
Joint Estimation of Thresholds in a Bi-threshold Verification Problem

Simon Ho and Brian Mak

Hong Kong University of Science & Technology
Department of Computer Science

Clear Water Bay, Hong Kong
{csho, mak }@cs.ust.hk

Abstract

Verification problems are usually posted as a 2-class
problem and the objective is to verify if an observation
belongs to a class, say, A or its complement A’. How-
ever, we find that in a computer-assisted language learn-
ing application, because of the relatively low reliability of
phoneme verification — with an equal-error-rate of more
than 30% — a system built on conventional phoneme ver-
ification algorithm needs to be improved. In this paper,
we propose to cast the problem as a 3-class verification
problem with the addition of an “in-between” class be-
sides A and A’. As a result, there are two thresholds to be
designed in such a system. Although one may determine
the two thresholds independently, better performance can
be obtained by a joint estimation of these thresholds by
allowing small deviation from the specified false accep-
tance and false rejection rates. This paper describes a
cost-based approach to do that. Furthermore, issues such
as per-phoneme thresholds vs. phoneme-class thresholds,
and the use of bagging technique to improve the stability
of thresholds are investigated. Experimental results on a
kids’ corpus show that cost-based thresholds and bagging
improve verification performance.

1. Introduction
Verification technology is widely used in areas like se-
curity systems, biometrics, and learning systems. Ex-
amples in the speech domain include speaker verifica-
tion as a biometric identification method, language ver-
ification and accent verification for many telephony auto-
mated systems, as well as phoneme verification for lan-
guage learning. In most systems, verification is posted as
a hypothesis testing problem. It is a 2-class problem in
which the null hypothesis is that an observation belongs
to a class, say, A and the alternative hypothesis is that
it does not — or, in other words, the observation comes
from the class, A’ (A’s complement). A common met-
ric to evaluate a verification system is its equal error rate
(EER) which is obtained from the threshold that gives
equal false acceptance rate (FA) and false rejection rate
(FR).

We are interested in the use of verification technol-
ogy in a computer-assisted language learning (CALL)
application. In a CALL system like [2], a user is asked
to produce several utterances for evaluation and an av-
erage score is reported. In [1], evaluation scores are re-
ported at both sentence level and speaker level. One prob-
lem with [2, 1] is that the feedback in terms of an over-
all score is not too useful for learning: the speaker still
does not know how to improve his pronunciation based
on the score since he does not know what is wrong with
his pronunciation. Witt and Young [5] compute confi-
dence scores for each phoneme in an utterance in a CALL
system. The significance of the work is that one may
now pinpoint the pronunciation accuracy at the phoneme
level, which we believe is necessary. Leung and Siu [4]
further propose the combination of confidence measures
computed from both MFCCs features and articulatory
features, and report better phoneme verification perfor-
mance. Although these works represent great progress in
the development of CALL applications, a major difficulty
we encounter is the relatively low reliability of phoneme
verification. Table 1 shows the EERs we find in a system
using conventional verification method. These figures are
simply too high to build a useful CALL application.

Table 1: Global and Average EER
EER using phone-independent threshold 38.03%

Average EER using phone-dependent thresholds 31.66%

In this paper, we propose to re-cast the verification
problem as a 3-class verification problem with the addi-
tion of a new “in-between” class besides A and A’. The
main idea is that there are often pronunciations which are
similar but do not reach the exact acoustic targets; clas-
sifying them as incorrect may not be the best approach.
This is especially true for a beginner who is also a non-
native speaker with a foreign accent. Or, there are times
when the system is not confident about its verification re-
sult, then it will be better to be more conservative than to
give a wrong “reinforcement feedback” to the learner. We
believe it is more reasonable to create an “in-between”

Figure 1: Definition of the two thresholds in our bi-
threshold verification problem.

class to capture these inexact but reasonable pronuncia-
tions; and, a pronunciation falling to this “in-between”
class will not be considered wrong. As a result, there are
two thresholds to be designed in such a system. By care-
fully designing the two thresholds, the feedback is more
meaningful and useful for learning.

