
Available online at www.sciencedirect.com
www.elsevier.com/locate/specom

Speech Communication xxx (2013) xxx–xxx
Eigentrigraphemes for under-resourced languages

Tom Ko, Brian Mak ⇑

Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
Abstract

Grapheme-based modeling has an advantage over phone-based modeling in automatic speech recognition for under-resourced lan-
guages when a good dictionary is not available. Recently we proposed a new method for parameter estimation of context-dependent
hidden Markov model (HMM) called eigentriphone modeling. Eigentriphone modeling outperforms conventional tied-state HMM by
eliminating the quantization errors among the tied states. The eigentriphone modeling framework is very flexible and can be applied
to any group of modeling unit provided that they may be represented by vectors of the same dimension. In this paper, we would like
to port the eigentriphone modeling method from a phone-based system to a grapheme-based system; the new method will be called
eigentrigrapheme modeling. Experiments on four official South African under-resourced languages (Afrikaans, South African English,
Sesotho, siSwati) show that the new eigentrigrapheme modeling method reduces the word error rates of conventional tied-state trigra-
pheme modeling by an average of 4.08% relative.
� 2013 Elsevier B.V. All rights reserved.
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1. Introduction

In the past, research efforts on automatic speech recog-
nition (ASR) are highly focused on the most popular lan-
guages such as English, Mandarin, Japanese, French,
German, . . . etc. in the developed countries. The remaining
languages in the world, lacking audio and language
resources, are considered under-resourced languages. Usu-
ally the phonetics and linguistics of these languages are not
well studied either, thus the development of human lan-
guage technologies for these languages is greatly hindered.
Nonetheless, some of these under-resourced languages are
spoken by a large population. For example, Vietnamese
is spoken by about 80 million people, and Thai is spoken
by 60 million people. It is not difficult to see that real-life
ASR applications for these languages have a great poten-
tial. One major obstacle in developing an ASR system for
under-resourced languages is the availability of data. It is
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usually costly and labor-intensive to create audio record-
ings and their human annotated transcriptions, and make
linguistic analyses for languages. As a consequence, it is
both academically intriguing and commercially attractive
to look for economically more efficient and faster ways to
create human language technologies for the under-
resourced languages.

In order to reduce the amount of annotated audio data
for training the acoustic models of a new target language,
cross-lingual ( Ogbureke et al., 2010; Le and Besacier,
2009) and multi-lingual (Kohler et al., 1996) acoustic mod-
eling techniques have been developed. The rationale behind
these techniques is that an acoustic model may be ported to
or adapted from some other high-resourced languages, and
only a relatively small amount of training data is required
for the target language. A key step for these cross-lingual
or multi-lingual techniques to work is to figure out a good
mapping between phonemes across the languages. This can
be done either using a knowledge-based (Beyerlein et al.,
1999) or data-driven approach (Kohler et al., 1996). In
the data-driven approach, the similarities between sounds
can be measured by various distance measures such as
er-resourced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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confusion matrix (Beyerlein et al., 1999), entropy-based
distance (Kohler et al., 1996) or Euclidean distance (Sooful
et al., 2001). The approach is further improved when the
underlying model is more compactly represented. A nota-
ble example is the use of subspace Gaussian mixture model
(SGMM) (Povey et al., 2010) in multi-lingual ASR (Burget
et al., 2010; Lu et al., 2011). Another research direction is
heading to making linguistic analysis of a target language
easier and faster. Deducing the phone set and preparing
the pronunciation dictionary for a new language usually
require native linguistic experts. This process is expensive
and time-consuming, and is even more so for non-native
developers. One way to partially automate the develop-
ment of a pronunciation dictionary is to first prepare a
small primary dictionary manually, and then use it to boot-
strap a large dictionary by applying grapheme-to-phoneme
conversion (Meng et al., 1996; Bellegarda et al., 2003;
Davel et al., 2004; Andersen et al., 1996). However, the per-
formance of the final dictionary highly depends on the
quality of the primary one. If the primary dictionary is
not rich enough and does not cover all the implicit graph-
eme-to-phoneme relations in the language, the perfor-
mance of the overall system will be hampered.

On the other hand, there is a simple solution to the
creation of the phone set and pronunciation dictionary
for an under-resourced language: there is no need to
develop them if graphemes instead of phonemes are
adopted as the acoustic modeling units. In grapheme
modeling ( Schukat-Talamazzini et al., 1993; Kanthak
et al., 2002; Charoenpornsawat et al., 2006; Le and
Besacier, 2009), each word in the “pronunciation dictio-
nary” is simply represented by its graphemic transcription
according to its lexical form. According to Daniels and
Bright (1996), there are six types of writing systems in the
world: logosyllabary, syllabary, abjad, alphabet, abugida,
and featural. Many languages that use the alphabet writing
system are suitable for grapheme acoustic modeling, and
their grapheme set is usually selected to be the same as their
alphabet set (Schukat-Talamazzini et al., 1993).

