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ABSTRACT 

The bank-of-filters spectrum analysis model is commonly used in 
the extraction of acoustic features for automatic speech recogni- 
tion. The most critical component in the analysis model is a bank 
of bandpass filters. In this paper, we studied a data-driven ap- 
proach to designing a hank of “optimal” filters of various shapes 
discriminatively so that the recognition error of a task is mini- 
mized. Three different shapes of varying degree of constraints 
were investigated ( I )  parametric Gaussian filters; (2) non-parametric 
but constrained triangular-like filters; and (3) non-parametric and 
unconstrained free-formed filters. Filters were trained to derive the 
new robust auditory features recently proposed by the Bell Labs. 
In addition, both the filters (and thus the ensuing acoustic features) 
and the acoustic model parameters were discriminatively trained. 
The major result is that our proposed triangular-like filters perform 
at least as well as the free-formed filters and perform better than 
the Gaussian filters. 

1. INTRODUCTION 

One commonly used method of spectral analysis in the extrac- 
tion of acoustic features for automatic speech recognition (ASR) 
is the bank-of-filters spectrum analysis model. It is motivated by 
the human auditory perception process that is believed to be doing 
spectral analysis through a bank of bandpass auditory filters. Ac- 
cording to findings in psychoacoustics by Patterson and Moore et 
al. [ I ] ,  the shape of auditory filters in the linear frequency scale is 
symmetric at moderate sound levels and may be approximated by 
Gaussian filters: and it becomes increasingly asymmetric at high 
sound levels with the low-frequency side getting shallower and the 
high-frequency side getting steeper. However, these findings were 
obtained with simple or mixed tones and the effect was usually 
measured on a single critical band. It is not clear that the Gaus- 
sian approximation to the shape of auditory filters is optimal in 
the perception of real speech. On the other hand, the computation 
of mel-frequency cepstral coefficients (MFCC) employs a bank of 
triangular filters. The triangular filters are a funher approximation 
to the Gaussian approximation of humans’ auditory filters, and are 
adopted for its computation efficiency. 

Recently, we have been working on optimizing the parameters 
involved in the feature extraction of the new robust auditory fea- 
tures developed at the Bell Labs [2 ,  31. (Hereafter, we will call it 
the Bell Labs features.) The Bell Labs feature is derived by mim- 

tThe co-author is now a graduate student at the Cmegie Mellon Uni- 
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icking closely the human peripheral auditory system. In particu- 
lar, the filtering processes in the outer-middle ear and inner ear are 
explicitly modeled. The new auditory feature was found outper- 
forming MFCC, LPCC. and PLP in noise environments 12.31. In 
our work, bath feature extraction parameters and acoustic model 
parameters are discriminatively trained to minimize the recogni- 
tion error o f a  specific task using the MCWGPD framework [4,5]. 
One of our major contributions is that better discriminative audi- 
to? features (DAF) are obtained through discriminative training 
of non-parametric auditory filters that are “triangular-like”. 

In this paper, we would like to study the effect of the shape of 
auditory filters in derving DAF. Auditory filters of three different 
shapes and varying degree of constraints were investigated: 

1. parametric Gaussian Jilters. It is motivated by humans’ 
Gaussian-like auditory filters and it serves as the basis for 
comparison. 

2. non-parametric and weakly-constrained triangular-like Jil- 
t en .  The triangular-like filters may be considered as a gen- 
eralization of both triangular filters and Gaussian filters. 

3. non-parametric and unconstrained free-formedfilters. Ex- 
cept that all filter weights must be positive, they may take up 
any shapes even if they are not supported by any psychoa- 
coustic evidence. This is simply mathematically motivated. 

2. AUDITORY FILTERING 

The extraction of the Bell Labs feature consists of the following 
major steps: 

frame blocking with a window of 25ms at every lams of 

computing the FFT spectrum (in linear frequency domain); 

filtering by the outer-middle-ear transfer function; 

converting from the linear frequency scale to the Bark scale 
by linear interpolation to obtain a 128-point Bark spectrum; 

auditory filtering; 

de-correlation by DCT and computation of cepstrum; and 

computation of dynamic features. 

There are 32 auditory filters in our system and they are equally 
spaced at an interval of 4 points apan in the Bark spectrum that 
covers O-4kHz. After auditory filtering, the 128-point input Bark 
spectrum was converted to 32 channel energies from which ceptsra 
are computed using DCT. 
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Fig. 1. The auditory filter of the k-th channel 

1.0 

Fig. 2. Representation of a 9-point triangular-like filter 

An auditory filter of our system has the general design of Fig. I, 
one for each channel. It can be thought of as a two-layer percep- 
tron without any nonlinearity. The weight wok in the second layer 
perceptron is the gain of the auditory filter while the weights in the 
first layer are the normalized filter weights. Although the two-layer 
perceptron is equivalent to a single-layer perceptron, the design al- 
lows us to examine the resulting filter shapes and gains separately. 
All the filter weights are required to be positive. 

