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Abstract

In recent years, various adaptation techniques for hidden
Markov modeling with mixture Gaussians have been pro-
posed, most notably MAP estimation and MLLR trans-
formation. When the amount of adaptation data is lim-
ited, adaptation can be done by grouping similar Gaus-
sians together to form regression classes and then trans-
forming the Gaussians in groups. The grouping of Gaus-
sians is often determined at the full-space level. In this
paper, we propose to group the Gaussians at a finer acous-
tic subspace level. The maotivation is that clustering at
subspaces of lower dimensions results in lower distortion.
Besides, as the dimension of subspace Gaussians reduces,
there are fewer parameters to estimate for the subsequent
MLLR transformation matrix. This is particular attractive
in fast adaptation. Speaker adaptation experiments on the
Resource Management task with few seconds of speech
show that the use of subspace regression classes is more
effective than traditional full-space regression classes.

1. Introduction

The main challenge of rapid speaker adaptation is to max-
imize the improvement in recognition performance with
a very limited amount of adaptation data. Various adap-
tation techniques for hidden Markov modeling with mix-
ture Gaussians have been proposed in recent years, most
notably MAP estimation [1] and MLLR transformation [2].
When the amount of adaptation data is scarce, most of the
Gaussians in the HMMs are unobserved. Hence, adapta-
tion is usually done by grouping similar Gaussians to-
gether to form regression classes with each class having
some observed Gaussians. In MLLR adaptation, Gaus-
sians of the same regression class share the adaptation
data to derive a transformation. The transformation is
then applied to each member Gaussian in that class. The
grouping of Gaussians is often determined at the full-
space level. If the distribution of adaptation data over
the full-space regression classes (FSRCs) is uneven, sub-
sequent transformation is unreliable.

In this paper, we perform the grouping of Gaussians at

a finer acoustic subspace level. That is, full-space Gaus-
sians are projected onto orthogonal and disjoint subspaces,
and the resulting subspace Gaussians are clustered to form
subspace regression classes (SSRCs). The motivation is
that clustering at subspaces of lower dimensions results
in lower distortion; or in other words, for the same dis-
tortion, subspace clustering results in fewer regression
classes. Consequently, the distribution of adaptation data
over the fewer SSRCs can be more even than the corre-
sponding distribution over FSRCs. Moreover, as the di-
mension of subspace Gaussians is reduced, there will be
fewer estimating parameters for the subsequent MLLR
transformation matrix. Although reduction in estimating
parameters lowers the complexity of the transformation,
when there are scarce adaptation data, fewer parameters
are preferred for robust estimation.

In the next section, MLLR adaptation with subspace
regression classes is outlined. This is followed by the
comparison between FSRCs and SSRCs in Section 3. The
evaluation and the conclusion will be presented in Sec-
tion 4 and in Section 5 respectively.

2. MLLR adaptation with subspace
regression classes

The MLLR adaptation with SSRCs involves three steps.
First, full-space Gaussians from the original CDHMMs
are projected onto the subspaces to produce subspace Gaus-
sians. In each subspace, clustering is performed on the
resultant subspace Gaussians to determine the SSRCs.
Second, transformation matrix for each SSRC is derived
and the subspace Gaussians are transformed accordingly.
Finally, full-space Gaussians are re-constructed from the
transformed subspace Gaussians and the resulting CDHMMs
are used for recognition.

2.1. Derivation of Subspace Regression Classes

The subspace definitions and the derivation of SSRCs
have been introduced in our previous work [3] and [4].
With SSRCs determined in each subspace, MLLR trans-



formation matrix for each SSRC can be estimated.

2.2. MLLR Transformation in Subspace

By maximizing the appropriate auxiliary function with
respect to the transformation matrix, the following equa-
tion is obtained:
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where
R, . a SSRC constituted by a set of subspace
Gaussians on the k-th subspace
Ik . the subspace Gaussian of a full-space Gaus-
sian g on the k-th subspace
Ly the occupation likelihood of the original full-
space Gaussian g attime ¢
¥, . thecovariance of g
Okt . the projection of the observation vector at
time t on the k-th subspace
&, . theextended mean of g,
Wg,  thetransformation matrix for Ry,

The transformation matrix Wg, can be computed in
a similar manner as in the case using FSRCs. Once the
transformation matrices for the SSRCs in all subspaces
are estimated, subspace Gaussians are transformed ac-
cordingly.

