ in-
formation about its nearest neighbors. Intuitively, an
algorithm using simpler communication such as NNC
saves time spent on communication, but it may take
more learning epochs as the nodes do not have the
global image of the whole net. This is not the case if a
more sophisticated communication method is adopted.

Table 1: Hypercube Gathering Schemes Used by
Different Parallelized Methods

METHOD GATHERING SCHEME
Standard Alternate Direction Exchange
Pipelining Hypercube Gathering
Averaging | Nearest Neighbor Communication

Note that except PPSD and PPBP in which one
node is chosen as the Manager to update the neural
net, each node in all other algorithms executes the
same set of operations. Also except PSSD, other al-
gorithms will behave differently with different number
of nodes used. For BP variations (PSBP, PPBP, and
PABP), the weights are updated after each pattern
presentation and different number of nodes will re-
sult in different distributions of learning patterns. For
PABP and PASD, different number of nodes means
different number of neighbors, and this will affect the
amount of information a node may acquire during
each learning epoch. Note also that some degree of
relaxation is embedded in the averaging method as
each processor just updates its knowledge based on
the information it receives from those available locally
around it.

Algorithm Performance
Evaluation Tests

Two medium-size problems are used to evaluate the
algorithms, using PDP models that consist of a single
hidden layer with varying number of hidden units:

o vowel classification,

¢ speech-to-text conversion (based on the NETtalk
experiment). :

These problems were chosen as BP is found to perform
quite well on speech recognition [EZ87, PMT86, SR86].
The two problems have very different characteristics as
summarized in Table 2, and the algorithms are found
to behave differently on these two problems. Conse-
quently different criteria of comparison are devised for
each one.

1357

In all of the tests conducted, the momentum fac-
tor is ignored to reduce the number of possible cases
of analysis. Furthermore, all communications are syn-
chronous since it was found that the iPSC/2 does not
support asynchronous communication well.

Vowel Classification Test

In this experiment a neural net is trained using BP
to classify 9 English steady state vowels? in an /h-d/
context [HEW88] uttered by 5 male speakers.

Test Details

e Number of learning patterns: 225.

o Number of input units: 17.

o Number of output units: 9.

o Size of net with 4 hidden units: 4x (17+49) = 104.

o Weights of the neural network are initialized to
random real numbers in the range 0.0 to 1.0.

e Terminating criterion: 90% correctness in maxi-
mum 10000 epochs.

o Message size: 5.168Kbytes for each of PSBP,
PSSD, PPBP and PPSD, and 10.336Kbytes for
PABP and PASD.

Remarks

1. Efficiency versus number of processors used:
Definition of self-efficiency of a parallel algorithm
is modified as follows for analysing standard or
averaging variations:

T

it

A 1 1 N,

E, = 7 = = X X —
n X i n T, N

n

, n>1, (3)

where E,, = self-efficiency with n processors;

T) = processing time with 1 processor;

T, = processing time with n processors;

Ny = no. of epochs req’d with 1 processor;
and, N, = no. of epochs req’d with n processors.

And for the pipelining variations, the following is
used:
1 To N,

E,,:-(rl)x—x—, n>2 .

Tn N2 (4)

2. Comparisons are done on a ‘likely’ optimal set-
ting under which learning is accomplished with
the least number of pattern presentations.

?Data came from the B subset of the Speech Technology Lab-
oratory Vowel Database, courtesy of Speech Technology Labo-
ratory — a division of the Panasonic Technologies Inc. of Mat-
sushita in Santa Barbara.

Test Results and Observations

Optimal results for vowel classification test on a 4-cube
appear in Table 7 and the efficiency results are given
in Table 8. Some observations are as follows:

A. With regard to the optimal results of vowels clas-
sification test on a 4-cube:

{1) Each of the standard and pipelining methods
requires similar number of epochs to com-
plete learning, regardless which of the two
approaches (SD or BP) is used.

(2) PASD works quite well and is'comparable to
PSBP.

(3) In terms of the number of training epochs re-
quired, pipelining method learns faster with
a larger pipelining factor.

(4) The performance of the various methods on
T/N ratio is in the following ascending order:

standard < pipelining (with appro-
priate pf) < averaging.

B. With regard to the efficiency results:

(1) In general, efficiency decreases with the di-
mension of hypercube used.

