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ABSTRACT

This paper presents an efficient approximation of the
Gaussian mixture state probability density functions of
continuous observation density hidden Markov models
(CHMM’s). In CHM M’s, the Gaussian mixtures carry
a high computational cost, which amounts to a signifi-
cant fraction (e.g. 30% to 70%) of the total computa-
tion. To achieve higher computation and memory effi-
ciency, we approximate the Gaussian mixtures by (a) de-
composition into functions defined on subspaces of the
feature space, and (b) clustering the resulting subspace
pdf’s. Intuitively, when clustering in a subspace of few
dimensions, even few function codewords can provide a
small distortion. Therefore, we obtain significant reduc-
tion of the total computation (up to a factor of two), and
memory savings (up to a factor of twelve), without signif-
icant changes of the CHM M M’s accuracy.

1. INTRODUCTION

Most of state-of-the-art speech recognition systems are
based on hidden Markov models (HMM) technology.
In particular, continuous observation density HMM’s
(CHMM) have the highest speech recognition accuracy
in many applications. However, the continuous state
probability density functions (pdf) have a high computa-
tional cost, which amounts to a significant fraction (30%
to 70%) of the total computation. Therefore techniques
designed to speed up the state likelihood computations
are important in practice.

In this paper we study an approximation of existing,
highly accurate CHHM'’s using distribution clustering on
subspaces of the frame feature space. We refer to our
formulation as SDCHM M (Subspace Distribution Clus-
tering for CHM M’s). The proposed approximation of
the CHM M state pdf’s consists of:

1) Decomposition into functions defined on subspaces
(streams) of the feature space, and

2) Clustering (quantizing) the pdf’s of the feature sub-
spaces.

The clustering (or quantization) of pdf’s allows for signifi-
cant reduction of the number of model parameters. Com-
putation and memory efficiency is improved by sharing
few codeword functions among the state likelihood defi-
nitions. At the same time, the quantization in subspaces
of low dimensionality gives small distortions and insignif-
icant variations of recognition accuracy.

In this work, we derive the new SDCHM M’s from
existing CHM M’s without retraining on speech data.

The SDCHMM formulation is presented in the next
few sections. We then discuss the differences between
SDCHMM and other HM M types based on streamn dis-
tribution tying (tied mixtures) and feature level tying
[1,2]. We then present the SDCHMM recognition re-
sults on the ARPA-ATIS continuous speech recognition
task.

2. SDCHMM FORMULATION

We start from CHM M’s (possibly with tied states) with
state density functions defined by Gaussian mixtures:
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where s is the CHMM state index, and N(O, pm,
0°m), m = 1, M is the set of all Gaussians of all state
mixture models, with means p,, and diagonal covariances
a2,,. O1is a frame feature vector of dimension d.

We divide the d frame features into K streams or sub-
spaces, each of dimension dy so that Zk:l % dp, = d.

Since covariances are diagonal, each Gaussian in (1) can
be expressed as the product of K Gaussians (one for every
stream):

N(O,pm,0* ) =[] MOk, 0* ) (2)
k=1,K

then (1) becomes:

ps(0) = E Cs,m H N(Okallm,kﬁoﬁm,k) (3)

where ( N(Ox, ik, 0°mx), m=1,M , k=1,K ) are
K sets of M Gaussians (one set per subspace).

We cluster the Gaussians of the k' (k = 1, K) sub-
space, into a set of fewer quantized codeword Gaussians
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We then approximate each original Gaussian with the
closest quantized Gaussian:
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Note that the efficiency of the algorithms in (4) and (5) is
not critical, because they are performed only once and the
results stored before recognition. Therefore (3) becomes:
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For efficiency in both CHM M and SDCHM M, we also

approximate the Z operator with the maximum operator.
Therefore, the logarithm of (6) becomes:
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In terms of computation and memory, (6) is more effi-
cient than (3) and (1), because it uses a smaller number
Q <« M of unique Gaussians for every stream. At the
same time, the quantization in low dimensional feature
spaces allows for a small distortion in (5) and a small loss
of recognition accuracy.