2.3. Re-construction of Full-space Gaussians

After the MLLR transformation, subspace Gaussians com-
ing from the same original full-space Gaussian are con-
catenated together to construct a full-space Gaussian. Here,
we make an assumption that all of the full-space Gaus-
sians in the CDHMMs have diagonal or block diagonal
covariance.

3. SSRCvs. FSRC

Suppose C regression classes are used in full-space MLLR
approach. The number of transformation parameters is
D x (D + 1) x C, where D is the dimensionality of a
feature vector. On the other hand, in subspace approach,
if the original full vector space is split into K subspaces
of equal dimensions and C' regression classes are derived
in each subspace, the number of transformation parame-
tersisD/K x (D/K + 1) x C x K. Hence, the ratio of
transformation parameters of FSRC to SSRC is

Dx (D+1)xC _ (D+1K
D/K x (D/JK+1)xCxK  D+K

The number of transformation parameters can be reduced
by approximately K times with the subspace approach
whenD > K.

Reduction in transformation parameters can also be
achieved in the full-space approach with the use of block-
diagonal transformation matrices. The transformation ma-
trix Wg can be decomposed into

Wr=[bA]

where b is a bias vector of D and A is a D x D ma-
trix. By setting A to be a block-diagonal matrix with K
blocks, same reduction of transformation parameters can
be achieved as in the subspace approach.

FSRC with block-diagonal transformation matrices can
be thought as one kind of SSRC with the regression class
membership of subspace Gaussians derived at the full-
space level. That is, subspace Gaussians coming from
full-space Gaussians which are in the same FSRC will be
grouped to the same SSRC.

The advantage of SSRC over FSRC with block-diagonal
matrices is that clustering at the subspace level is usually
more effective resulting in lower distortion. Nevertheless,
both approaches suffer from the problem that the correla-
tion between subspaces is ignored during transformation
which offsets part of the benefit from the reduced number
of parameters.

4. Evaluation

The Resource Management (RM) [5] task is chosen to
evaluate the effectiveness of SSRCs against FSRCs. A
speaker-independent (SI) model is trained using the SI
section of the database. Training data from test speakers
in the speaker-dependent (SD) section are used in the fol-
lowing supervised adaptation experiments. Thirty-nine-
dimensional acoustic vectors (consisting of 12 MFCCs
and the normalized frame energy plus their first and sec-
ond time derivatives) are produced from each 20ms of
speech at a frame rate of 100Hz. Instead of exploiting a
regression class tree, we pre-determine the number of re-
gression classes to be used, so that we can make a direct
comparison between the SSRC approach and the FSRC
approach under the same number of regression classes.
Adapted models are tested on the Feb91-SD test set con-
sisting of 300 utterances from 12 test speakers using the
standard RM word-pair grammar (perplexity = 60).

4.1. Training of Baseline SI Model

The baseline SI model is trained from the augmented Sl
training set of the RM database which consists of 3990
utterances from 109 speakers. All speech units are word-
internal triphones which are 3-state left-to-right HMMs,
with a maximum of 16 mixture Gaussians per state. From
the 2229 distinct word-internal triphones and 41 basis
phones present in the training data, 865 triphone HMMs
are estimated with 543 tied-states and 5349 Gaussians.



The SI model achieves a word accuracy of 95.61% and
94.42% on the Feb91-SI and Feb91-SD test sets respec-
tively.

4.2. Speaker Adaptation Experiments

As we focus only on fast adaptation, small adaptation
data sets ranging from 2s to 60s are used. To account
for the variability of small data, three different collec-
tions of adaptation data sets are prepared for each test
speaker. For each test speaker and for each of his col-
lections, adaptation data sets of four different sizes are
prepared: 2s, 10s, 30s and 60s, which are randomly se-
lected from his SD training data; and smaller adaptation
data sets are subsets of the larger ones. Thus, there are
totally 36 data sets for each size of adaptation data. All
experimental results are reported on the average of all 12
test speakers.

