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ABSTRACT

Eigenvoice-based methods have been shown to be effective for fast
speaker adaptation when the amount of adaptation data is small,
say, less than 10 seconds. In traditional eigenvoice (EV) speaker
adaptation, linear principal component analysis (PCA) is used to
derive the eigenvoices. Recently, we proposed that eigenvoices
found by nonlinear kernel PCA could be more effective, and the
eigenvoices thus derived were called kernel eigenvoices (KEV).
One of our novelties is the use of composite kernel that makes it
possible to compute state observation likelihoods via kernel func-
tions. In this paper, we investigate two different composite kernels:
direct sum kernel and tensor product kernel for KEV adaptation. In
an evaluation on the TIDIGITS task, it is found that KEV speaker
adaptation using both forms of composite kernel are equally ef-
fective, and they outperform a speaker-independent model and the
adapted models from EV, MAP, or MLLR adaptation using 2.1s
and 4.1s of speech. For example, with 2.1s of adaptation data,
KEV adaptation outperforms the speaker-independent model by
27.5%, whereas EV, MAP, or MLLR adaptation are not effective
at all.

1. INTRODUCTION

It is commonly known that a well-trained speaker-dependent (SD)
model generally achieves a significantly lower word error rate than
a speaker-independent (SI) model on recognizing speech from the
specific speaker. For many applications such as phone services,
it is hard to acquire a large amount of data from a user to train
his/her SD model. A common technique to approach the SD per-
formance is to adapt the SI model with a relatively small amount
of SD speech using speaker adaptation methods. Adaptation meth-
ods like the Bayesian-based maximum a posteriori (MAP) adap-
tation [1] and the transformation-based maximum likelihood lin-
ear regression (MLLR) adaptation [2] have been popular for many
years. Nevertheless, when the amount of available adaptation speech
is really small — for example, only a few seconds, the more recent
eigenvoice-based adaptation method is found particularly more ef-
fective. The (original) eigenvoice (EV) adaptation method [3] was
motivated by the eigenface approach in face recognition [4]. The
idea is to derive a small set of basis vectors called eigenvoices that
are believed to represent different voice characteristics (e.g. gen-
der, age, accent, etc.), and each individual speaker is then a point in
the eigenspace. The simple algorithm was later extended to work
for large-vocabulary continuous speech recognition [5, 6, 7]. In

practice, a few to a few tens of eigenvoices are found adequate for
fast speaker adaptation. Since the number of estimation parame-
ters is greatly reduced, fast adaptation using EV is possible with a
few seconds of speech.

At the heart of eigenvoice-based adaptation methods is the
principal component analysis (PCA) employed to find the eigen-
voices. Then a new speaker is represented as a linear combination
of a few (most important) eigenvoices. Traditionally, these eigen-
voices are found by linear PCA. Recently, we investigated the use
of nonlinear kernel PCA [8] to find the eigenvoices using a com-
posite kernel, and the eigenvoices thus derived were called “kernel
eigenvoices” [9]. In a pilot study on the TIDIGITS task [10], com-
pared with an SI model, our kernel eigenvoice method reduced the
word error rate WER) by 27.5% using 2.1 seconds of adaptation
speech while conventional eigenvoice approach could only match
the performance of the SI model.

In this paper, we generalize the definition of composite kernels
and investigate KEV adaptation with two different composite ker-
nels: direct sum kernel and tensor product kernel. In additional,
we also compare the performance of KEV adaptation with that of
EV, MAP, and MLLR adaptation methods.

2. KERNEL EIGENVOICE ADAPTATION (KEV)

Let’s first review the conventional eigenvoice (EV) adaptation pro-
cedure, and then point out the differences between EV and KEV
adaptation.

2.1. Eigenvoice (EV) Adaptation

The conventional EV adaptation is computed as follows:

STEP 1. Train a set of speaker-dependent (SD) models.

STEP 2. For each SD model, concatenate all its mean vectors into
a speaker supervector.

STEP 3. Perform linear PCA on the supervectors using their cor-
relation matrix.

STEP 4. Arrange the eigenvectors in descending order of their
eigenvalues and pick the top M eigenvectors; they are the
required eigenvoices, ej , j = 1, . . . , M .
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STEP 5. A new speaker’s supervector s is represented by a linear
combination of the M chosen eigenvoices:

s =
MX

j=1

wj · ej .

