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ABSTRACT

In the hidden Markov modeling framework with mix-
ture Gaussians, adaptation is often done by modifying
the Gaussian mean vectors using MAP estimation or
MLLR transformation. When the amount of adapta-
tion data is scarce or when some speech units are un-
seen in the data, it is necessary to do adaptation in
groups — either with regression classes of Gaussians
or via vector field smoothing. In this paper, we pro-
pose to derive regression classes of subspace Gaussians
for MAP adaptation. The motivation is that cluster-
ing at the finer acoustic level of subspace Gaussians
of lower dimension is more effective, resulting in lower
distortions and relatively fewer regression classes. Ex-
periments in which context-dependent TIMIT HMMs
are adapted to the Resource Management task with few
minutes of speech show improvement of our subspace
regression classes over traditional full-space regression
classes.

1. INTRODUCTION

When there is a mismatch between the training and
testing conditions, adaptation of speech models can ef-
fectively improve recognition in the new environment.
In the hidden Markov modeling framework with mix-
ture Gaussians, adaptation is often done by modifying
the Gaussian mean vectors using MAP estimation {3] or
MLLR transformation [4]. When the amount of adap-
tation data is adequate, individual models may reli-
ably be modified using either approaches but better
with MAP estimation. However, when the amount of
adaptation data is scarce or when some speech units
are unseen in the data, it is necessary to do adapta-
tion in groups as in MLLR adaptation and vector field
smoothing [7]. That is, similar Gaussians are grouped
into regression classes so that Gaussians in the same
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class will share the same adaptation data in deriving
the transformation.

In acoustic modeling, it is important to balance
model complexity with the amount of training data.
The same heuristic also applies to the task of adapta-
tion. The use of regression classes of Gaussians reduces
adaptation complexity when the amount of adaptation
data is small. In the literature, these regression classes
are usually derived by clustering the full-space Gaus-
sians in the models. In this paper, we investigate the
derivation of regression classes from subspace Gaus-
sians for adaptation. The motivation is that clustering
of subspace Gaussians of lower dimension is more effec-
tive, resulting in lower distortions and relatively fewer
regression classes.

In the next section, we describe how we derive the
subspace regression classes. This is followed by the
evaluation in Section 3 and conclusions in Section 4.

2. DERIVATION OF SUBSPACE
REGRESSION CLASSES

Recently we have proposed an alternative to conven-
tional continuous-density hidden Markov modeling
(CDHMM) which we call subspace distribution clus-
tering HMM (SDCHMM) [1]. In SDCHMM, mixture
Gaussians with diagonal covariances are first projected
into low-dimensional subspaces (usually one- to three-
dimensional), and subsequent subspace Gaussians are
tied. Because of the efficiency achieved by clustering
in low dimensions, SDCHMM attains a high degree of
tying — thus very compact — without degradation in
performance when compared to its original CDHMM.
In our experience, for a common 39-dimensional acous-
tic vector, 13 to 20 streams with 32 to 256 subspace
Gaussian prototypes per stream are adequate to give
good performance.

The subspace definitions and the method of sub-
space Gaussian tying in SDCHMM [5] can be applied to
the derivation of subspace regression classes for adap-
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tation purpose. We will briefly describe them here for
the sake of completeness.
2.1. Definition of Subspaces

We use the heuristic that correlated features tend to
cluster in a similar manner and require each subspace

to comprise the most correlated features. For 2-dimensional

subspaces, one may use Pearson’s moment product cor-
relation coefficient to determine the most-correlated
subspaces:
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where ¢; and o; are the standard deviations of the -
th and j-th feature respectively, and o;; is the square
root of their covariance. For multiple correlation a-
mong k(k > 2) features, we use the following measure:
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2.2. Creation of Subspace Regression Classes

Full-space observation Gaussians are first projected in-
to each subspace, then regression classes of subspace
Gaussians are created by a modified K-means cluster-
ing algorithm using the Bhattacharyya distance mea-
sure between Gaussians as in Algorithm 1.

3. EVALUATION: TASK ADAPTATION

To evaluate the effectiveness of the subspace regres-
sion classes, we adapted TIMIT [8] phoneme models to
recognize utterances from the Resource Managemen-
t (RM) [6] task. All speech models are word-internal
triphones which are 3-state left-to-right HMMs, with
a maximum of 32 mixture Gaussians per state. The
signal processing front-end produces 39-dimensional a-
coustic vectors (consisting of 12 MFCCs and the nor-
malized frame energy plus their first and second time
derivatives) from each 20ms of speech at a frame rate
of 100Hz.

3.1. Training of Baseline RM HMDMs

For comparison, a baseline RM recognizer was trained
from the augmented speaker-independent training set
of the RM speech corpora which consists of 230 minutes
of speech and 3990 utterances. From the 2229 distinct
word-internal triphones and 43 basis phones present in

the training data, 869 triphone HMMs are estimated
with 535 tied-states and 6188 Gaussians. The models
achieve a word accuracy of 91.34% on the Feb’91 test
set.

Algorithm 1: Derivation of subspace regression classes

Goal: To derive N regression classes of subspace
Gaussians in each of the K subspaces.