3. STREAM DEFINITION

Our recognizer frontend is based on the mel-cepstrum
analysis of the input speech sampled at 16kHz. FEvery 10
ms, the sampled waveform is analyzed to extract 12 mel
frequency cepstrum coefficients (MFCC). For every input
sentence, we subtract from all the MFCC vectors the av-
erage (per sentence) MFCC vector (Cepstrum Mean Sub-
traction). Every frame feature vector is made of d = 39
components, consisting of 12 MFCC’s and of the frame
energy in dB with their 1° and 2"¢ derivatives.

With SDCHM M’s, we need to divide the 39 feature
components into subspaces or streams. We have actually
tested different stream definitions as follows:

K = 1 stream for the entire feature space.

K = 4 streams, for the MFCC’s, 1°* MFCC derivatives,
274 MFCC derivatives, and energy components (with
1%t and 27¢ derivatives), respectively.

K = 13 streams, one for each of the 12 MFCC’s or energy,
with its 1° and 2™¢ derivatives.

K = 20 streams, each (with the exception of one stream)
containing two strongly correlated features.

K = 39 streams, one for every feature component.

In the K = 20 stream case, we first estimate a grand cor-
relation matrix for the 39 dimension feature space. The
feature couples for each stream were iteratively selected by
(1) picking the two features with the largest correlation,
and (2) removing from the correlation matrix the rows
and columns corresponding to the selected features. As
a sanity check, we have experimentally verified that ran-
domly generated feature couples do not perform as well.

4. GAUSSIAN CLUSTERING

To define the Gaussian codewords (4) of the k" stream,
we cluster all the k'™ stream Gaussians (2) of the
CHMM’s. The CHM M’s have been trained by segmen-
tal k-means, and, in the case of context dependent mod-
els, also by a bottom-up state-tying algorithm [3]. For

each Gaussian, we store the mean vector, the diagonal
covariance and the size of the feature ensemble used for
parameter estimation.

For Gaussian clustering we apply an iterative bottom-
up algorithm, with the original Gaussians as initial code-
words. We then merge a Gaussian pair at a time, chosen
to minimize the distortion increase given by merging the
respective ensembles [3]. We stop the iteration when the
number of codewords is reduced to the desired value. By
keeping track of how the original Gaussians have been
merged into codewords we also define their mapping (5)
into the final Gaussian codewords.

In the particular case of K = 39 one-dimensional
streams, we have obtained better experimental results
with a simpler and faster Gaussian clustering procedure
which we call equal percentile clustering:

a) Sort the Gaussians according to their mean value,

b) Put the Gaussians into consecutivedisjoint sets, while
adding up the respective ensemble sizes, so that the
ensemble size of the various sets are roughly equal.
Then estimate mean and variance of each set (code-
word).

5. LIKELTHOOD COMPUTATION

Typically in a beam-search recognizer, the state log-
likelihoods (7) are computed on-demand, i.e. only for
the active states. However, to really take advantage of
the SDCHMM structure, we have implemented some
changes in this strategy.

There are only few unique Gaussians N?“*"() in (7)
(Q for each stream). They are shared among many state
densities and, for every input frame, the log-likelihood
of almost every N9“*"(Qy,.,.) is needed. For compu-
tation speed, it is important to pre-compute these val-
ues and to store them in a contiguous table for efficient
access. Then the computation of (7) is performed on-
demand, by accessing through pointers the stored values

of In(N7"(Oy, ., .)).

Another i1ssue with the SDCHM M likelihood compu-
tation concerns Gaussian Selection [4,5]. Gaussian Selec-
tion of the codewords (4) is not useful, because these are
relatively few in number. However Gaussian Selection is
still useful when applied to the M d-dimensional Gaus-
sians:
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Gaussian Selection allows one to approximate some of the
Gaussians on the left-hand-side of (8) to naught.

6. COMPARISON WITH OTHER HMM’S

Tied-mixture or semi-continuous HMM’s ( TMHMM
) are computationally less expensive than CHM M’s.
Since the TM HM M’s divide the frame feature space into
streams, the TM HM M formulation may appear similar
to the SDCHMM’s (6). However, the TMHMM for-

mulation is different:
ps(o) = H Z Cs,m,k Nquan(07 Hm ky (72m,k)
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Note that while (1) and (3) do not assume statistical
independence of the different streams, (9) does assume
independence. In fact SDCHM M’s are designed as ap-
proximations of CHM M’s, while T'M HM M’s are not.