STEP 6. Estimate the eigenvoice weights by maximizing the like-
lihood of the adaptation data. Mathematically, one finds the
eigenvoice weight vector w by maximizing the following
Qb function:

Qb(w) = −1

2

RX
r=1

TX
t=1

γt(r) [d1 log(2π)

+ log |Cr| + ‖ot − sr(w)‖2
Cr

˜
, (1)

where γt(r) is the posterior probability of observation o
being at state r at time t; d1 is the dimension of acoustic
vectors; sr(w) is the Gaussian mean vector of state r of the
speaker-adapted (SA) model; Cr is the covariance matrix
of the Gaussian at state r; and ‖ot − sr(w)‖2

Cr
= (ot −

sr(w))′C−1
r (ot − sr(w)).

KEV uses nonlinear kernel PCA in Step 3. Subsequently, the
formulation in Step 5 and Step 6 have to be modified.

2.2. Kernel Principal Component Analysis (KPCA)

The basic idea of kernel PCA [8] is to map data x in an input
space X to a high-dimensional kernel-induced feature space1 F
via some nonlinear map ϕ, and apply linear PCA in the feature
space. The computational procedure depends only on the inner
products ϕ(xi)

′ϕ(xj),∀i, j which are obtained from a suitable
kernel function k(·, ·) as

k(xi,xj) = ϕ(xi)
′ϕ(xj) . (2)

Notice that the input space X consists of speaker supervec-
tors in our application. Given a set of N input speaker super-
vectors {x1, . . . ,xN}, let us denote the mean of the ϕ-mapped
feature vectors by ϕ̄ = 1

N

PN
i=1 ϕ(xi), and the “centered” map

by ϕ̃ (with ϕ̃(x) = ϕ(x) − ϕ̄). Eigendecomposition is per-
formed on K̃, the centered version of the kernel matrix K =
[k(xi, xj)]ij , as K̃ = UΛU′, where U = [α1, . . . , αN ] with
αi = [αi1, . . . , αiN ]′, and Λ = diag(λ1, . . . , λN ). Notice that
K̃ is related to K by K̃ = HKH, where H = I − 1

N
11′ is the

centering matrix.
It is shown that the mth orthonormal eigenvector vm of the

covariance matrix in F is a linear combination of the ϕ̃-mapped
feature vectors, and is given by [8] as

vm =

NX
i=1

αmi√
λm

ϕ̃(xi) . (3)

1In the kernel methods terminology, the original space where raw data
reside is called the input space and the space to which raw data are mapped
is called the feature space. In order not to confuse this with the acoustic
feature space in speech, the latter will always be called “acoustic feature
space”, while the feature space in kernel methods will be simply called the
“feature space” but may be sometimes called the kernel-induced feature
space if additional clarity is necessary.

2.3. Composite Kernel

One of the major challenges in KEV adaptation is to compute the
state observation likelihoods of the speaker-adapted HMMs during
the estimation of the kernel eigenvoice weights and subsequent de-
coding of test speech. The reason is that unlike the conventional
EV approach, the SA model found by KEV adaptation does not
exist in the input supervector space X but in the kernel-induced
feature space F . Thus, in general, one cannot break up the SA
model found by KEV adaptation into its constituent HMM Gaus-
sians as in the EV approach. Our solution is the use of a composite
kernel.

Firstly, since each speaker supervector is the result of con-
catenation of R mean vectors, one from each Gaussian, the ith
speaker supervector will be denoted as xi = [x′

i1 . . .x′
iR]′ ∈ R

d2 ,
and d2 = Rd1. Then we map each constituent xir via a sepa-
rate kernel kr(·, ·) to ϕr(xir), and construct ϕ(xi) as ϕ(xi) =
[ϕ1(xi1)

′, . . . , ϕR(xiR)′]′. The similarity between two speaker
supervectors xi and xj in the composite kernel-induced feature
space F is measured by

k(xi,xj) = G(kr(xir,xjr), r = 1, . . . , R) (4)

where G is some function that combines the constituent kernels
kr(·, ·) into a valid composite kernel k(·, ·). Using this composite
kernel, we can then proceed with the usual kernel PCA on the set of
N training speaker supervectors and obtain the set of eigenvoices
in the feature space F as given by Eqn (3) in Section 2.2.

