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ABSTRACT

Recently, we have been investigating the application of kernel
methods to improve the performance of eigenvoice-based adap-
tation methods by exploiting possible nonlinearity in their origi-
nal working space. We proposed thekernel eigenvoice adapta-
tion (KEV) in [1], and thekernel eigenspace-based MLLR adap-
tation (KEMLLR) in [2]. In KEMLLR, speaker-dependent MLLR
transformation matrices are mapped to a kernel-induced high di-
mensional feature space, and kernel principal component analy-
sis (KPCA) is used to derive a set of eigenmatrices in the feature
space. A new speaker is then represented by a linear combination
of the leading eigenmatrices. In this paper, we further improve
KEMLLR by the use of multiple regression classes and the quasi-
Newton BFGS optimization algorithm.

1. INTRODUCTION

When the amount of adaptation speech is really small, say, a
few seconds, eigenvoice-based adaptation methods [3, 4, 5] have
been shown more effective than the traditionally more popular
methods such as the Bayesian-based MAP adaptation [6] and the
transformation-based MLLR adaptation [7]. Eigenspace-based
MLLR (EMLLR) adaptation [4] is a variant of the standard EV
adaptation [3]. Instead of finding a small set of eigenvoices (EV)
in the speaker supervector space as in the EV adaptation, EMLLR
looks for a small set of eigenmatrices in the MLLR transformation
supervector space. The acoustic model of a new speaker is then
obtained by an MLLR transformation of the speaker-independent
(SI) model, which is now a linear combination of the set of eigen-
matrices.

Recently, we proposed an improvement to EMLLR adaptation
calledkernel eigenspace-based MLLR adaptation(KEMLLR) [2]
by exploiting possible nonlinearity in the MLLR transformation
supervector space using kernel methods [8]. The basic idea is to
map the speakers’ MLLR transformation supervectors to a high
dimensional feature space via some nonlinear map, and then apply
principal component analysis (PCA) to derive the eigenmatrices in
the feature space. During the actual computation, the exact non-
linear map need not be known, and the kernel eigenmatrices are
obtained by kernel PCA (KPCA). The computational procedure
depends only on the inner products in the feature space, which can
be obtained efficiently with a suitable kernel function. One ma-
jor challenge in KEMLLR adaptation is to preserve the row infor-
mation in the transformation supervectors which, otherwise, will
generally be lost during the mapping to the kernel-induced feature
space. Our solution is the use of composite kernel [1].

In this paper, we further improve KEMLLR by the use of
multiple regression classes and the more advanced quasi-Newton
BFGS optimization algorithm.

2. EIGENSPACE-BASED MLLR (EMLLR) ADAPTATION

Suppose there is a set ofN speaker-dependent (SD) hidden
Markov models (HMMs) of the same topology with mixture Gaus-
sian states. These SD models are estimated from the SI model by
MLLR transformation usingL regression classes. LetH be the
mapping function that maps thegth Gaussian to its regression class
h = H(g) whereh ∈ {1, . . . , L}. Thus, thegth Gaussian mean
vectorµ(i)

g ∈ Rd of theith speaker is given by

µ(i)
g = Y

(i)′

H(g)ξ
(si)
g

whereY
(i)

H(g) ∈ Rd×(d+1) is his MLLR transformation for the

H(g)-th regression class, andξ(si)
g = [µ(si)

g

′
, 1]′ is the aug-

mented mean vector of the corresponding Gaussian in the SI
model. Aspeaker transformation supervector(STSV) is obtained
by stacking up theL vectorized MLLR transformation matri-
ces,Y(i)

1 , . . . ,Y
(i)
L . Let’s denote the STSV of theith speaker

by y(i) = [vec(Y
(i)
1 )′, . . . , vec(Y

(i)
L )′]′. From theN STSVs,

{y(1),y(2), . . . ,y(N)}, PCA is performed to obtain the eigenvec-
tors which are the vectorized eigenmatrices. For a new speaker,
his STSV is approximated as a linear combination of the lead-
ing M vectorized eigenmatrices asy =

PM
m=1 wmvm , where

w = [w1, . . . , wM ]′ is the eigenmatrix weight vector, andvm is
themth vectorized eigenmatrix.