(2) The efliciency on high dimensional cubes de-
creases in the following order:

pipelining(pf = 2) > standard >

pipelining(pf = 3) >

pipelining(pf = 4) > averaging.
The reason is that pipelining method with
small pf may overlap communication time
with computation time, while that with
large pf does not and requires more com-
munication traffic. In spite of the simplic-
ity of its communication scheme, averaging
method has to exchange more information,
thus spends more time in communication.
However, some amount of time may have
been saved because of its asynchronous na-
ture.

(3) BP variations have higher efficiency than the
SD variations.

Text to Speech Conversion Test

This experiment is based on the NETtalk experiment
of [SR87] in which a neural net is trained using BP
to pronounce English text, i.e., to convert a string of
letters to a string of phonemes. Through the efforts of
T.J. Sejnowski and others, a corpus of 20008 words
was created for the NETtalk experiment. A small

1358

subset of 100 words, randomly selected from the Cor-
pus and concatenated together to form a continuous
text is used to evaluate the performance of the algo-
rithms. The test procedure is adopted from [SR87].
Each letter is represented locally by 27 binary inputs,
and distributed representation is employed in encoding
phonemes by 26 binary outputs.

Test Details

o Number of learning patterns: 828 (100 words with
inter-word spacing, giving 834 characters).

e Number of input units: 189(27 inputs for each
letter in the 7-letter window).

o Number of output units: 26 (21 for articulatory
features plus 5 for stress and boundary).

o Size of net with 30 hidden units: 30 x (189+26) =
6450.

o Weights of the neural network are initialized to
random real numbers in the range of -0.3 to 0.3.

o Terminating criterion: 90% correctness in maxi-
mum 30 epochs.

o Message size: 52.496Kbytes for each of PSBP,
PSSD, PPBP and PPSD, and 104.544 Kbytes for
PABP and PASD.

o Measure of correctness: an output bit is said to
be learned if the actual output deviates from the
desired one by an amount less that or equal to
0.2.

Comparisons are done on a ‘likely’ optimal setting
under which maximum exact matches are attained
with 30 hidden units at the end of 30 epochs.

Test Results and Observations

Optimal results for text-to-speech conversion test ap-
pear in Table 9 while the effect of cube size on a net
with 30 hidden units is given in Graph 6. Some obser-
vations are as follows:

A. With regard to the optimal results of text-to-
speech conversion test on a 4-cube:

(1) Only the BP variations work! All the SD
variations reach local minima after few learn-
ing epochs.

(2) All BP variations used almost the same
amount of time to complete an epoch.

(3) All BP variations perform best (in terms
of percentage of correctness) with the least
number of processors; that is, 1 for PSBP or
PABP, and 2 for PPBP.

B. With regard to the effect of hypercube dimension:

(1) For all BP variations, performance deterio-
rates with increasing hypercube dimension.

(2) PABP outperforms PSBP in cubes of dimen-
sions greater than 1.

(3) PPBP performs better with increasing
pipelining factor until it reaches & 13.

C. With regard to the effect of continuous learning:

(1) For PABP, the net continues to learn as
more patterns are presented. This is quite
surprisng considering that PSBP in 5-cube
does not work at all, while PABP in 5-cube
reaches ~60% correctness after 90 training
epochs, and PABP in 2-cube passes the 90%
correctness mark.

(2) For PPBP, performance initially increases
with more presentations and saturates after
~40 epochs for pf = 13, and =50 epochs
for pf = 6. Also neither achieve the 90%
correctness mark in both cases.

(3) Although within 30 training epochs most
methods applied on large cube does not
reach 90% correctness, some of them do give
good results in relatively short time.

Table 2: Comparison of characteristics of the two

experiments
COMPARISON classify convert
vowels | text-to-speech

Inherent Parallelism — +++
Number of Patterns - +
Net Size - ++
Number of Epochs Req’d ++ -
Process Time/Epoch - ++

{ — means less while -+ means more)

Conclusions
The two tested problems behave very differently under
the various parallelized BP methods. The evaluation
of the methods is difficult because of the many parame-
ters involved. The vowel recognition has no preference
to the approaches SD or BP that the learning schemes
adopt. It gives similar results with all of the six par-
allelized BP methods. On the other hand, SD ap-
proach fails in speech-to-text conversion. The conver-
sion seems to favor relaxation, requires more prompt

1359

incorporation of past experience (learned knowledge),
and prefers generalization of knowledge combined from
a smaller but reasonably rich set of ‘dissimilar’ pat-
terns learned in parallel.