The performance of grapheme modeling in ASR is
sensitive to the languages. For example, it works better
than phone modeling in Spanish but worse than phone
modeling in English and Thai (Stuker, 2009). The reason
is that the pronunciation of English has developed away
from its written form over time, whereas Thai has some
complex rules that map its writing to the pronunciation.
There are techniques that improve grapheme modeling;
for example, in Charoenpornsawat et al. (2006), a text
normalization scheme was applied on Thai graphemes
to improve the performance of a Thai ASR system. There
are also works on multi-lingual grapheme modeling
(Stuker, 2008; Kanthak and Ney, 2003). These techniques,
however, are usually language-dependent as linguistic
knowledge of the target language has to be known in
advance. In this paper, we will investigate a language-
independent technique to improve current grapheme
modeling.
Please cite this article in press as: Ko, T., Mak, B., Eigentrigraphemes for und
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Recently, we proposed a new method of estimating
parameters of context-dependent models called eigentri-

phone acoustic modeling (Ko and Mak, 2011a; Ko and
Mak, 2011b; Ko and Mak, 2012; Ko and Mak, accepted
for publication). The main idea behind our method is the
derivation of an eigenbasis over a set of triphones so that
each triphone in the set can then be modeled as a distinct
point in the space spanned by the basis vectors. The basis
vectors are now called eigentriphones in our method. The
eigentriphones represent the most important context-
dependent characteristics among the given set of triphones.
Since usually not many eigentriphones are required to rep-
resent the eigenspace, triphones with few training samples
can be robustly estimated as a linear combination of the
eigentriphones. From another point of view, context-
dependent phonetic information is extracted from the more
frequently occurring triphones in the triphone set in the
form of basis vectors, which are shared with the less fre-
quently occurring triphones in the set. The acoustic model-
ing of those triphones with limited amount of training data
may then be thought of as an adaptation problem which is
then solved by the eigenvoice approach (Kuhn et al., 2000).
Moreover, compared with conventional tied-state triphone
modeling, our new eigentriphone modeling method can
eliminate the inevitable quantization error due to state
tying — states tied together are not distinguishable. In
our previous works, we investigated the use of model-
based, state-based, and cluster-based eigentriphone acous-
tic modeling, and observed that cluster-based eigentri-
phone modeling consistently outperformed the
conventional tied-state hidden Markov model (HMM)
training method on TIMIT phoneme recognition and
WSJ word recognition (Ko and Mak, accepted for
publication).

Eigentriphone acoustic modeling is complementary to
other acoustic modeling approaches such as SGMM that
are based on tied-state HMM-GMMs. SGMM allows a
compact representation of HMMs with a set of common
basis Gaussians and state-dependent projection vectors.
Since there are fewer parameters to estimate, model param-
eters of HMM-SGMM may be estimated more robustly for
the same amount of training data. From another perspec-
tive, HMM-SGMMs may be trained with less data than
HMM-GMMs. Whereas state are usually tied in HMM-
SGMMs, eigentriphone modeling unties the tied states so
that the states in the final models are, in general, all dis-
tinct. Eigentriphone modeling may take HMM-GMMs or
HMM-SGMMs as its initial models, unties the states in
each state cluster, derives an eigenbasis in each cluster,
and re-estimates the mean vectors of each member state
in the state cluster as a combination of the eigenvectors.
As a result, eigentriphone modeling recovers the quantiza-
tion errors in the initial tied-state HMM-GMMs or HMM-
SGMMs so that the final models are more discriminative.

Although we call our method eigentriphone acoustic
modeling, the proposed framework is actually very flexible
and can be applied to any group of modeling units
er-resourced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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provided that they may be represented by vectors of the
same dimension. In this paper, we would like to port the
cluster-based eigentriphone modeling framework to a graph-
eme-based ASR system to estimate the parameters of tri-
grapheme acoustic models. The new method, which we
call cluster-based eigentrigrapheme acoustic modeling, have
the following favorable properties over other grapheme-
based methods:

� Since it uses graphemes as the modeling units, it
enjoys the same benefits that other grapheme-based
modeling methods do. Most importantly, there is
no need to create a phone set and a pronunciation
dictionary. Thus, it is more favorable for building
ASR system for under-resourced languages.

� Eigentrigrapheme modeling will also enjoy the
same benefit like eigentriphone modeling: Many
trigraphemes in under-resourced languages may
have little training data; in the past, the problem
is mainly solved by state tying, but eigentrigra-
pheme modeling allows reliable estimation of the
infrequently occurring trigraphemes by careful
state clustering and then projecting the member
states of each cluster onto a low-dimensional sub-
space spanned by a small set of eigentrigraphemes
of the cluster.

� No language-specific knowledge is required and the
whole method is data-driven. It can be used to
improve existing systems that are based on conven-
tional tied-state trigrapheme HMM. In fact, one
may implement our method as a post-processing
procedure on conventional tied-state trigrapheme
HMMs.

� If trigrapheme state clusters are created using gra-
phemic decision tree, the decision tree may also be
used to synthesize unseen trigraphemes in the test
lexicon.