Step 1. Initialization: First create a Gaussian mix-
ture model with N components from the training
data. Project each of the N Gaussian compo-
nents onto the K subspaces according to a given
K-subspace definition. The resultant KN sub-
space Gaussians will be used as initial subspace
Gaussian centroids.

Step 2. Similarly project each Gaussian in the original
CDHMMs onto the K subspaces.

Step 3. For each subspace, repeat Step 4 & 5 until
some convergence criterion is met.

Step 4. Membership: Associate each subspace Gaus-
sian with its nearest centroid as determined by
their Bhattacharyya distance. The collection of
member subspace Gaussians of the same centroid
constitute a regression class.

Step 5. Update: New centroid for each regression class
is computed by merging all subspace Gaussians
in the class.

3.2. Training of TIMIT Triphone HMMs

Context-dependent triphone HMMs were first estimat-
ed from the standard TIMIT training dataset which
contains 188 minutes of 3696 utterances. There are
6534 distinct word-internal triphones and 47 basis phones
out of which, 1260 triphone HMMs are estimated with
578 tied-states and 5186 Gaussians. The models achieve
a TIMIT phoneme accuracy of 64.03%, and a word ac-
curacy of 79.20% on the RM Feb’91 test set.

3.3. Adaptation of TIMIT HMMs to RM

Adaptation data sets of various sizes: 1, 2, 5, 10, 15
and 20 minutes were randomly selected from the RM
training corpus so that (1) each set is gender-balanced;
and, (2) smaller adaptation data sets are subsets of the
larger ones. The following adaptation schemes were
investigated:
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1. CDHMM-MAP: conventional MAP adaptation with

no regression classes. Unseen triphones are not
modified.

2. MLLR (RC$N-MLLR): HTK’s [2] MLLR trans-
formation with $§N regression classes.

3. MLLR with MAP (RC$N-MLLR-MAP): HTK’s
MAP adaptation on MLLR-transformed mean vec-
tors with $N regression classes.

4. Subspace-MAP (S$K-RCSN-MAP): MAP adap-
tation with $N subspace regression classes for each
of the $K subspaces plus tying of the subspace
Gaussians in each class.

5. Subspace-ML (S$K-RC$N-ML): Maximum-likelihood

re-estimation of subspace Gaussians in each of
the $K subspaces, using data shared among those
belonging to the same subspace regression class
{and there are $N regression classes per subspace).
Both mean and variance of the subspace Gaus-
sians are re-estimated.

The following remarks are worth to mention:

¢ HTK adaptations actually run in two passes: A
global MLLR transformation is performed in the
first pass, and the adapted models are used to
re-align all adaptation data. The required adap-
tation scheme runs in the second pass using the
re-aligned adaptation data. All other adaptation
schemes run with one pass.

e To further reduce the amount of adaptation data
requirement, all subspace Gaussians within a sub-
space regression class are tied in the Subspace-
MAP scheme. On the other hand, by defini-
tion, Subspace-ML estimation renders the sub-
space Gaussians of a regression class effectively
tied.

e All adaptations are done in supervised mode.

e All MAP adaptations use a scaling factor of 15.

3.4. Results and Discussion

The task adaptation results with 128 and 256 regression
classes are tabulated in Table 1 and 2. We have the
following observations:

e Even without any adaptation and simply by ty-
ing the subspace Gaussians in each subspace re-
gression class, the word error rate (WER) is re-
duced by 11.2% and 14.5% respectively with the
use 128 and 256 classes. A possible reason is that

the context-dependent triphone models are very
sharp and capture the TIMIT phone character-
istics too well that they do not match the RM
phones. The subspace Gaussian tying generalizes
the models effectively by smoothing the Gaus-
sians.

e With less than 5 minutes of adaptation data, MAP
adaptation with regression classes of subspace Gaus-
sians outperforms other schemes. The good per-
formance should be due to the more effective clus-
tering of subspace Gaussians of lower dimensions
in deriving regression classes.

¢ However, with more adaptation data, the great
reduction of model parameters entailed by Subspace-
MAP or Subspace-ML limits model improvemen-
t. The limiting effect is smaller with Subspace-
ML in which the variances are adapted as well.
This is evidenced by (1) their better performance
when the number of subspace regression classes
was increased from 128 to 256; and (2) the bet-
ter performance of Subspace-ML over Subspace-
MAP with more than 5 minutes of adaptation
data.

* As expected, conventional MAP adaptation does
not perform well with limited amount of data.

4. CONCLUSIONS

In this paper, we demonstrate the effectiveness of clus-
tering at a finer acoustic level of subspace Gaussians.
Subspace MAP adaptation with regression classes de-
rived from these subspace Gaussians achieves better
performance than conventional MAP or MLLR when
the amount of adaptation data is limited. The addi-
tional tying we introduce to the adaptation scheme is
both a blessing and a hindrance: on the one hand,
it further reduces the adaptation complexity and thus
the amount of adaptation data required; on the other
hand, it also limits the performance when the amount
of adaptation data increases. Anyhow since adapta-
tion with very limited amount of data is usually more
important, Subspace-MAP with tying is still preferred
and one may remove adaptation tying when data be-
come abundant.
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