Of the three parallelized BP methods: standard,
pipelining and averaging (SD or BP), pipelining
method with an appropriate value of the pipelining
factor learns better than the standard method. The
value of the pipelining factor should be large enough
to incorporate new knowledge to the neural net more
promptly but yet small enough so that sufficient pat-
terns are learned in order to derive novel knowledge.
One of the drawbacks of the method is that it dedi-
cates one of the processors to manage communication
among the rest. The good performance of the aver-
aging method was a big surprise. This method per-
forms much better than the standard method in text-
to-speech conversion in cubes of all sizes. Its perfor-
mance on prolonged training with more pattern pre-
sentations is also better than the pipelining method,
as the latter soon saturates.

A detailed analysis of the parallel variants of Back
Propagation based training algorithms for speech re-
lated problems reported here is in preparation [EM90].

References

(BT89] D. P. Bertsekas and J. N. Tsitsiklis. Paral-
lel and Distributed Computation: Numerical

Methods. Prentice Hall, 1989.

(Dun88] T. H. Dunigan. Performance of a sec-
ond generation hypercube. Technical Re-
port ORNL/TM-10881, Oak Ridge Na-
tional Laboratory, Engineering Physics and
Mathematics Division, Mathematical Sci-

ences Section, November 1988.

[EM90] O. Egecioglu and B. K. Mak. Performance
of back propagation algorithms for speech
recognition and synthesis. In preparation,

1990.

[EZ87] J.L.Elman and D. Zipser. Learning the hid-
den structure of speech. ICS Report 8701,
Institute for Cognitive Science, University

of California at San Diego, Feb. 1987.

(HEWS8] G. D. Haan, O. Egecioglu , and H. Wakita.
Improving the performance of back propa-
gation — trained vowel classifiers. The Jour-
nal of the Acoustical Sociely of America, 84,

1988. supplement 1, U4.

[Int88] Intel Corp., Beaverton, Oregon.

User’s Guide, 1988.

iPSC/2

[Lip87]

[PMTS86)

[RM86)

[Sch87)

[SR86]

[SR87)

[SS85]

[SS88]

Table 3: Results of echo test (where H = Hamming distance)

1360

Richard P. Lippmann. An introduction to
computing with neural nets. IEEE ASSP
Magazine, April 1987.

S. M. Peeling, R.K. Moore, and M.J. Tom-
linson. The multi-layer perceptron as a
tool for speech pattern processing research.
Proc. IoA Autumn Conference on Speech
and Hearing, 1986.

D. E. Rumelhart and J. L. McClelland. Par-
allel Distributed Processing: FEzplorations
tn the Microstructure of Cognition, volume

1:Foundations. MIT Press, 1986.

Robert Schnabel. An overview of parallel
architecture and algorithm characteristics.
SIAM, Oct 1987.

T. J. Sejnowski and C. R. Rosenberg.
Nettalk: A parallel network that learns to
read aloud. Technical Report JHU/EECS~
86/01, John Hopkins University, 1986.

T. J. Sejnowski and C. R. Rosenberg. Paral-
lel networks that learn to pronounce English
text. Compler Systems, 1:145-168, 1987.

Y. Saad and M. H. Schultz. Data commu-
nication in hypercubes. Research Report
YALEU/DCS/RR~428, Computer Science
Department, Yale University, October 1985.

Y. Saad and M. H. Schultz. Topological
properties of hypercubes. IEEE Transac-
tion on Computers, 37:867-872, 1988.

LENGTH COMMUNICATION TIME (ms)
(byte) |u=1|u=2|u=3lu=4]u=5
0 |l 0.315| 0.325| 0335 0.350 | 0.360
16 || 0.385| 0.395| 0.405| 0.415| 0.425
32 || 0.390| 0.395| 0.410| 0420 0.430
64 || 0.395| 0.400| 0.415| 0430 | 0.430
100 || 0.400| 0.410 | 0.420| 0.435| 0.445
128 |l 0.750| 0.780 | 0.810 | 0.850 | 0.870
256 || 0.800| 0.820 | 0.865| 0.895| 0.925
512 || 0.885| 0.915| 0.950 | 0.985| 1.010
1024 f 1.075| 1.100| 1.135| L.175| 1.195
2048 || 1.450 | 1.480 | 1.505| 1.545| 1.565
4096 | 2.175| 2.205| 2.240| 2270 | 2.300
8192 || 3.650 | 3.675| 3.710| 3.750 | 3.770
16384 || 6.590 | 6.610 | 6.655| 6.690 | 6.715