2.1. Auditory Filters of Various Shapes 

2. I .  I .  Triangular-like Filters 

Motivated by findings from psychoacoustics. we propose to ap- 
proximate humans’ auditory filters by “triangular-like filters”: all 
filter weights are positive with a maximum response of 1.0 in the 
middle, and their values taper off to both ends as depicted in Fig. 2. 
The triangular-like constraint are implemented by two successive 
parameter-space transformations. For a digital filter with (2L + 
1) points, we associate the filter weights { w-L, . . . , w- 1, WO,  

WI, . . . , W L )  with a set of deltas, { ~ L L , .  . . ,L1,&, . . . , 6 ~ }  so 
that after the parameter transformation and proper scaling, 6, will 
be equivalent to Awi (see Fig. 2). Positively-indexed weights are 
related to the positively-indexed deltas mathematically as follows: 

<=I 

where F(.)  and H ( . )  are any monotonically increasing functions 
such that 0.0 5 F ( z )  5 1.0 and 0.0 5 H ( z ) .  The negatively- 
indexed weights are similarly related to the negatively-indexed deltas 

In this paper, we used the exponential function as H ( z )  and the 
sigmoid function as F ( z ) .  

2.1.2. Gaussian Filters 

A Gaussian filter with (2L + 1) points may be represented as 

Notice that unlike our general triangular-like filters, a Gaussian fil- 
ter is always symmetric. Furthermore. there is only one parameter, 
the variance, to estimate. 

2.1.3. Freerformed Filters 

A free-formed filter is totally unconstrained except that all the filter 
weights are positive. 

3. DISCRLMINATIVE TRAINING OF FILTERS 

Although we are concerned only about the filter parameters, it is 
easier to describe their estimation in the larger context of discrimi- 
native training of any parameters 4 that control the feature exuac- 
tion process. Some of these parameters are illustrated in Fig. 3, 
and are denoted as follows: 

et 
Ut 

It 
Xt 
Ut 

U ;  

6 k  
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: Bark FFT inputs to auditory filters at timet 
: outputs from auditory filters at time t 
: channel outputs at t imet  
: acoustic features at time t 
: static acoustic features at t imet  
: delta acoustic features at timet 
: gain of the filter in the le-th channel 
: weights of the k-th filter 
: supplementary deltas associated with wak 

: intermediate output of the le-th filter 

As usual, vectors are bold-faced. 
The empirical expected suing-based misclassification error C, 

is defined as 

where 0 consists of any feature extraction parameters and acous- 
tic model parameters; Xu is one of the Nu training utterances; 
1 ( . )  is the soft error-counting sigmoid function; and d ( X i )  = 
Gi(X,) - gi(Xi) measures the ratio between the log-likelihood 
of the correct string g.(Xi) and that of its competing hypotheses 
Gi(X,). To optimize any parameter 4, one finds the derivative of 
the loss function C w.r.1. 4 for each training utterance X , ,  which 
requires the partial derivative of gi w.r.t. 4. If we assume inde- 
pendence between the feature extraction parameters and the model 
parameters, and the dynamic fertures vi are the linear regression 
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Fig. 3. Parameter notations in the extraction of our discriminative auditory feature 
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where, since the filter output g L h  = E:=-, et*, . exp (-3 of the static features vt: v i  = c~v,,,, then 

(4) 

3.2.3. Freeformed Filters 

Each filter weight has to be trained in an unconstrained manner by 
finding the partial derivative of utj w.r.t. the weight wok; 

2%L - a z t k  , au&, ay tk  
a w e k i  - 8% ’ a u t k  a y t k  awaki 

= z-x-. l N  abqt 9 + 
b,(zt) j=, ”% a$ 

aut 
Thus, all the computations boil down to finding 

3.1. Re-estimation of Filter Gains 

= w,’p’ . LL . W o k  ’ e f t ;  (12) ad Utk 

since yes = W m k T  . et& 

By applying the chain rule on variables zt and ut (see Fig. 1 and 
Fig. 3). we have 

4. EVALUATION 

The effect of the filter shape on the discriminative auditory fea- 
ture was investigated on Aurora? [6]. The Aurora2 corpus con- 
sists of simulated telephone utterances of digit strings with addi- 
tive noises at various signal-to-noise ratios. In this paper, only the 
multi-condition training mode was investigated and results were 
reported by combining the performance on all of its three test sets 
(A, B, and C) according to Aurora’s evaluation standard. 

_ _ -  

1 
(6) Y t k  = WID). - .  

J k  U t k  

where W C D )  is the DCT matrix and ztli = log(utk). 

3.2. Re-estimation of Filter Weights 

3.2.1. Triangular-like Filters 

The positively-indexed filter weights of the k-th channel w-k are 
re-estimated indirectly through the associated deltas &h,  h = 1 , .  . . , L. 
Using the chain rule, we obtain 

(7) 

The actual filter weights walk are obtained by the appropriate in- 
verse transformations of 8 k h .  

A similar formula may be derived for the negatively-indexed 
deltas. 