2. Cost-based Bi-threshold Verification
In the design of a CALL application, one starts with
a specification of its false acceptance rate (FA) and
false rejection rate (FA). For instance, a more forgiving
CALL system will have a relatively lower FR at the
expense of a higher FA. In our bi-threshold CALL
system, we have 3 kinds of response: good, fair, and
bad pronunciations. We will call the two involving
thresholds “good-fair” (GF) threshold and “bad-fair”
(BF) threshold. The verification performance on correct
and incorrect inputs is then described by 6 probabilities
as shown in Fig 1: P(bad|correct), P(fair|correct),
P(good|correct), P(bad|incorrect), P(fair|incorrect),
and P(good|incorrect). In fact, P(bad|correct) and
P(good|incorrect) are supposed to be FR and FA
respectively.

Traditionally, one would determine the two required
thresholds independently according to the specified FA
and FR. However, since the distributions of confidence
scores for correct and incorrect inputs are not uniform, if
one is allowed to deviate from the specified FA and FR
slightly, better performance can actually be achieved by a
joint estimation of the two thresholds.

2.1. Cost Function

Let us denote the FA and FR specification of the system
as F̂A and F̂R respectively. The two thresholds — GF

and BF thresholds — are jointly estimated by considering
the following three factors:

(I) P(good|correct) and P(bad|incorrect) should be as
large as possible.

(II) P(bad|correct) and P(good|incorrect) are basically
the FR and FA; they should be as small as possible.

(III) P(bad|correct) and P(good|incorrect) are allowed
to deviate from the specified F̂R and F̂A but only
if they are smaller then the latter; otherwise, they
will be penalized.

Intuitively, good thresholds will try to maximize (I) but
to minimize (II) and (III). Formally, the estimation of the
two thresholds is to maximize the following cost function
C:

{k1 · P (good|correct) + k2 · P (bad|incorrect)}

−{k3 · P (bad|correct) + k4 · P (good|incorrect)}

−{k5 · u(x) · x + k6 · u(y) · y} (1)

where k1 — k6 are positive constants whose values de-
pend on their importance in the system design; and

x = P (good|incorrect) − F̂A (2)
y = P (bad|correct) − F̂R (3)

and u is the unit step function defined as

u(z) =

{
1 if z > 0.0
0 if z ≤ 0.0

.

Table 2: Illustration of the cost function. (Inc = Incorrect;
Cor = correct)

Case Class P(bad) P(fair) P(good) (I) - (II) (III) C
1 Inc 0.4 0.4 0.2 0.6 0 0.6

Cor 0.1 0.4 0.5
2 Inc 0.65 0.15 0.2 0.65 0.2 0.45

Cor 0.3 0.2 0.5
3 Inc 0.48 0.32 0.2 0.65 0.03 0.62

Cor 0.13 0.37 0.5

2.2. An Example
Three scenarios are constructed in Table 2 to illustrate the
effects of the three factors. Here we assumed that the re-
quired F̂A and F̂R are 0.2 and 0.1 respectively, and all
the constants k1 — k6 are 1.0. In case 1, the BF and GF
thresholds are designed according to the exact F̂A and
F̂R values. In case 2, the BF threshold is shifted to the
“fair” class so that more instances are now classified as
bad. As a result, FR = P(bad|correct) also increases from
0.1 to 0.3, which is too large to be acceptable. However,

if one just looks at the score of (I) - (II) then case 2 is ac-
tually preferred. The example explains the importance of
the factor (III) which acts as a penalty for deviation of the
FA and FR from the specified values. The cost function
constructed gives a lower score for case 2 than case 1. On
the other hand, in case 3, the BF threshold is also shifted
to the “fair” class, but the deviation is so small that the
increase in P(bad|incorrect) more than compensates the
increase in FR.