Table 4: Estimates of iPSC/2 communication parameters

1361

HAMMING | STARTUP | TRANSMISSION COEF. OF
DISTANCE | TIME (ms) | RATE (us/byte) | CORRELATION
1 0.7065 0.3592 0.999998
2 0.7344 0.3587 0.999997
3 0.7678 0.3593 0.999999
4 0.8041 0.3593 0.999999
5 0.8278 0.3593 0.999999
Table 5: Results of broadcast tests
(2) | (c)
LENGTH || 1-CUBE BROADCAST TIME (ms) LENGTH “ 3-CUBE BROADCAST TIME (ms)
(byte) BIBFE | Hs | ss (byte) || miBF us ss
16 0.70 0.70 0.70 16 1.06 1.54 2.18
32 0.70 0.72 0.70 32 1.06 1.54 2.18
64 0.72 0.72 0.70 64 1.06 1.56 2.22
100 0.72 0.72 0.72 100 1.06 1.58 2.24
128 1.10 1.06 1.06 128 2.16 2.62 4.98
256 1.16 1.12 1.12 256 2.32 2.76 5.08
512 1.26 1.22 1.20 512 2.58 3.02 5.34
1024 1.44 1.40 1.38 1024 3.14 3.58 6.54
2048 1.80 1.76 1.76 2048 4.22 4.68 9.04
"~ 4096 2.54 2.50 2.50 4096 6.42 6.90 13.98
8192 4.02 3.96 3.96 8192 10.82 11.32 24.38
16384 6.96 6.92 6.90 16384 19.62 20.14 45.16
(b) (d)
LENGTH " 2-CUBE BROADCAST TIME (ms) LENGTH || 4-CUBE BROADCAST TIME (ms)
(byte) " BIBF | HS [sS (byte) BIBF I HS sS
16 0.88 1.14 1.20 16 1.22 1.96 4.12
32 0.88 1.14 1.20 32 1.22 1.98 4.14
64 0.88 1.14 1.22 64 1.22 1.98 4.20
100 0.90 1.16 1.22 100 1.24 2.02 4.24
128 1.64 1.84 2.36 128 2.68 3.40 10.26
256 1.74 1.96 2:42 256 2.86 3.60 10.46
512 1.92 2.12 2.58 512 3.24 3.96 10.92
1024 2.28 2.48 3.10 1024 3.96 4.68 13.50
2048 3.02 3.24 4.16 2048 5.44 6.16 18.94
4096 4.48 4.70 6.32 4096 8.34 9.10 29.54
8192 7.42 7.64 10.76 8192 14.24 15.00 51.70
16384 13.28 13.52 19.66 16384 25.96 26.76 96.28

Table 6: Results of vector addition tests

(2)
LENGTH | VECTOR || 1-CUBE ADDITION TIME (ms)
(byte) SIZE ADE l HG] RC
16 4 0.90 0.84 0.82
32 8 1.00 0.92 0.92
64 16 1.22 1.12 1.12
100 25 1.42 1.36 1.36
128 32 2.32 1.88 1.90
256 64 3.16 2.72 2.74
512 128 4.86 4.38 4.40
1024 256 8.30 7.70 7.76
2048 512 15.24 14.36 14.48
4096 1024 29.14 27.68 27.92
8192 2048 56.84 54.30 54.78
16384 4096 112.84 107.56 108.54
(b)
LENGTH | VECTOR || 2-CUBE ADDITION TIME (ms)
{(byte) SIZE ADE HG | RC
16 4 1.54 1.42 1.50
32 8 1.72 1.58 1.72
64 16 2.02 1.88 S 212
100 25 2.36 2.22 2.58
128 32 4.00 3.18 4.04
256 64 5.28 4.46 5.68
512 128 7.84 6.98 9.02
1024 256 13.04 12.04 15.74
2048 512 23.70 22.20 29.22
4096 1024 44.70 42.46 56.18
8192 2048 87.04 82.96 109.94
16384 4096 172.22 164.02 217.88