In our evaluation, the following adaptation schemes
were investigated:

1. FS-RC$N: MLLR adaptation using $N full-space
regression classes

2. FS-B$K-RC$N: MLLR adaptation using $N full-
space regression classes with block-diagonal trans-
formation matrices of K blocks

3. SS-S$K-RC$N: MLLR adaptation using $N sub-
space regression classes for each of the $K sub-
spaces

The full-space and subspace definitions are as fol-
lows:

Full-space Definition:
full-space= 12MFCC + e + 12AMFCC + Ae +
12AAMFCC + AAe

3-Subspace Definition:
Subspace1= 12MFCC + ¢
Subspace2= 12AMFCC + Ae
Subspace 3= 12AAMFCC + AAe

13-Subspace Definition:
Subspace 1-12= 12MFCC; + 12AMFCC;+
12AAMFCC;, 1< <12
Subspace13= e+ Ae + AAe

20-Subspace Definition: each subspace holding the most
correlated feature pair and the last subspace holding the
remaining feature.

4.3. Results and Discussion

The speaker adaptation results using MLLR with
FSRCs and SSRCs are shown in Figure 1-2.

As illustrated in Figure 1, when the amount of adap-
tation data is extremely scarce (~2s), MLLR with one
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Figure 1: Recognition results of MLLR adaptation using
FSRCs and SSRCs with global transformation performed
in each subspace

FSRC shows degradation from the baseline SI model and
also the worst performance among all the adaptation schemes.
This is simply due to the poorly estimated transformation
matrix. On the other hand, with the same amount of adap-
tation data, MLLR using three subspaces and one SSRC
per subspace can show improvement over the baseline
and the full-space MLLR approach. This indicates that
reduction in transformation parameters leads to a more
robust estimation of the transformation of the regression
classes when adaptation data are scarce. However, MLLR
with 13 and 20 subspaces always shows degradation from
the baseline. This can be explained by the loss of corre-
lation between subspaces. The larger the number of sub-
spaces, the greater is the adverse effect caused by the loss
of correlation.

As MLLR with three subspaces achieved the highest
accuracy in the previous experiment, we conducted an-
other experiment to compare the performance of MLLR
using SSRCs with 3 subspaces against MLLR using FS-
RCs with 3-block diagonal transformation matrices. Adap-
tation using 2, 4 and 8 regression classes was attempted
in each scheme. The best result among adaptation with
different numbers of regression classes was reported for
each scheme in Figure 2.

The plot illustrates that MLLR using SSRCs still shows
the best performance over the other two FSRC approaches
for various sizes of adaptation data. The experimental re-
sults of adaptation using SSRCs with three subspaces and
FSRCs with 3-block diagonal transformation matrices are
tabulated in Table 1.

It should be noticed that SS-S3-RC1 and
FS-B3-RC1 should have the same performance as there
is only one regression class in each subspace. The group-
ings of the subspace Gaussians in these two cases have
to be the same. The comparison shows that MLLR us-
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Figure 2: Recognition results of MLLR adaptation using
SSRCs and FSRCs with block diagonal matrices

| Method [ 2sec. | 10sec. | 30 sec. | 60 sec. |
SS-S3-RC1 5.29 4.34 4.31 4.27
SS-S3-RC2 6.03 4.56 4.26 4.22
SS-S3-RC4 8.13 4.76 4.32 4.26
SS-S3-RC8 | 24.98 4.94 4.28 412
FS-B3-RC1 5.29 4.34 4.31 4.27
FS-B3-RC2 6.06 4.50 4.50 441
FS-B3-RC4 9.18 4.82 4.50 4.47
FS-B3-RC8 | 26.82 5.48 4.40 4.35

Table 1: Adaptation results of SSRCs with three sub-
spaces and FSRCs with 3-block diagonal transformation
matrices

ing SSRCs always outperforms MLLR using FSRCs with
block diagonal matrices for a given number of regression
classes and a given amount of adaptation data. Thus, the
effectiveness of SSRCs over FSRCs is proven.

5. Conclusion

In this paper, we propose to perform MLLR adaptation
with subspace regression classes. Experimental results
show that MLLR with SSRCs achieve better performance
than with conventional full space MLLR approach when
the amount of adaptation data is limited. The introduc-
tion of SSRCs reduces the number of transformation pa-
rameters in the adaptation process so that the transforma-
tion matrices can be estimated more robustly given a few
adaptation utterances. Derivation of regression classes in
the subspace level is also shown to be more effective than
in the full-space level. However, the use of SSRCs will
lead to the loss of correlation between subspace features
during subsequent transformation. In practice, one has

to balance between the two effects — parameter reduc-
tion and loss of correlation. Empirically we find that for
the common 39-dimensional feature vector, using three
streams gives good adaptation performance.
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