Let y = [. . . ,y′h1, . . . ,y
′
hd, . . .]′ whereyhr ∈ R(d+1) is

the rth row of thehth MLLR transformation matrix (forr =
1, . . . , d and h = 1, . . . , L). Then yhr is given by yhr =PM

m=1 wmvmhr , wherevmhr represents therth row of thehth
transformation matrix embedded in themth eigenvector.

Hence, thegth Gaussian mean of the new speaker model,
which belongs to thehth regression class (ash = H(g)), is

µg = Y′
hξ(si)

g

⇒ µgr = y′hrξ
(si)
g =

MX
m=1

wm(v′mhrξ
(si)
g ) , (1)

whereµgr is therth component ofµg.
Given the adaptation dataO = {o1,o2, . . . ,oT }, the eigen-

matrix weights can be estimated by maximizing the likelihood of



O [3, 4], or, equivalently the followingQ(w) function:

Q(w) = −
GX

g=1

TX
t=1

γt(g)(ot − µg(w))′C−1
g (ot − µg(w)) (2)

where γt(g) is the posterior probability of the observation se-
quence being at thegth Gaussian at timet, andCg is the covari-
ance matrix of thegth Gaussian. DifferentiatingQ(w) w.r.t. each
weight,wm, m = 1, . . . , M , we get

∂Q(w)
∂wm

= 2

GX
g=1

TX
t=1

γt(g)(ot − µg(w))′C−1
g

∂µg(w)
∂wm

. (3)

By setting theM derivatives to zero, the optimal weights are ob-
tained by solving the system ofM linear equations.

3. KERNEL EMLLR (KEMLLR) ADAPTATION

In KEMLLR adaptation, we try to improve EMLLR by exploiting
the possible nonlinearity in the speaker transformation supervector
space. This is achieved by replacing linear PCA by kernel PCA
and the use of composite kernel.

3.1. Kernel Eigenmatrices in the Feature Space

Let k(·, ·) be the kernel with an associated mappingϕ which maps
a speaker’s transformation vectory in the input STSV space to
ϕ(y) in the kernel-induced high dimensional feature space. Given
the set ofN STSVs{y1, . . . ,yN}, theirϕ-mapped feature vectors
are{ϕ(y1), . . . , ϕ(yN )}. Let K̃ be the centered kernel matrix
with K̃ij ≡ k̃(yi,yj) = ϕ̃(yi)

′ϕ̃(yj) whereϕ̃(y) = ϕ(y) − ϕ̄

andϕ̄ = 1
N

PN
i=1 ϕ(yi).

Kernel PCA may be performed by eigendecomposition on
K̃ as K̃ = UΛU′, where U = [α1, . . . , αN ] with αi =
[αi1, . . . , αiN ]′, andΛ = diag(λ1, . . . , λN ). Using the leading
M eigenmatrices of the covariance matrix in the kernel-induced
feature space, the centered STSV of the new speaker in the feature
spaceϕ̃(kemllr)(y) is given by

ϕ̃(kemllr)(y) =

MX
m=1

wmvm =

MX
m=1

NX
i=1

wmαmi√
λm

ϕ̃(yi) . (4)

3.2. Composite Kernel

Analogous to the use of composite kernels to preserve the state
information in kernel eigenvoice [1], the row information of each
transformation matrix is preserved in KEMLLR using the direct
sum composite kernel so that

k(yi,yj) =

LX
h=1

dX
r=1

khr(yihr,yjhr) , (5)

whereyihr represents the part ofyi corresponding to therth row
of the MLLR transformation matrix of thehth regression class
before theϕ-mapping.