3.2.2. Gaussian Filrers 

Let us simplify the notation by representing the Gaussian variance 
of the k-th (channel) filter by pk.  The derivative of ut, w.1.t. DL. 
may be derived in a similar way as Eqn.(7), and is given by 

1 
U t k  

4.1. Experimental Setup 

The Bell Labs features were extracted from speech utterances ev- 
ery lOms as descnbed in 121 except that the auditory filters were 
replaced by our triangular-like filters, Gaussian filters, and free- 
formed filters. Each feature vector consisted of 13 MFCCs includ- 
ing CO, and their first- and second-order derivatives. 

and each channel had its own filter. Triangular-like filters were 
generally asymmetric, whereas Gaussian filters are. by definition, 
symmetric. No restrictions were placed on free-formed filters, ex- 
cept that like all other filters, the filter weights must he positive. 

Following the baseline setup in the ICSLP conference in 2002, 
each digit was represented by a context-independent whole-word 
hidden Markov models (HMM) and was trained using the EM al- 
gorithm to produce its initial ML estimates (MLE). Each model 
was a straightly left-to-right HMM with 16 states and 3 Gaussian 
components per state. The silence model had only 3 states, each 
with 6 mixture components. There was also a I-state short-pause 
model tied to the middle state of the silence model. The HTK 
toolkit was used for both training the MLE models as well as for 
decoding. From the initial MLE models and auditory feature pa- 
rameters, discriminative training was performed to obtain MCE 
estimates of the HMM parameters and/or MCE estimates of the 
filter parameters. Corrective training was employed using the 1- 
nearest competing hypotheses [7]. 

Regardless of their shapes, all our auditory filters had 11 weights, 
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4.2.2. Effect of Filter Shapes 

M-mle M-mce +M-mce 
90.19 88.72 88.75 90.16 90.33 
90.52 89.01 89.22 90.72 91.01 
90.52 89.01 89.09 90.83 91.03 

Fig. 4. Aurora2 performance of various training schemes using 
triangular-like filters (Reference: ICSLP2002 baseline with tradi- 
tional MFCCs is 87.03%; our baseline using Bell Labs auditory 
features without discriminative training is 88.54%.) 

4.2. Results and Discussion 

Various ways to combine the discriminative training (DT) of the 
filter parameters with that of the HMM parameters were tried and 
we found that they should be done sequentially. Joint optimization 
did not work and its result was just equal to that due to discrimina- 
tive training of the model parameters alone. This agrees with the 
experience from other researchers [SI. Thus, the following training 
schemes were finally investigated: 

M-only: discriminative training of HMM parameters only; 

F-only: discriminative training of filter parameters only; 

F + M-mce: discriminative training of filter parameters fol- 
lowed by an MCE re-estimation of the models using the 
new features (obtained with the new filter parameters); 
F + M-mle: discriminative training of filter parameters fol- 
lowed by an ML re-estimation of the models using the new 
features; 

F + M-mle + M-mce: same as the last one but fallowed by 
a subsequent discriminative training of HMM parameters. 

4.2.1. Effect of Various Training Schemes 

Fig. 4 shows the results of various training schemes of the two 
kinds of parameters using triangular-like filters. Similar trends are 
observed for Gaussian filters or free-formed filters. It is clear that 
the Bell  Labs feature performs better than MFCC on the noise dig- 
its and reduces the word error rate (WER) by 11.6%. DT of model 
parameters alone (M-only scheme) is very effective and reduces 
the WER of our baseline by another 17.3%. DT of filter parame- 
ters alone (F-only scheme) is less effective and reduces the WER 
by only 4.1%. However. if it is followed by DT of the model pa- 
rameters (F+M-mce), then the result is slightly better than that of 
M-only training. The biggest gain was obtained by first re-training 
the HMMs using the new features derived from the new filters fol- 
lowed by another round of DT of the model parameters. The final 
WER reduction is 21.7% over our baseline. 

Table 1. Overall performance (in word accuracy in %) of DAF on 
Aurora2 using filters of different shapes. 

I Filters I M-onlv I F-onlv I F + I F + IF + M-mle 1 

The results of discriminative auditory features (DAF) derived 
using filters of various shapes are summarized in Table I .  It can be 
seen that the Gaussian constraint limits the performance of DAF in 
all  training schemes, whereas the free-formed filters have almost 
the same performance as our proposed triangular filters. 

5. CONCLUSIONS 

It is believed that humans’ auditory filters may be approximated 
well by Gaussian filters, and the computation of MFCCs uses trian- 
gular filters. However, our study shows that the proposed triangular- 
like filters are more general than either type of filters, and in the 
Aurora2 task, they give better word recognition accuracy. There 
are no psychoacoustic grounds for the use of free-formed filters; 
but that they perform as well as our triangular-like filters shows 
that the triangular-like filters may be “optimal”. We also believe 
that since our triangular-like filter is closer to humans’ filter shape, 
it may be more robust to varying environments. 
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