� States are generally not tied among the final trigra-
pheme models. Thus, the states are generally dis-
tinct from each other. We believe that the final
trigrapheme models can be more discriminative
than those trained on other methods.

The rest of this paper is organized as follows. In Section 2,
we will describe the cluster-based eigentrigrapheme acoustic
modeling method. That is followed by experimental evalua-
tion in Section 3 and conclusions in Section 4.
2 The questions in the decision tree are generated from the grapheme set
of the target language which is derived by scanning through the training
data. Thus, the trees are language-dependent but our method is still
language-independent.

3 Although the state clusters of cluster-based eigentrigrapheme modeling
2. Cluster-based eigentrigrapheme acoustic modeling

Fig. 1 shows an overview of the cluster-based eigentri-
grapheme acoustic modeling method. The framework is
very similar to the cluster-based eigentriphone modeling
1 The dimension of the space is low when compared with the dimension
of the trigrapheme state supervectors.
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method (Ko and Mak, accepted for publication). All tri-
grapheme states are first represented by some supervectors
and they are assumed to lie in a low dimensional space1

spanned by a set of eigenvectors. In other words, each tri-
grapheme supervector is a linear combination of a small set
of eigenvectors which are now called eigentrigraphemes.
Clustering of the states can be done by a singleton decision
tree, and the procedure is exactly the same as that of creat-
ing a conventional tied-state trigrapheme system.

Cluster-based eigentrigrapheme modeling consists of
three major steps: (a) state clustering via a singleton
decision tree, (b) derivation of the eigenbasis, and (c)
estimation of eigentrigrapheme coefficients. They will be
discussed in further details below.

2.1. Trigrapheme state clustering (or tying) by a singleton

decision tree

One major difference between phone-based and graph-
eme-based acoustic modeling lies in the construction of
the decision tree for tying hidden Markov model (HMM)
states. In phone-based modeling, it is well-known that deci-
sion tree using phonetic questions (Young et al., 1994) can
significantly improve speech recognition performance by
striking a good balance between trainability and resolution
of the acoustic models. However, it is not clear how the
phonetic questions used in a phone-based system to tie
triphone states can be ported to tie trigrapheme states in
a grapheme-based system as the relation between the
graphemes and their influence in the pronunciation of their
neighboring graphemes is not well understood. Although
the questions may be re-defined manually (Kanthak
et al., 2002) or automatically, ( Schukat-Talamazzini
et al., 1993) investigated the performance of both methods
in several languages and concluded that questions asking
only the identity of the immediate neighboring grapheme,
named as singleton questions, work at least as well as other
types of questions. In this paper, decision tree2 using
singleton questions at each node is used to generate the
conventional tied-state trigrapheme HMMs. In addition,
the trigrapheme states that belong to the same tied state
naturally form a state cluster on which our new cluster-
based eigentrigrapheme modeling may be applied. In other
words, the same singleton decision tree can be used to cre-
ate the tied states for a conventional tied-state trigrapheme
system as well as the state clusters for the construction of
cluster-based eigentrigraphemes.3
and the tied states of conventional trigrapheme modeling both come from
the nodes of the same decision tree, in general, they may not be exactly the
same nodes. The optimal set of tied states or state clusters is determined
using a separate set of development speech data.

er-resourced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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Fig. 1. The cluster-based eigentrigrapheme acoustic modeling method. (WPCA = weighted principal component analysis; PMLED = penalized
maximum-likelihood eigen-decomposition).
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2.2. Conventional tied-state trigrapheme HMM training

We adopt the standard procedure in HTK (Young et al.,
2006) to create the conventional tied-state trigrapheme
HMM system as follows.

STEP 1: Context-independent grapheme acoustic models
are estimated from the training data. Each con-
text-independent grapheme model is a 3-state
strictly left-to-right HMM, and each state is rep-
resented by a single Gaussian.

STEP 2: Each context-independent grapheme HMM is
then cloned to initialize all its context-dependent
trigraphemes.

STEP 3: For each base grapheme, the transition probabil-
ities of all its trigraphemes are tied together.

STEP 4: For each base grapheme, tie the corresponding
HMM states of all its trigraphemes using a sin-
gleton decision tree. Thus, three singleton deci-
sion trees are built for each base grapheme.
Once a set of trigrapheme states are tied together,
they share the same set of Gaussian means, diag-
onal covariances, and mixture weights.

STEP 5: Synthesize the unseen trigraphemes by going
through the singleton questions of the decision
trees.

STEP 6: Grow the Gaussian mixtures of the models4 with
the training data until each tied state is repre-
sented by an M-component Gaussian mixture
model (GMM) with diagonal covariance. In
practice, the optimal value of M is determined
by a separate set of development data.
4 In this paper, 4 iterations of embedded Baum-Welch training was
applied every time after the number of mixtures was grown.
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2.3. Eigentrigrapheme acoustic modeling

Recall that each node in the state clustering decision
tree has dual roles: it is treated as a tied state for tied-
state HMM training, and as a state cluster for eigentrigra-
pheme modeling. To begin cluster-based eigentrigrapheme
modeling, one first decides the tree nodes to be used as
the state clusters. Then the state-clusters are treated as
tied states, and conventional tied-state trigrapheme
HMMs are created using the procedure described in Sec-
tion 2.2. The resulting tied-state HMMs are used as the
initial models for deriving the eigentrigraphemes of each
state cluster.