3. Experimental Evaluation
The cost-based bi-threshold verification algorithm is
evaluated in a CALL system we help develop with the
Hong Kong Applied Science and Technology Research
Institute Company Limited (ASTRI). A speech corpus is
collected by ASTRI from local Hong Kong Chinese and
English native-speaking kids of Grade 3 to 6. All col-
lected data are phonemically transcribed. The corpus is
divided into 2 disjoint sets: training set and evaluation
set. The training set contains 13,049 utterances from 153
kids (89 boys, 64 girls). All of them are sentences. The
evaluation set consists of 7,381 utterances representing
37,026 phoneme segments from 52 kids (26 boys and 26
girls). Among the 37,026 phoneme segments, 29,257 of
them are pronounced correctly while 7,769 of them are
pronounced incorrectly.

3.1. Setup

3.1.1. Acoustic Models

There are 40 phonemes in our system. Position-
dependent hidden Markov models (HMM) are used to
represent the phonemes depending on their position in the
beginning, middle, or at the end of a word. Thus, there
are totally 120 HMMs. Each HMM has 3 states with 10
Gaussian components per state. They are trained using
the HTK Toolkit [6]. The standard 39-dimension acous-
tic vector is used, consisting of 12 MFCCs, normalized
frame energy and their first- and second-order derivatives.

3.1.2. Confidence Measure

Given a phoneme segment X of duration T frames,
the confidence score, CS(Cj |X), of X being the j-th
phoneme Cj among N phoneme candidates is defined as
the time-normalized log-likelihood of its posterior prob-
ability P (Cj |X). That is,

CS(Cj |X) =
1

T
log P (Cj |X) (4)

where the posterior probability is defined as

P (Cj |X) =
P (X |Cj)P (Cj)∑N

k=1
P (X |Ck)P (Ck)

. (5)

If the prior probabilities of all the phonemes may be as-
sumed equal, then Eqn(5) may be simplified as

P (Cj |X) ≈
P (X |Cj)∑N

k=1
P (X |Ck)

. (6)

We follow [5] and compute the denominator from its
Viterbi path. That is,

P (Cj |X) ≈
P (X |Cj)

max1≤k≤NP (X |Ck)
. (7)

However, since Eqn(7) involves all possible
phonemes, it requires substantial computational cost.
To speed up, we further approximate the denominator
using a Gaussian mixture model (GMM) trained on all
phoneme data. The GMM has 32 mixture components.

To summarize, the verification procedure runs as fol-
lows: A user is asked to utter a prompted text. The user’s
utterance is then forced-aligned with the known phone-
mic transcription of the text. A Viterbi search is also per-
formed with the GMM trained from all phonemes. For
each aligned phoneme segment, the confidence score of
Eqn(4) is computed, and according the the two thresholds
— GF and BF thresholds — it is classified as good, fair,
or bad.

3.1.3. Use of Margin

Using the cost function defined in Eqn(1), the GF and BF
thresholds are found by exhaustive search. In the deter-
mination of the thresholds, we always find the ones with
the largest margin. For example, if there is a range of
thresholds that will gives 10% FA, we always take the
midpoint of that range in order to achieve the minimum
risk (or better generalization) on testing sets.

3.1.4. Evaluation Metrics

Two metrics are used for evaluation:
• the verification error defined as the sum of

P(bad|correct) and P(good|incorrect).

• the cost defined by Eqn(1).
Ten-fold cross-validation is performed. That is, the eval-
uation data set is divided into 10 subsets. The two cost-
based thresholds are estimated from 9 of the 10 subsets
and then tested on the hold-out subset; the experiment is
repeated 10 times by cycling the hold-out subset through
the 10 available subsets. Mean and standard deviation of
results from the 10 cross-validation are reported.

3.1.5. Miscellaneous

In this evaluation, all the 6 positive constants k1—k6 in
Eqn(1) are set to 1.0. For phoneme-class thresholds, the
40 phonemes are categorized into 9 phoneme classes:
affricates, diphthongs, fricatives, nasals, semi-vowels,
stops, back vowels, middle vowels, and front vowels.

Table 3: Results from thresholds determined from exact
F̂A and F̂R.