1362

(<)

LENGTH | VECTOR || 3-CUBE ADDITION TIME {ms)

(byte) SIZE ADE] HG j RC
16 4 2.22 2.04 2.76

32 8 2.42 2.22 3.16
64 16 2.84 2.64 3.98
100 25 3.32 3.10 4.88
128 32 5.72 4.50 8.42
256 64 7.42 6.22 11.70
512 128 10.84 9.66 18.32
1024 256 17.86 16.50 31.62
2048 512 32.30 30.24 58.36
4096 1024 61.20 57.68 111.90
8192 2048 119.32 112.40 | 219.32
16384 4096 231.90 222.06 | 436.58

(d)

LENGTH | VECTOR || 4-CUBE ADDITION TIME (ms)

(byte) SIZE ADE] HG [RC
16 4 2.92 2.64 5.18
32 8 3.16 2.90 6.00
64 16 3.68 3.40 7.62
100 25 4.24 3.98 9.42
128 32 7.42 . 5.82 17.12
256 64 9.54 7.96 23.76
512 128 13.80 12.26 37.04
1024 256 22.66 20.84 63.68
2048 512 40.92 38.10 116.96
4096 1024 77.92 72.50 224.00
8192 2048 152.66 141.10 440.02
16384 4096 303.38 278.50 873.34

Table 8: Efficiency resuits of vowel classification test with o
(p/ = pipelining factor, T,

ptimal setting
= processing time for i processors,

E, = efficiency for i processors. N = number of epochs required)

METHOD | RESULT 0-cuBe [T-CUBE | J.-CUBE | 3.CUBE | 4-CUBE | 5.CURE
PSSD T.(min) 804 1.2 | 21.2 12.6 .60 19
N 3243 3273 3249 3539 3568 337
. ... _ . . T./N(ms) 1488 755 392 214 128 87.2
Table 6: {e) where HG" time = HG time + broadcast time of vector sum) 100% | 98.4% | 95.2% | 87.3% | 73.4% | s3.5%
PSBP T(min)]| 168.1 145.7 56.3 237 13.7 | 830
. N 3317 5682 4284 3406 3482 3389
LENGTH | VECTOR 5-CUBE ADDITION TIME (ms) T/Nme) || 3041 1539 289 1 236 47
(byte) SIZE ADE HG® HG RC Ei_ 100% | 98.8% | 963% | 91.1% | 80.71% | 64.5%
T:(min) 126.0 1.3 228 10.1 840
16 4 3.56 4.62 3.24 9.96 #PSD N 5078 | 4846 | 5685 | 4677 | 3664
. } 54 11. pf=2 | T./N(ms) 1489 | 511 21 130 | 89.0
32 8 3.90 4.92 3:5 1.60 E: 100% | 97.1% | 88.3% | 76.4% | 54.0%
64 16 4.50 4.54 4.16 14.80 ﬂ(,Nn;n) 169.7 26.5 132 10.5
PPBP 4694 4670 4492 5502
100 25 5.20 6.24 4.84 18.40 pf=2 | T./N(ms) 2169 340 176 115
128 32 9.12 9.94 7.12 34.66 E; 100% - 91.1% | 82.2% | 60.8%
Ti(min) 3T 445 158 8350 %
. pf=3 W/ N (ms) 2056 708 339 189 138
512 128 16.86 18.40 14.88 74.98 E; 100% | 96.8% | 86.6% | 72.5% | 48.1%
1024 256 27.60 29.66 25.20 128.44 1;(;;,.) 1180 | 331 1.8 X -
PPRP 2339 1910 2688 2213 2233
2048 512 49.80 52,22 45.92 235.58 pf=3 | To/N(me) 3049 1041 487 259 177
4096 1024 94.10 97.24 87.28 450.56 E; 100% | 97.6% | 89.4% | 78.5% | 55.6%
Ti(min) 61.7 18.5 9.30 6.10 4.50
8192 2048 183.50 187.22 169.94 881.58 ,;SD N 2471 2112 2123 2318 2095
. . 334.9 1747.24 pf=4 | T;/N(ms) 1498 526 263 158 129
16384 40%6 || d63.92 | 366.88 34.98 E; 100% | 94.9% | 81.4% | 63.2% | 37.5%
T{min) 1055 680 | 6.00
.PPBP N 2903 19711 2340
pf=4 | T:/N(ms) 2181 207 154
E; 100% — — 70.2% | 45.1%
PASD Ti{min) 221 41
N 4873 10000
T;/lz(mt) 300 249
PABP T:(min) 51.9 289 274 T 604
N 1434 1564 2661 9784
T:/N(ms) 2172 1109 618 370
E; 100% 98.0% | 87.8% — 36.8% —
{— indicates unsuccesslul learning)