2.3.1. Derivation of cluster-based eigentrigraphemes

The following procedure is repeated for each state
cluster i, consisting of Ni member states.

STEP 7: Untie the Gaussian means of all the trigrapheme
states in a state cluster with the exception of the
unseen trigrapheme states. The means of the
cluster GMM are then cloned to initialize all

untied trigrapheme states in the cluster. Note
that the Gaussian covariances and mixture
weights of the states in the cluster are still tied
together.

STEP 8: Re-estimate only the Gaussian means of
trigrapheme states after cloning. Their Gaussian
covariances and mixture weights remain
unchanged as those of their state cluster
GMM.

STEP 9: Create a trigrapheme state supervector vip for
each trigrapheme state p in state cluster i by
stacking up all its Gaussian mean vectors from
its M-component GMM as below
er-resourced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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vip ¼ lip1; lip2; . . . ; lipM

h i
; ð1Þ

where lipm;m ¼ 1; 2; . . . ;M is the mean vector of the mth
Gaussian component5. Similarly, a state cluster supervec-
tor mi is created from the GMM of state cluster i.

STEP 10: Collect the trigrapheme state supervectors
fvi1; vi2; . . ., viN ig as well as the state cluster
supervector mi of cluster i, and derive an
eigenbasis from their correlation matrix using
weighted principal component analysis

(WPCA). The correlation matrix is computed
as follows:

1

ni

X
p

nipðv̂ip � m̂iÞðv̂ip � m̂iÞ0; ð2Þ

where v̂ip and m̂i are the standardized version of vip and mi

that are created by normalizing them with the diagonal
covariance matrix; nip is the frame count of the trigrapheme
state p in cluster i, and ni ¼

P
pnip is the total frame counts

of state cluster i. A comparison of using the standard PCA
and WPCA in deriving the eigenbasis (Ko and Mak, 2012)
shows that WPCA is more effective because the eigenvalues
fall faster so that fewer eigenvectors are sufficient for repre-
senting the eigentrigrapheme space. Therefore, WPCA is
used throughout this paper.

STEP 11: Arrange the eigenvectors fêik; k ¼ 1; 2; . . . ;Nig
in descending order of their eigenvalues kik,
and pick the top Ki (where Ki 6 N i) eigenvec-
tors to represent the eigenspace of state cluster
i. These Ki eigenvectors are now called eigentr-

igraphemes of state cluster i. Note that differ-
ent state clusters may have a different
number of eigentrigraphemes.
2.3.2. Estimation of the eigentrigrapheme coefficients
After the derivation of the eigentrigraphemes, the super-

vector vip of any trigrapheme state p in cluster i is assumed
to lie in the space spanned by the Ki eigentrigraphemes.
Thus, we have

vip ¼ mi þ
XKi

k¼1

wipkeik; ð3Þ

where eik; k ¼ 1; 2; . . . ;Ki is the rescaled version of the stan-
dardized eigenvector êik; wip ¼ ½wip1;wip2; . . . ;wipKi

� is the
eigentrigrapheme coefficient vector of trigrapheme state p

in the trigrapheme state space of cluster i.
The eigentrigrapheme coefficient vector wip is estimated

by maximizing the following penalized likelihood objective
function QðwipÞ:
QðwipÞ ¼ LðwipÞ � bRðwipÞ; ð4Þ
5 Since the mixture weights are still tied among the trigrapheme states in
a state cluster, the M Gaussian components in each state can be
consistently ordered across all the member states in the cluster to create
their supervectors.

Please cite this article in press as: Ko, T., Mak, B., Eigentrigraphemes for und
j.specom.2013.01.010
where b is the regularization parameter that balances the
dynamic ranges of the regularizer Rð�Þ and the likelihood
term Lð�Þ. LðwipÞ is the likelihood of the training data of tri-
grapheme state p in cluster i, and is given by

LðwipÞ¼ constant�
X
m;t

cipmðtÞðxt�lipmðwipÞÞ0C�1
ipmðxt�lipmðwipÞÞ

ð5Þ

where Cipm and cipmðtÞ are the covariance and occupation
probability of the mth Gaussian of trigrapheme state p in
cluster i given observation xt.

To avoid the estimation of wip from over-fitting, the reg-
ularizer Rð�Þ is introduced in the objective function. From
Eq. (3), one can see the jwipj is the Euclidean distance of
the trigrapheme state supervector vip from its state cluster
supervector mi in the trigrapheme state space. In Ko and
Mak (2011), the following regularizer

RðwipÞ ¼
XKi

k¼1

w2
ipk

kik
ð6Þ

is found effective. It has the following properties:
� The squared coefficient of each eigentrigrapheme,

wipk, is inversely scaled by its eigenvalue so that a
less informative eigentrigrapheme (with smaller
eigenvalues) will have less influence on the
“adapted” trigrapheme model. On the other hand,
the trigrapheme can freely move along the more
informative eigentrigraphemes (with larger eigen-
values) in the trigrapheme state space.