2.3.1. Two Different Composite Kernels

In this paper, we investigate two different forms of G for the com-
posite kernel:

Direct sum kernel:

k(xi, xj) =
RX

r=1

kr(xir,xjr) . (5)

Tensor product kernel:

k(xi, xj) =

RY
r=1

kr(xir,xjr). (6)

Furthermore, if the constituent kernels are Gaussian kernels

kr(xir,xjr) = exp(−β‖xir − xjr‖2
Cr

) , (7)

then the tensor product kernel is equivalent to a single Gaus-
sian kernel with a block-diagonal covariance composed of
the covariances from each kr(xir,xjr).

In both cases, if kr(·, ·)’s are valid Mercer kernels, so is k(·, ·) [12].

2.4. New Speaker in the Feature Space

If the supervector of a new speaker in the input space X is s, then
its centered image in the kernel-induced feature space F is ϕ̃(s),
which is assumed to be a linear combination of the first M eigen-
vectors found by KPCA in F . i.e.

ϕ̃(s) =
MX

m=1

wmvm =
MX

m=1

NX
i=1

wmαmi√
λm

ϕ̃(xi). (8)
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Its rth constituent is then given by

ϕ̃r(sr) =
MX

m=1

NX
i=1

wmαmi√
λm

ϕ̃r(xir) .

Hence, the similarity between ϕr(sr) and ϕr(ot) is given by

kr(sr,ot) ≡ ϕr(sr)
′ϕr(ot)

= A(r, t) +
MX

m=1

wm√
λm

B(m,r, t) , (9)

where
A(r, t) = ϕ̄′

rϕr(ot) =
1

N

NX
j=1

kr(xjr,ot) , (10)

and

B(m, r, t)=

 
NX

i=1

αmikr(xir,ot)

!
− A(r, t)

NX
i=1

αmi . (11)

2.5. Maximum Likelihood Adaptation Using Gaussian Kernel

By using a composite kernel and Gaussian kernels of Eqn (7) for
the constituent kernels, ‖ot − sr‖2

Cr
of Eqn (1) can be expressed

as a function of w as follows:

‖ot − sr‖2
Cr

=− 1

β
log kr(sr,ot)

=− 1

β
log

"
A(r, t) +

MX
m=1

wm√
λm

B(m, r, t)

#
. (12)

Substituting Eqn (12) for the Qb function in Eqn (1), and
differentiating the result with respect to each eigenvoice weight,
wj , j = 1, . . . , M , we obtain

∂Qb

∂wj
=

1

2β
p

λj

RX
r=1

TX
t=1

γt(r) · B(j, r, t)

kr(sr,ot)
. (13)

Because of the nonlinear nature of kernel PCA, Eqn (13) is
nonlinear in w and there is no closed form solution for the optimal
w. We instead apply the generalized EM algorithm (GEM) [11] to
find the optimal weights.

2.6. Robust KEV Adaptation

When the amount of adaptation data is really small, the SA model
ϕ̃(s)(kev) found by KEV adaptation may not be reliable. In robust
KEV adaptation, the model ϕ̃(s)(kev) is interpolated with the SI
model ϕ̃(x(si)) in the kernel-induced feature space to compute a
more robust estimate of the final SA model as follows:

ϕ̃(s) = w0ϕ̃(x(si)) + (1 − w0)ϕ̃(s)(kev) , 0 ≤ w0 ≤ 1 . (14)

The interpolation weight w0 is estimated jointly by GEM together
with the other eigenvoice weights.

3. EXPERIMENTAL EVALUATION

The kernel eigenvoice adaptation method was evaluated on the
TIDIGITS speech corpus [10]. There are 163 speakers (of both
genders) in each of its standard training set and test set. The
speaker characteristics is quite diverse with speakers coming from
22 dialect regions of USA and their ages ranging from 6 to 70
years old.

3.1. Acoustic Models

All training data were processed to extract 12 MFCCs and the nor-
malized frame energy from each speech frame of 25 ms at ev-
ery 10 ms. Each of the eleven digit models was a strictly left-
to-right HMM comprising 16 states and one Gaussian with di-
agonal covariance per state. Thus, the dimension of the obser-
vation space d1 is 13 and that of the speaker supervector space
d2 is 11 × 16 × 13 = 2288. In addition, there were a 3-state
“sil” model and a 1-state “sp” model to capture silence speech and
pauses between digits respectively. All HMMs were trained by the
EM algorithm. Furthermore, the SD HMMs shared the transition
probabilities and Gaussian variances learned in the SI HMMs.