Thus, theϕhr-mapping of therth row of the MLLR transform
of thehth regression class for the new speaker’s STSV is given by

ϕ̃
(kemllr)
hr (yhr) =

MX
m=1

NX
i=1

wmαmi√
λm

ϕ̃hr(yihr) . (6)

3.3. Kernel Evaluation

Using Eqn. (6), the similarity betweenϕ(kemllr)
hr (yhr) and

ϕhr(ξ
(si)
g ) can be computed as follows:

k
(kemllr)
hr (yhr, ξ

(si)
g ) ≡ ϕ

(kemllr)
hr (yhr))

′ϕhr(ξ
(si)
g )

= Ahr(g) +

MX
m=1

wm√
λm

Bhr(m, g) , (7)

where

Ahr(g) = ϕ̄′hrϕhr(ξ
(si)
g ) =

1

N

NX
i=1

khr(yihr, ξ
(si)
g ), (8)

Bhr(m, g) =

NX
i=1

αmi(khr(yihr, ξ
(si)
g )−Ahr(g)) , (9)

andϕ̄hr = 1
N

PN
i=1 ϕhr(yihr). Notice that all the kernel values

in Eqns. (8,9) may be computed offline prior to adaptation.
Furthermore, the derivative ofk(kemllr)

hr (yhr, ξ
(si)
g ) w.r.t.

each eigenvoice weightwm, m = 1, . . . , M , is given by

∂
∂wm

“
k

(kemllr)
hr (yhr, ξ

(si)
g )

”
=

Bhr(m, g)√
λm

. (10)

3.4. Gradient of Gaussian Means

Eqn. (3) requires the gradient ofµ
(kemllr)
g w.r.t. each eigenma-

trix weight wm, m = 1, . . . , M . This can be obtained by using
Gaussian kernels for the composite kernels,

khr(u,v) = exp(−βhr‖u− v‖2) ,

and the identityu′v = 1
2
(‖u‖2 + ‖v‖2 − ‖u− v‖2) . By letting

u = yhr andv = ξ(si)
g , we have

µ
(kemllr)
gr =

1

2

"
‖ξ(si)

g ‖2 +
1

βhr
log

 
k

(kemllr)
hr (yhr, ξ

(si)
g )

k
(kemllr)
hr (yhr,0)

!#
. (11)

Substituting Eqns. (7,8,9) into Eqn. (11), differentiating the
result w.r.t. wm, and making use of the gradient in Eqn.(10), we

get
∂µ

(kemllr)
gr

∂wm

=
1

2βhr

√
λm

"
Bhr(m, g)

k
(kemllr)
hr (yhr, ξ

(si)
g )

− Bhr(m,−1)

k
(kemllr)
hr (yhr,0)

#
, (12)

where we use the indexg = −1 to represent a special augmented
vectorξ(si)

−1 which is the zero vector0.

3.5. ML Estimation of Eigenmatrix Weights by the Quasi-
Newton BFGS Method

Using Eqn. (12), the derivatives ofQ(w) of Eqn. (3) w.r.t. each of
theM weightswm, m = 1, . . . , M , can be obtained. However,
Due to the nonlinearity of the kernel functions, there is no closed
form solution for the optimalw. In the past [2], the weights are ob-
tained by gradient ascent method and we notice that sometimes it
is not effective and gets stuck. Now we replace it by the quasi-
Newton BFGS optimization algorithm which consistently gives
better solutions. Quasi-Newton method is similar to the traditional
Newton’s method and makes use of the Hessian to retrieve the



Newton’s direction. However, it approximates the Hessian with
an estimate that can be derived solely from the gradient. As a re-
sult, it is more efficient and it can enforce the Hessian estimate to
be strictly positive-definite.

In quasi-Newton method, the inverse of the Hessian matrix
A−1 is approximated byHi in an iterative procedure so that
limi→∞Hi = A−1, whereHi is the Hessian inverse in theith
iteration, and it has to be positive definite and symmetric. In this
paper,Hi is updated by the (BFGS) algorithm as follows:

Hi+1 = (I − siy
′
i

y
′
isi

)Hi(I −
yis

′
i

y
′
isi

) +
sis

′
i

y
′
isi

(13)

where,
si = wi+1 −wi (14)

yi = 5Q(wi+1)−5Qf(wi) (15)

Detailed description and proof are available in [9].
Finally, the optimal eigenmatrix weights can be optimized it-

eratively by the following updating formula:

wi+1 = −λHi 5Q(w)|wi

whereλ is a learning rate to be determined by a line search algo-
rithm, and the gradient can be computed from Eqns. (3,12).