� Since the chosen regularizer automatically de-
emphasizes the less informative eigentrigraphemes,
we may avoid making a hard decision on the num-
ber of eigentrigraphemes Ki for each state cluster.
Instead, we may simply use all eigentrigraphemes
(by setting Ki ¼ Ni) for every state cluster, elimi-
nating the need to tune the value of Ki.

� When a trigrapheme state has a lot of training
data, the likelihood term will become dominant
in the objective function QðwipÞ. As a result, the
“adapted” model should converge to its Baum–
Welch training estimate.

� On the other hand, for a trigrapheme state with
limited amount of training data, the regularizer
becomes dominant and it will try to make jwipj as
small as possible. Thus, the “adapted” model will
fallback to its state cluster GMM.

The above estimation method of the trigrapheme
coefficients can be viewed as a penalized version of the
maximum-likelihood eigen-decomposition (MLED) in
eigenvoice adaptation (Kuhn et al., 2000), and it is called
penalized maximum-likelihood eigen-decomposition

(PMLED) in Fig. 1.
Differentiating the optimization function QðwipÞ of Eq.

(4) w.r.t. each eigentrigrapheme coefficient wipk, and setting
each derivative to zero, we have,
er-resourced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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XKi

n¼1

Aipknwipn þ b
wipk

kik
¼ Bipk; 8k ¼ 1; 2; . . . Ki ð7Þ

where

Aipkn ¼
X

m

e0ikmC�1
ipmeinm

X
t

cipmðtÞ
 !

Bipk ¼
X

m

e0ikmC�1
ipm

X
t

cipmðtÞðxt �mimÞ
 !

:

The eigentrigrapheme coefficients may be easily found
by solving the system of Ki linear equations represented
by Eq. (7), and the Gaussian mean of the mth mixture of
trigrapheme state p in cluster i can be obtained from vip as

lipm ¼ mim þ
XKi

k¼1

wipkeikm: ð8Þ

The eigentrigrapheme modeling procedure stops if either
the estimation of eigentrigrapheme coefficients converges
or the recognition accuracy of the trained models is maxi-
mum on a development data set. Otherwise, the training
data are re-aligned with the current models, and the deriva-
tion of eigentrigraphemes and the estimation of their coef-
ficients are repeated.

3. Experimental evaluation

The effectiveness of our newly proposed eigentrigra-
pheme acoustic modeling method is evaluated on four
under-resourced languages of South Africa with the
assumption that no phonetic dictionaries are available.
Since graphemes are the basic modeling units in graph-
eme-based modeling, word recognition accuracy is the
main metric for the evaluation. Nonetheless, triphone-
based systems were also built with the use of semi-automat-
ically generated phonetic dictionaries so as to benchmark
the results of our eigentrigrapheme results (where no
dictionaries are used).

3.1. The Lwazi speech corpus

The Lwazi project was set up to develop a telephone-
based speech-driven information system to take advantage
of the more and more popular use of telephones in South
Africa nowadays. As part of the project, the Lwazi ASR
corpus(2009) was collected to provide the necessary speech
and language resources in building ASR systems for all
eleven official languages of South Africa.

The corpus was collected from approximately 200
speakers per language who are all first language speakers.
Each speaker produced approximately 30 utterances, in
which 16 of them are phonetically balanced read speech
and the remainders are elicited short words such as answers
to open questions, answers to yes/no questions, spelt
words, dates, and numbers. All the data were recorded over
a telephone channel and were transcribed only in words.
Please cite this article in press as: Ko, T., Mak, B., Eigentrigraphemes for und
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Background noises, speaker noises, and partial words are
marked in the orthographic transcriptions.

The Lwazi project also created a 5,000-word pronuncia-
tion dictionary for each language (Davel and Martirosian,
2009). These dictionaries cover the most common words in
the language but not all the words appearing in the corpus.
Thus, for the phone-based experiments, the Dictionary-

Maker (Tempest and Davel, 2009) software was used to
generate dictionary entries for the words that are not cov-
ered by the Lwazi dictionaries. The given Lwazi dictionar-
ies were used as the seed dictionaries6 for DictionaryMaker
to extract grapheme-to-phoneme conversion rules which
were then applied to generate the phonetic transcriptions
for the uncovered words for each language. The pronunci-
ations suggested by DictionaryMaker were directly used
without any modification.

Among the eleven South African official languages, four
are chosen for this investigation. We looked at their ranks
according to three different criteria:

� the human language technology (HLT) index
(Sharma-Grover et al., 2010): the index indicates
the total quantity of HLT activity for each lan-
guage. Higher the index is, greater HLT develop-
ment has been done.

� the phone recognition accuracy (van Heerden et al.,
2009): higher phone accuracy means a higher rank
for the language.