3.2. Experiments

The following models/systems are compared:

SI: speaker-independent model.

EV: speaker-adapted model found by the conventional eigenvoice
adaptation method.

Robust-EV: speaker-adapted models found by our robust version
of EV, which is the interpolation between the SI supervector
and the supervector found by EV.

KEV: speaker-adapted model found by our new kernel eigenvoice
adaptation method as described in Section 2.

Robust-KEV: speaker-adapted model found by our robust KEV
as described in Section 2.6.

MAP: speaker-adapted model found by MAP adaptation.

MLLR: speaker-adapted model found by MLLR adaptation.

Five, ten, and twenty digits were used for adaptation, which
correspond to an average of 2.1s, 4.1s, and 9.6s of adaptation
speech (or 3s, 5.5s, and 13s of speech if the leading and ending
silences are counted). To improve the statistical reliability of the
results, all results were the average of 5-fold cross-validation over
all 163 test speakers. Moreover, all adaptation experiments were
performed in supervised mode.

The best results from each of the adaptation methods are com-
pared. For EV or KEV adaptation, the best results were obtained
with the optimal number of eigenvoices; for MAP adaptation, the
best results were achieved with the optimal scaling factors; for
MLLR adaptation, only global MLLR was tried, and the better
results from using block-diagonal or full transformation matrices
were used for comparison. The word accuracy of the baseline SI
model on the test data is 96.25%2.

3.2.1. Experiment I: Direct Sum Kernel vs. Tensor Product Kernel

We first compare the two types of composite kernels, direct sum
kernel and tensor product kernel, using the robust KEV adaptation.
The results are shown in Table 1. There is no significant difference
between their performance.

2Notice that the word accuracy of our SI model is lower than the best
reported result on TIDIGITS which is about 99.7%. The main reasons
are that we used only 13-dimensional static cepstra and energy, and each
state was modeled by a single Gaussian with diagonal covariance. The
use of this simple model allowed us to run experiments with 5-fold cross-
validation using very short adaptation speech. Right now our approach
requires online computation of many kernel function values and is very
computationally expensive. As a fi rst attempt on the approach, we feel
that the use of this simple model is justifi ed. We are now working on its
speed-up and its extension to HMM states of Gaussian mixtures.
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Table 1. Performance of direct sum kernel and tensor product ker-
nel in robust KEV adaptation. Results are word accuracies.

Type of Composite Kernel 2.1s 4.1s 9.6s
direct sum kernel 97.28% 97.44% 97.50%

tensor product kernel 97.33% 97.42% 97.43%

3.2.2. Experiment II: KEV vs. EV, MAP, MLLR
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Fig. 1. Comparison among EV, KEV, MAP, and MLLR adaptation
methods. All results are word accuracies, and the accuracy of the
baseline SI model is 96.25%.

Fig. 1 compares the performance of other adaptation methods
with our KEV adaptation using the direct sum kernel. We find
that when only 2.1s or 4.1s of adaptation data are available, only
our new KEV and robust KEV work better than the SI model; EV,
MAP, and MLLR all perform worse than the SI model, and ro-
bust EV can only match the SI performance in this task. Only
for the case with 10 seconds of adaptation data, then MLLR works
marginally better than the robust KEV method by an absolute 0.06%.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the use of two types of composite
kernels — direct sum kernel and tensor product kernel — to im-
prove the conventional eigenvoice speaker adaptation method us-
ing nonlinear kernel PCA. In the TIDIGITS task, it is found that
both composite kernels work similarly well, and while the conven-
tional eigenvoice approach does not help, our robust kernel eigen-
voice method outperforms the speaker-independent model by (in
terms of error rate reduction) 27.5%, 31.7%, and 33.3% with 2.1s,
4.1s, and 9.6s of adaptation speech respectively.

Right now, our KEV adaptation method results in slower recog-
nition. The reason is that any state observation likelihoods can-
not be directly computed but through evaluating the kernel val-
ues with all training supervectors. We are pursuing two possible
solutions: (1) reduce the number of kernel functions to compute
by the application of sparse kernel PCA [13], or the use of com-
pactly supported kernels [14]; (2) compute an approximate pre-
image (which will be a speaker supervector residing in the input

space) of the speaker-adapted model found in the kernel-induced
feature space [15].
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