Table 7: Optimal results of vowel classification test on a 4-cube
(pf = pipelining factor, A = number of hidden units,
n = learning rate, N = number of epochs required,
T = processing time, U/ P = number of patterns not learned)

METHOD OPTIMAL RESULT
H n N | T(min) | UP | T/N(ms/epoch) Table 9: Optimal results of text-to-speech conversion test after 30 epochs
PSSD 4 0.2 3568 7.60 21 128 (pf = pipelining factor, H = number of hidden units,
236 P = number of processors required, n = learning rate,
kel e ol 3482 137 18 T = processing time, PC = percentage of correctness)
psap! 4 0.1 | 5522 | 158 19 171
reso(pf=2) 4 0.3 | 4677 | 101 19 130 METHOD OPTIMAL RESULT, H = 30
pPBP(pf=2) 4 0.2 4492 13.2 20 176 P . T(min) | PC(%) | T/30(min/epoch)
ppsp(pf=3) 6 02 | 2108 | 85 27 265 -
eeso(pr=3){ || 4 02 | s426 | 120 | 144 PSBP ! 10 | 1617 | 9t4 5.39
rPor(pf=3) 6 02 | 213 96 22 259 PABP 1 1.0 161.7 | 91.4 5.39
reer(pf=3)f [4 02 | 4631 | 148 27 192 preP(pf=1) 2 1.0 161.4 | 52.9 5.38
pPsO(pf=4) 4 0.5 2318 | 6.10 26 158 PPBP(pf=2) 2 0.9 166.1 62.0 5.54
PPBP(pf=4) 4 04 | 1971 | 6.80 26 207 prEP(pf=3) 2 1.0 162.2 | 70.2 5.41
PASD 4 0.7 | 4873 | 121 16 148 Prr(pf=4) 5 0 621 | 746 540
PABP 4 08 | 9784 | 310 21 190 erar(n/=3) 5 o 522 | 707 sl
(t not optimal case but used for comparison } rror(sf=6) 3 o 1623 58 T
PPBP(pf=7) 2 1.0 162.6 86.7 5.42

(Note: steepest descent variations do not work.)

1363

0E=H Yiia UOISIaAU0D yoasds-01-1X2) o STi8 BGND jo 1083 19 Ydeag

Pouen

MM 1doid e wd i ol Wl ek o ad 14 daeddend

°

()

3w dnjiels UoNEOIUNWIWOS ouR elp Bunwey JualslIq g Ydean

soumng Funuuey

o

wo

no

(x) F4oodq og Je1yv ssaUId8LIo) jo afmusdIeg

{sw) swyy dnung

auly) UONPPY $10328A aqNI-g g ydean

(914q *Sor) axig advessy
o .] v

" 7
°
o
o0t
]}
ooz
o
s0e
!
t
X .
y | Puaetie) wopuey - 2
i PrpegieD sqnossddy = OH o%e
4 N eRraxy Worlaeng MPLIMY = 20V
!
L
{atwos uwauy) swty uorpestunuLed doy-g 1z ydean
(m4q) sx15 stessan
0008 0008 000 000 000G 00OV 000c 00O 0001 °
1
®

(swr) sanyy

(sw) swyy

2uify 15¥0PsOaq 3qNO-§ b ydean
(0 hq 30y) azig aTessay

" 2 ot . » v
°
()
’ %
/
K
/
\. 9
!
/ 00t
.
!
! 21
!
.88
!
. o9t
/
\ Pusg mnEanbsg = 55
WeapraNg sanausdil « GH sut
/ denouny Mwapeoq ul-iing - JAIE
!
L: o0z

(3twas Fo[) awn uopesrunuwswod doy-g 11 ydean

(314q t0)) arig afussay

" xn ot 8 3 v

(sw) awiy

(sw) swryy

1364