� the amount of training data available (van Heerden
et al., 2009): language with more training data will
be given a higher rank.

Finally, the following four languages are chosen because
they have a good mix of phone accuracies and HLT activ-
ities as shown in Table 1:
er-reso
Afrikaans: Afrikaans is a Low Franconian, West Ger-
manic language, originated from Dutch (van Huyss-
teen and Pilon, 2009). It has about 6 million native
speakers and is the third largest language in South
Africa. It is also spoken in South Africa’s neighboring
countries like Namibia, Botswana and Zimbabwe. It
has relatively more resources (Roux et al., 2004),
and more ASR related works (de Wet et al., 2011;
Kamper and Niesler, 2011) have been done on it than
other languages of South Africa. It is interesting to
see that although Afrikaans has the least amount of
training data in the corpus, its phone recognition
result is quite good among the eleven South African
languages.
South African (SA) English: SA English is the de
facto South Africa’s lingua franca. It is spoken by
about 3.6 million people in South Africa. SA English
urced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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Table 1
Ranks of the four chosen South African languages in three aspects: their
human language technology (HLT) indices, phone recognition accuracies,
and amount of training data in the Lwazi corpus. (Smaller value implies a
higher rank.).

Language HLT rank

(Sharma-Grover
et al., 2010)

Phone recognition

(van Heerden
et al., 2009)

Amount of data

(van Heerden
et al., 2009)

Afrikaans 1 5 11
SA English 2 11 10
Sesotho 7 7 7
siSwati 9 3 1

Table
Inform
invest

Data s

Afrik

SA En
SA
SA

Se

si
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is evolved from British English but is highly
influenced by Afrikaans and the other languages of
the country.
Sesotho: Sesotho is a Southern Bantu language, clo-
sely related to other languages in the Sotho-Tswana
language group. It has about 3.5 million native speak-
ers and is the seventh largest language in South
Africa.
siSwati: siSwati is also a Southern Bantu language,
closely related to the Nguni language group. It has
about 1 million native speakers and is the ninth larg-
est language in South Africa.
Since the corpus does not define the training, develop-
ment, and test set for each language, we did the parti-
tions ourselves. The data sets used in our experiments
are summarized in Table 2. It is interesting to see that
languages with more training data (in terms of duration)
have a higher percentage of out-of-vocabulary words in
their test set.

3.2. Feature extraction and common experimental settings

The first 13 PLP coefficients, including c0, and their first
and second order derivatives were used. These 39-dimen-
sional feature vectors were extracted at every 10 ms over
a window of 25 ms. Speaker-based cepstral mean subtrac-
tion and variance normalization were performed.

The grapheme set and phone set of each language are
the same as the ones defined in the Lwazi dictionaries.
2
ation of the data sets of four South African languages used in this

igation. (OOV is out-of-vocabulary).

et #Speakers #Utt. Dur.(hr) Vocab OOV%

aans training 160 4784 3.37 1513 0.00
Afrikaans dev. 20 600 — 870 0.89
Afrikaans test 20 599 — 876 0.97
glish training 156 4665 3.98 1988 0.00

English dev. 20 581 — 1104 1.10
English test 20 597 — 1169 1.68

sotho training 162 4826 5.70 2360 0.00
Sesotho dev. 20 600 — 1096 1.86
Sesotho test 20 601 — 1089 2.29

Swati training 156 4643 8.38 4645 0.00
siSwati dev. 20 599 — 1889 6.14
siSwati test 20 596 — 1851 4.53

e cite this article in press as: Ko, T., Mak, B., Eigentrigraphemes for und
om.2013.01.010
For all systems described below, transition probabilities
of all triphones/trigraphemes of the same base phone/
grapheme were tied together. Each triphone/trigrapheme
model was a strictly left-to-right 3-state continuous-density
hidden Markov model (CDHMM) with a Gaussian
mixture density of at most M ¼ 16 components per state.
In addition, there were a 1-state short pause model and a
3-state silence model whose middle state was tied with
the short pause state. Recognition was performed using
the HTK toolkit (Young et al., 2006) with a beam search
threshold of 350. Only the annotated text data in the
training set were used to train the corresponding language
models. Both phone trigram language models and word
bigram language models were estimated for the four
languages except Sesotho, for which only phone bigrams
could be reliably trained. Perplexities of the various
language models on the development data and test data
are shown in Table 3.

All system parameters such as the grammar factor,
insertion penalty, regularization parameter b, number of
GMM components M, number of tied states or state clus-
ters, and so forth were optimized using the respective devel-
opment data.
3.3. Phone and word recognition using triphone-based

HMMs

We first establish the triphone-based ASR benchmarks
against which the trigrapheme-based models can be
checked. Both conventional tied-state triphone HMM
modeling and our new cluster-based eigentriphone model-
ing were tried for the four under-resourced languages of
South Africa. The number of base phones, the number of
cross-word triphones in the training set, the optimal num-
ber of tied states in conventional HMM training, and the
optimal number of state clusters in eigentriphone modeling
for each language are summarized in Table 4.
3.3.1. Phone recognition results
Although word recognition accuracy will be the eventual

evaluation metric for grapheme modeling, we also would
like to report the phone recognition baselines of our tri-
phone models for the sake of completeness. Phone recogni-
tion was performed on each of the four languages using no
Table 3
Perplexities of phone and word language models of the four South African
languages.