3.6. Robust KEMLLR

To get a more robust estimate when the amount of adaptation data
is really small, we proposed in [2] to interpolate the transforma-
tions found by KEMLLR with the identity matrix. Equivalently,
a mean vector found by KEMLLR is interpolated with the cor-
responding SI mean vector. The interpolation weightw0 is opti-
mized with all other eigenmatrix weights.

4. EXPERIMENTAL EVALUATION

The proposed KEMLLR speaker adaptation method was evaluated
on the DARPA Resource Management continuous speech database
RM1. RM1 consists of 3990 SI training utterances from 109
speakers, and 12 speakers in the SD section, each having 600 ut-
terances for training, 100 utterances for development, and 100 ut-
terances for evaluation.

4.1. Feature Extraction and Acoustic Modeling

Forty-seven context-independent phoneme models were trained
using the SI training set. Each phoneme model was a strictly left-
to-right 3-state hidden Markov model (HMM) with 10 Gaussian
mixtures per state. In addition, there were a 1-state short pause
model and a 3-state silence model. The acoustic vector has a di-
mensiond = 13, consisting of 12 MFCCs and the normalized log
energy extracted from speech frames of 25 ms long at the frame
rate of 100Hz.

4.2. Experimental Procedure

From the SI model, an SD model was constructed for each of the
109 speakers in the SI training set using MLLR adaptation and the
number of regression classes were varied. As a result, we obtained
a set ofN = 109 transformation supervectors for deriving the ker-
nel eigenmatrices. Experiments were performed with either 5s or

10s adaptation data. To improve reliability of the results, for each
test speaker, 3 sets of adaptation data were randomly chosen from
his 100 development utterances. All reported results are the aver-
ages of experiments over the 3 adaptation sets of all speakers, and
the adapted models were tested on their 100 evaluation utterances
using word-pair grammar.

The following models or adaptation methods are compared:

SI: speaker-independent model.

MLLR-D: MLLR adaptation with diagonal transformation.

MLLR-F: MLLR adaptation with full transformation.

EMLLR: eigenspace-based MLLR adaptation.

KEMLLR: kernel EMLLR adaptation.

MLLR adaptation was done using the HTK software with di-
agonal or full transformation with (a maximum of) 32 regression
classes. However, by default, HTK requires at least 700 frames
of speech for each regression class. As some configurations had
very few data, this threshold was lowered in order to force HTK to
perform MLLR. EMLLR was implemented using KEMLLR with
linear kernel, and all EMLLR and KEMLLR models were interpo-
lated with the SI model as said in Section 3.6.

4.3. Number of Eigenmatrices and Regression Classes

Fig. 1 and Fig. 2 describe the complicated relationship among the
number of eigenmatrices, number of regression classes, and the
amount of data used in EMLLR or KEMLLR adaptation. Twenty-
five, 50, 75, and 109 eigenmatrices were tried with one or two re-
gression classes using 5s or 10s of adaptation speech. As expected,
better adaptation performance results when more adaptation data
are available. Notice that when EMLLR or KEMLLR are done
with multiple regression classes, they can perform PCA or KPCA
separately on each class or on the concatenated transformation su-
pervectors. In our preliminary investigation, the former always
gave better adaptation performance than the latter. As a conse-
quence, all experiments reported here when multiple regression
classes were used treated them separately. We have the following
observations:

• On the one hand, more regression classes should give more
detailed modeling and should give better results. On the
other hand, more regression classes require more adaptation
data as there are more weights to estimate. The effect is
more pronounced for KEMLLR: with 2 regression classes,
the performance actually drops with only 5s of adaptation
speech, but is elevated when 10s of adaptation speech is
provided.

• KEMLLR generally outperforms EMLLR adaptation when
the same number of eigenmatrices and regression classes
are employed using the same amount of adaptation speech.
This shows that the leading eigenmatrices derived in KEM-
LLR using KPCA are more effective in capturing useful
speaker information.