In the particular case of K = d streams of one-
dimension, the SDCHMM formulation (6) becomes
equivalent to feature-level tying [1,2]. However we have
obtained additional computation and memory savings
with other stream definitions (K = 13, K = 20), that
cannot be used with the formulation [1,2]. Let us con-
sider the computation of the exponent (essentially the
log-likelihood) of a d-dimensional Gaussian:
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The K = d one-dimensional stream SDCHM M’s and
the feature-level tying system [1,2], save computation be-
cause the addenda can be precomputed and shared among
many Gaussians. However, still d summations must be
carried-out, which become the largest fraction of the
log-likelihood computation. SDCHMM’s with K < d
streams reduce the computation further, because they add
only K terms, instead of d.

7. EXPERIMENTS

The new SDCHM M’s have been tested on the ARPA-
ATIS spontaneous speech recognition task (official De-
cember 1994 test set). The SDCHM M performance has

been compared to two conventional CHM M systems:

a) 49 context independent (CI) phone CHM M’s, with
a total of 2302 Gaussians of 39 dimensions.

b) 9,863 context dependent (CD) tied-state triphone
CHMM’s, and a total of 76,725 Gaussians.

Both use a 1,532 word lexicon, a word-class bigram lan-
guage model, and frame-synchronous beam-search. The
lexicons have tree and linear structures respectively.

We have converted the CHM M M’s to SDCHM M’s,
with different numbers of streams and Gaussian code-
words. Word error rates for various configurations (but
with the same beam width) for the context independent
case are shown in Figure 1. The baseline accuracy of the
CHM M system, corresponding to 2302 Gaussians in Fig-
ure 1, is 9.4%. For low dimensionality streams, i.e. 13, 20
and 39 stream cases, the number of Gaussian codewords
(shown on the x-axis) can be substantially reduced to 64,
16 and 8 respectively, without significant changes of the
word error rate.

Figure 2 shows the corresponding recognition times (in-
cluding feature extraction, search and likelihood compu-
tation) on a 150 MHZ R4400 SGI workstation. The base-
line CHM M system, corresponding to 1-stream and 2302
Gaussians, takes a recognition time of 1.8 times real time.
The 13-stream, 64-Gaussian SDCHMM, and the 20-
stream, 32-Gaussian SIDCH M M speedup the recognition
to real time. Note that the 39-stream case (feature-level
tying), is not as efficient, for the reason explained in the
previous Section.

Figure 3 shows the combined word error rate and
recognition time for context dependent SDCHM M'’s, in
the 39-stream and 20-stream cases. The baseline con-
text dependent CHM M’s give a 5.2% word error rate,
at 21 times real time. The 20-stream, 64 Gaussian
SDCHM M’s reduce the recognition time by a factor
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Figure 1. Context independent SDCHMM word

error rates.

of two, with only a 0.2% absolute word error rate in-
crease. Asin the context-independent case, the 20-stream
SCIDHM M’s are computationally more efficient than the
39-stream one-dimensional feature level tying system.

All results in Figures 1 through 3 were obtained without
Gaussian Selection for the likelihood computation. Gaus-
sian Selection [4] applied as in Section 5, further reduces
the total recognition time of the fastest SDCHM M con-
figurations by 10 to 15%.

SDCHMM’s reduce the number of CHMM Gaus-

sian mean and variance parameters by a factor %, that

is about 70 =~ 2,302/32 and 1,200 = % for our
context independent and context dependent models re-
spectively. After taking into account the mapping struc-
ture required to implement the SDCH M M’s, we reduce
CHMM memory by 12, 11, and 7, for K = 13, K = 20,
and K = 39 streams (assuming one-byte per pointer).
Therefore, the SDCHMM formulations (K = 13, K =
20) appears more memory efficient than feature-level ty-
ing (K = 39).

8. CONCLUSION

The proposed SDCHMM’s provide computation and
memory savings with respect to the widely used, highly
accurate continuous density HM M’s (CHM M), without
almost any loss in recognition accuracy.

In this study, the SDCHMM have been derived as
an approximation of existing CH M M’s, without retrain-
ing on speech data. We plan to investigate training of the
SDCHM M’s directly from the speech data. We feel that,
since SDCHM M use a small number of Gaussian param-
eters, this method has further potential when few training
data are available, as in speaker/environment adaptation.
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