Language Data set Phone perplexity Word bigram perplexity

Afrikaans Dev. 7.37 (trigram) 12.4
Test 7.33 (trigram) 11.18

SA English Dev. 7.50 (trigram) 13.28
Test 7.76 (trigram) 11.18

Sesotho Dev. 10.43 (bigram) 19.60
Test 10.29 (bigram) 19.69

siSwati Dev. 7.60 (trigram) 12.27
Test 7.50 (trigram) 10.94

er-resourced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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Table 4
Some system parameters of triphone modeling in the four South African
languages.

Language #Base

phones

#Cross-

word

triphones

#Tied states

in conventional

models

#State clusters

in eigentriphone

models

Afrikaans 37 5203 617 332
SA English 44 7167 988 362
Sesotho 41 4061 741 624
siSwati 40 5140 339 250

Table 6
Word recognition accuracy (%) of four South African languages.

Language Tied-state triphone Cluster-based eigen-

trigrapheme/-triphone

Trigrapheme Triphone Trigrapheme Triphone

Afrikaans 89.39 89.73 89.87 90.73
SA English 78.30 83.12 79.57 83.72
Sesotho 75.67 75.57 76.35 76.77
siSwati 80.04 79.79 80.67 80.29
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or flat LM as well as using its respective bigram/trigram
LM. The results are given in Table 5. The following obser-
vations can be made:

� Our phone recognition results with flat LMs are
quite different from those reported in van Heerden
et al. (2009). There may be a few reasons:
– To our knowledge, the Lwazi corpus has been

evolving, and the corpus we obtained earlier this
year is different from the older version used in
van Heerden et al. (2009).

– Since there are no official test sets in the corpus,
it is hard to compare recognition performance
from different research groups.

– Since the data are not manually labeled by pro-
fessional transcribers, there is no ground truth
which the results from different research groups
can compare with.

Thus, it may not be meaningful to compare our ph-
one recognition results with others. We believe it is go-
od enough to see that our results are in the same
ballpark as the others.
� SA English has substantially lower phone recogni-

tion accuracy: it is lower than that of the other
three languages by more than 10% absolute.
Although SA English has a few more phones in
its phonetic inventory than the other languages,
and significantly more cross-word triphones to
model (see Table 4), its phone trigram perplexity
is actually similar to Afrikaans and siSwati. (Only
bigram language model can be reliably estimated
for Sesotho, and its value is expected to be higher
than the phone trigram perplexity of the other
three languages.) It means that the phone trigrams
(as well as triphones) of SA English are more
unevenly distributed in the training corpus.The
Table 5
Phone recognition accuracy (%) of four South African languages. (y The benchm
corpus and how the corpus were partitioned into training, development, and

Language Benchmark

(van Heerden et al., 2009)y
Tied-state tri

Flat LM Flat LM

Afrikaans 63.14 59.07
SA English 54.26 45.48
Sesotho 54.79 62.36
siSwati 64.46 64.76
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lower phone recognition accuracy of SA English
may be simply due to its larger inventory of phones
and triphones, making discrimination among them
more difficult. Another plausible reason is that SA
English is now the de facto lingua franca of South
Africa. It is usually the language of choice for com-
munication among people from different regions
and ethnic groups of the country including immi-
grants from China and India. As a consequence,
there are more allophonic variations in SA English,
making it harder to recognize.

� The training speech data are not phonetically
labelled by human transcribers. Instead, their pho-
netic transcriptions are generated semi-automati-
cally by grapheme-to-phoneme conversion
together with a small bootstrapping dictionary.
From the big improvement of recognition perfor-
mance when phone language models were used
(vs. when no language models were used), we
may conclude that phone language models trained
from the generated phonetic transcriptions are
good enough to improve phone recognition
significantly.

� Triphone models estimated by our new cluster-
based eigentriphone modeling method outperform
triphone models estimated by conventional tied-
state HMM training by an average of 6.19% rela-
tive over the four languages.

3.3.2. Word recognition results

The word recognition performance of the triphone-
based systems are shown in Table 6. We can see that
ark re
test sets

phone

er-reso
� With no surprise, Sesotho, having the highest LM
perplexity (see Table 3), has the lowest recognition
accuracy.
sults in van Heerden et al. (2009) used an older version of the Lwazi
is unknown.)

Cluster-based eigentriphone

N-gram LM Flat LM N-gram LM

69.73 (trigram) 62.23 72.32 (trigram)
56.58 (trigram) 46.03 57.84 (trigram)
67.06 (bigram) 64.08 68.35 (bigram)
71.45 (trigram) 68.19 74.13 (trigram)

urced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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Table 7
Some system parameters used in trigrapheme modeling of the four South African languages. (The numbers of possible
base graphemes are 43, 26, 27, 26 for the four languages but not all of them are seen in the corpus.)