Threshold Type Statistic Error Cost
per-phoneme mean 0.3342 0.4698

std dev 0.0372 0.0355
phoneme-class mean 0.3058 0.5579

std dev 0.0375 0.0327

3.2. Experiment I: Exact FA and FR
Table 3 shows the results when the two thresholds are
determined independently according to the exact F̂A

and F̂R requirements. The result using phoneme-class
thresholds has lower verification error (by about 3% ab-
solute) and higher cost value (by about 9%) than if per-
phoneme thresholds are used. This is mainly due to the
problem of insufficient data to estimate each phoneme
threshold robustly. The phoneme-class thresholds also
give a more stable cost.

Table 4: Results from thresholds determined by maxi-
mization of the cost function in Eqn(1).

Threshold From Statistic Error Score
Exact F̂A/F̂R mean 0.3058 0.5579

std dev 0.0375 0.0327
Cost-based mean 0.2985 0.6084

std dev 0.0252 0.0314

3.3. Experiment II: Cost-based Thresholds
Table 4 compares the performance using thresholds deter-
mined from exact F̂A and F̂R requirements and thresh-
olds estimated using the cost-based algorithm described
in Section 2. Both verification performance and the de-
fined cost are improved. The cost-based thresholds give
more stable performance (with smaller variances) too.

Table 5: Effect of bagging on cost-based bi-threshold ver-
ification

Bagging? Statistic Error Cost
No mean 0.2985 0.6084

std dev 0.0252 0.0314
Yes mean 0.2835 0.6402

std dev 0.0309 0.0314

3.4. Experiment III: Effect of Bagging
We also investigate the use of bagging (bootstrap aggre-
gation) to improve the robustness of the linear thresholds.
Bagging is commonly used, especially in the area of en-

semble of classifiers [3], to enhance performance stabil-
ity. The results in Table 5 show that the bagging tech-
nique can further improve the mean performance, both in
terms of verification error (up by about 1%) and the cost
(up by about 4%). However, we do not find additional
stability in the performance.

4. Conclusions
In this paper, we present a novel approach to enhance the
usability of a verification-based application when the ver-
ification reliability is not high. We propose to re-cast the
problem into a 3-class verification problem with the cre-
ation of an additional “in-between” class. One such ap-
plication is in the area of building a CALL system. Fur-
thermore, if one may relax the false acceptance rate and
false rejection rate requirements slightly, the two thresh-
olds in a CALL system may be jointly estimated by max-
imization of a cost function. Compared with a system us-
ing per-phone thresholds determined from exact FA and
FR, the use of phoneme-class thresholds estimated from
a cost function that relaxes the FA and FR slightly to-
gether with the bagging technique reduces verification er-
ror from 33.4% to 28.4%. The performance stability also
improves from a standard deviation of 0.0375 to 0.0309.

5. Acknowledgements
This work is supported by the Hong Kong Applied Sci-
ence and Technology Research Institute Company Lim-
ited.

6. References
[1] Tasuo Ariki and Jun Ogata, “English CALL Sys-

tem with Functions of Speech Segmentation and
Pronunciation Evaluation Using Speech Recogni-
tion Technology”, ICSLP 02, 2002.

[2] C. Cucchiarini, H. Strik, and L. Boves, “Auto-
matic Evaluation of Dutch Pronunciation by Using
Speech Recognition Technology”, Proc. of IEEE
ASRU, Santa Barbara, Dec. 1997.

[3] T.G. Dietterich, “Ensemble Methods in Machine
Learning”, Proc. of Multiple Classifier Systems,
June 2000.

[4] K. Y. Leung and M. H. Siu, “Phone Level
Confidence Measure Using Articulatory Features”,
ICASSP 03, 2003.

[5] S. Witt and S. Young, “Language Learning Based
on Non-native Speech Recognition”, Eurospeech
97, 1997.

[6] S. Young, D. Kershaw, J. Odell, D. Ollason,
V.Valtchev and P.Woodland, “The HTK Book for
HTK 3.0”, Microsoft Corporation, July 2000.