• When all eigenmatrices are employed, EMLLR adaptation
performance may still improve. This may suggest that there
are residual nonlinear information which cannot be covered
by the leading eigenmatrices derived by PCA in EMLLR
so that using all eigenmatrices may still improve the perfor-
mance. However, this is not true for KEMLLR where us-
ing all kernel eigenmatrices will degrade the performance.



That suggests that the trailing kernel eigenmatrices are re-
ally noises. Thus, once again, KPCA helps to extract the
nonlinear eigen-information more effective than PCA.
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Fig. 1. Performance of EMLLR adaptation on RM with a 10-
mixture HMM.
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Fig. 2. Performance of KEMLLR adaptation on RM with a 10-
mixture HMM.

4.4. Comparison among Various Adaptation Methods.

In this experiment, the SI model, MLLR-D, MLLR-F, EMLLR,
and KEMLLR are compared at their best settings. The results are
summarized in Table 1. It is found that when only 5s of adaptation
speech were available, even we lowered the threshold for MLLR-
D and MLLR-F when we ran HTK, they still could not be run.
On the other hand, EMLLR successfully reduced the word error
rate (WER) by 7.82%, and KEMLLR could reduce the WER by
11.4%. When 10s of adaptation speech were provided, MLLR-
F became effective and matched the performance of KEMLLR.
EMLLR again does not perform as well as KEMLLR, and MLLR-
D gave the least performance gain.

Table 1. Performance of the SI model, MLLR, EMLLR, eKEV
and KEMLLR adaptation on RM with a 10-mixture HMM.

Model/Adaptation Word Accuracy
5s 10s

SI 78.27% 78.27%
MLLR-D N/A 78.90%
MLLR-F N/A 82.10%
EMLLR 79.97% 80.11%

KEMLLR 80.75% 82.03%

5. CONCLUSIONS

In this paper, we improve kernel eigenspace-based MLLR (KEM-
LLR) adaptation method further by using multiple regression
classes, and investigated the relationship among the number of ker-
nel eigenmatrices, number of regression classes, and the amount
of adaptation data. We show that when only 4–5s of speech are
used, both EMLLR and KEMLLR are effective, but KEMLLR
gives greater performance improvement than EMLLR. When 10s
of speech are available, KEMLLR performance is than matched
by standard MLLR using full transformation. All in all, KEMLLR
seems to be effective for fast speaker adaptation using less than
10s of adaptation speech.

6. ACKNOWLEDGEMENTS

This research is partially supported by the Research Grants
Council of the Hong Kong SAR under the grant numbers
HKUST6201/02E and CA02/03.EG04.

7. REFERENCES

[1] B. Mak, J. T. Kwok, and S. Ho, “A study of various composite ker-
nels for kernel eigenvoice speaker adaptation,” inICASSP, Montreal,
Canada, 2004, vol. I, pp. 325–328.

[2] B. Mak and R. Hsiao, “Improving eigenspace-based MLLR adapta-
tion by kernel PCA,” inICSLP, Jeju Island, South Korea, 2004.

[3] R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid
speaker adaptation in eigenvoice space,”IEEE Trans. on SAP, vol. 8,
no. 4, pp. 695–707, Nov 2000.

[4] K. T. Chen, W. W. Liau, H. M. Wang, and L. S. Lee, “Fast speaker
adaptation using eigenspace-based maximum likelihood linear re-
gression,” inICSLP, 2000, vol. 3, pp. 742–745.

[5] R. Kuhn, F. Perronnin, P. Nguyen, J. C. Junqua, and L. Rigazio,
“Very fast adaptation with a compact context-dependent eigenvoice
model,” in ICASSP, May 2001, vol. 1, pp. 373–376.

[6] J. L. Gauvain and C. H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,”IEEE
Trans. on SAP, vol. 2, no. 2, pp. 291–298, April 1994.

[7] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear re-
gression for speaker adaptation of continuous density hidden Markov
models,” Journal of Computer Speech and Language, vol. 9, pp.
171–185, 1995.
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