Language #Seen base

graphemes

#Cross-word

trigraphemes

#Tied states in

conventional models

#State clusters

in eigentrigrapheme models

Afrikaans 31 3458 728 332
SA English 26 4125 1630 547
Sesotho 25 3072 543 543
siSwati 25 3826 392 255
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� For the other three languages, namely Afrikaans,
SA English, and siSwati, which all have similar
word bigram perplexity, their word recognition
performance is well correlated with their vocabu-
lary size and OOV figure. Afrikaans has the best
word recognition accuracy, and yet there are only
1513 words in its vocabulary with 0.97% OOV. On
the other hand, siSwati has the worst performance,
and its vocabulary size is 4,645 with 4.53% OOV,
which are 3–4 times of those of Afrikaans (see
Table 4).

� Although SA English has the poorest phone recog-
nition accuracy, its word recognition performance
is second among the four languages. It does not
only show the limitation of using phone recogni-
tion accuracy to predict word recognition perfor-
mance, but also the effectiveness of a good n-
gram language model for word recognition.

� Cluster-based eigentriphone modeling outper-
forms conventional tied-state HMM training by
an average of 5.17% relative over the four
languages.
3.4. Word recognition using trigrapheme-based HMMs

Similar acoustic models were developed using trigra-
phemes; there is no need for a phonetic dictionary in the
process. The number of base graphemes actually observed
in the corpus, the number of cross-word trigraphemes in
the training set, the optimal number of tied states in conven-
tional HMM training, and the optimal number of state clus-
ters in eigentrigrapheme modeling for each language are
summarized in Table 7. The word recognition results of
the various trigrapheme-based systems are shown in Table
6 together with the results from the corresponding tri-
phone-based systems so that they can be easily compared.

Besides the observations that are mentioned in triphone-
based systems in Section 3.3.2, the following additional
observations are well noted.
� Except for SA English, our trigrapheme-based sys-
tems performs basically the same as their triphone-
based counterparts even without the knowledge of
a phonetic dictionary. In fact, trigrapheme-based
systems even outperform their triphone-based
counterpart in siSwati though insignificantly. The
cite this article in press as: Ko, T., Mak, B., Eigentrigraphemes for under-reso
m.2013.01.010
results suggest that there is a consistent mapping
between the pronunciation of Afrikaans, Sesotho,
and siSwati and their graphemes.

� Trigrapheme-based systems perform much worse
than triphone-based systems in SA English. This
is expected. Similar results have been reported
for English (Stuker, 2009). Besides the reason men-
tioned in the Introduction Section that the pro-
nunciation of English has developed away from
its written form over time, the particularly great
allophonic variations in SA English (which is also
reflected in its phone recognition accuracy) further
compromise the word recognition effort.

� Once again, our new cluster-based eigentrigra-
pheme modeling consistently performs better than
conventional tied-state trigrapheme HMM train-
ing. If has an average gain of 4.08% relative over
the four languages.
4. Conclusions

Most state-of-the-art automatic speech recognition
(ASR) systems are developed using phonetic acoustic mod-
els. However, for many developing or under-developed
countries in the world, the adoption of human language
technologies has been dragged down by the lack of speech
and language resources, which are usually costly and take a
lot of human expertise to acquire. Graphemic acoustic
modeling mitigates the problem as it does not require a
phonetic dictionary. In this paper, we port a new acoustic
modeling method called cluster-based eigentriphone mod-
eling which has been shown to outperform the conven-
tional tied-state triphone HMM training in phone-based
ASR systems to grapheme-based ASR for under-resourced
languages. We call the new method cluster-based eigentri-

grapheme acoustic modeling.
For four under-resourced languages of South Africa

(SA), namely, Afrikaans, SA English, Sesotho, and siSwati,
it is shown that in terms of word recognition performance,
trigrapheme-based ASR is as good as triphone-based ASR
with the exception of SA English. The worse performance
of trigrapheme-based ASR on SA English is not unex-
pected, since SA English is a variation of British English,
and it is well known that grapheme-based ASR does not
perform well on the latter. In particular, trigrapheme
acoustic models trained by our new eigentrigrapheme mod-
urced languages, Speech Comm. (2013), http://dx.doi.org/10.1016/
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eling method consistently outperforms the trigrapheme
models trained by conventional tied-state HMM training,
achieving a relative reduction in the word error rates of
the four SA languages by an average of 4.08%. Trigra-
pheme HMM states trained by the eigentrigrapheme mod-
eling method are distinct from each other — the
quantization error among the member states of a tied state
in conventional HMM is avoided — and should be more
discriminative.

In the future, we would like to investigate other cluster
definitions for under-resourced language ASR, especially
when the amount of acoustic training data is even smaller.
The effect of discriminative training on the inherently dis-
tinctive models produced by eigentrigrapheme modeling
will be studied as well.
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