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ABSTRACT

In this paper, we cast discriminative training problems into standard
linear programming (LP) optimization. Besides being convex and
having globally optimal solution(s), LP programs are well-studied
with well-established solutions, and efficient LP solvers are freely
available. In practice, however, one may not have complete knowl-
edge of the feasible region since itis constructed from a limited num-
ber of competing hypotheses based on the current model — not the
final model which, by definition, is not knowanpriori at the time of
hypotheses generation. We investigate an iterative LP optimization
algorithm in which an additional constraint on the parameters being
optimized is further imposed. Our proposed method is evaluated on
the estimation of global and state-dependent stream weights and bi-
ases of a multi-stream hidden Markov model system. Results show
that the stream weights and biases found by our iterative LP op-
timization algorithm may give better recognition performance than

Since linear programming problem is convex, the solution(s)
is/are guaranteed to be globally optimal (though they may not
be unique).

Unlike some other discriminative training methods like MCE
estimation that perform corrective training, LP utilizes all
training data — both correct and incorrect data — to perform
the joint optimization of the parameters in a linear function.

There are fewer system parameters to tune. For instance,
unlike gradient-based solutions, there is no learning rate to
tune; also, unlike MCE training which introduces nonlinear-
ity through the use of the sigmoid function, it does not need
to tune the sigmoid function parameters.

LP optimization is very well studied with established solu-
tions, and efficient LP solvers are freely available.

Since LP solutions are supposed to be globally optimal, it re-

the ones found by a brute-force grid search. quires complete knowledge of the feasible region (for searching the
solution). However, as we will illustrate in the rest of the paper, the
Index Terms: iterative linear programming, discriminative training, feasible region has to be constructed from the competing hypotheses
multi-stream HMM, parameter tying. in relevant ASR problems. Since the competing hypotheses are gen-
erated by the current model, and usually from N-best list or decoding
lattice, they are not complete (due to pruning) and they are unlikely
the same as those of the final model, which, by definition, cannot
be knowna priori. Hence, the globally optimal solution found using

. _ . . . the competing hypotheses generated by the current model may not be
Linear weighting functions are commonly found in automatic speecfpea”y the true optimal solution. We devise an iterative LP optimiza-

recgglni:jﬁ\;l]'élASRh)_. Ec_)r inStgnCZ’. ina mﬁll\t/il-l\s/ltream hidldezn Marlk_ovtion algorithm and impose an additional constraint on how much the
model ( ) (whic Is used in discrete system [1, _]' multi- parameters being optimized can be changed in each iteration.
band ASR [3], and audio-visual ASR [4, 5]), the state log-likelihood To illustrate the idea of our novel iterative LP optimization,

is usually computed as a linear combination of the per-stream StaWe will show how the stream weights and biases of a multi-stream

log-likelihoods; in Viterbi search, the recognition score of a test Ut'HMM can be estimated using the new approach below by consider-
terance is a linearly weighted sum of the acoustic score and Iangua%a

score. Itis known that the parameter of these linear functions cannotg frame or word recognition correctness,

be determined by maximum-likelihood estimation as it will simply

give all the weights to the most probable factor. As a consequence,2. FORMULATION OF THE ESTIMATION OF STREAM

discriminative training is commonly employed to estimate these lin- WEIGHTS/BIASES AS AN LP PROBLEM

ear functions in ASR by minimizing the classification errors (MCE),

by maximizing the mutual information (MMI), or by maximizing the For simplicity, we will formulate the estimation of stream weights

entropy (MAXENT), and so forth. and biases of a multi-stream HMM by first considering the recogni-
In this paper, we propose to improve the estimation of these lintion correctness at the frame level, and then extend the formulation

ear functions by casting the respective problems into the standat@ the word level.

linear programming (LP) optimization framework. Our proposed

LP_ a_pproach has the following advantages over other discriminativg 1  gssed on Frame Recoghition Correctness

training schemes:

1. INTRODUCTION

Let us denote an observation vector at timasx; and the HMM

This work was supported by the Research Grants Council of the Hon§tate that generates it gsfor ¢ = 1,...,7. Using the common
Kong SAR under the grant numbers HKUST617406 and HKUST617507. HMM notation, the probability ok at statej is given byb; (x:). In




a multi-stream HMM withK streams andV states, the state pdfis 2.1.2. LP Form

represented by a factored pdf as follows:

K
w®)
bj(xt) = ¢j H b§-k)(x£k)) i, 1)

k=1

or equivalently in the log domain as

K
logbj(x¢) = logc; + Z w;k) log b;.k) (xik)) 2)

k=1

k

wherex{") is the feature vector of théth stream;b!™ (x(") is
(k)

the state observation probability cxtﬁk) in the kth stream;w;
is the weight of thekth stream in statg with the constraint that
S lw(k) = 1; ¢; is the normalization factor to make the right-
hand S|de of Egn. (1) a true probability density function. Theoreti-
cally, we should have

K
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However, that will render the problem intractable. In this paper, we
will not pursue this requirement, and we will trdag c; as a bias
for each state antbg b; (x+) should be treated more as a likelihood

From Eqn.
weight vectorw; as a standard LP problem as follows:

(4), we may formulate the estimation of the stream

Minw, o, Z Z &ty )

t jFye

such that
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Vi, Yk, wi > 0. (9)

= constant ,  (8)

Note that

e although we formulate the problem with state-dependent
weightsw;, state-dependent biases and frame-and-state-
dependent erraf;;, one may tie these parameters to provide
various degrees of smoothing for his problem at hand.

e this is not corrective training; all training frames are used.
The LP solver will find optimal weights that will increase the
number of correctly recognized frames, and reduce the log
likelihood difference between the correct state and competing
states for the incorrectly recognized frames.

e in the basic setting, the sum of weights is set to 1; in the LP

score than a strict probability term.

) i ) o formulation, we only require the sum to be a constant.
Furthermore, with the following variable substitutiéns

2.2. Based on Word Recognition Correctness

Wi = [w]('1)7w(2)7"' 7wj('K)]/ . . . .

M @) @@ (K) s (K)\ps The LR formulatlon in Egn. (5) can easily be e.xtended to consider
zjs = [logb; (x,),logb;” (x,”), - ,logb;" (%, )], recognition accuracy at the word level. For titie instanceX,,,; of
v; = logcy, the word, X,,,,m = 1,..., M, whereM is the vocabulary size, we

would like to have its probability given by the HMM,,, of the word

X, greater than that of all its competing hypotheses. That is, if the
function7 (-) maps an instance of a word in an utterance to its time
span\,, represents the models in a competing hypothesigpre-
sents the state in the competing hypothesis at tinsed we ignore
the contribution of likelihoods due to the transition probabilities, we
have,

Eqn. (2) can be expressed in vector form as

log bj(x¢) = W‘;'th + vj . (©)]

2.1.1. The Basic Requirement

For each training frame, = [x,",...,x,)]" belonging to the -
truth statey;, we would like its probablllty computed by the truth V% Vm log P(XmiAm) — log P(XmilAm) > 0
state to be greater than its probability computed by any other com- = >,y (W, Zyt — Wi Zg,0) + (vy, —vg)] > 0.

peting state. Thatis, Thus, if we assume that the slack variable is tied at the word level,
then the corresponding LP problem is,

Vi # ye log by, (x¢) —log bj(x:) > 0
= (W), 2yt —Wiz;t) + (vy, —v;) > 0.
( yt Lyt J Jt) ( Yt J) minW]‘,’Uj Zme (10)
To allow possible “noise” in the training data, we may relax the re- iom
quirement by introducinglack variableg:; > 0, and require such that
Vi, Vm, Vm,
(W, Zyet — Wjzje) + (vy, —v5) +&; > 0. (4) , )
Z [(wytzytt - Wz]tzy_ti) + (vy, — U?/_t)] +&m >0, (11)
The slack variables basically implements the hinge loss function s6<7 (Xm.i)
that their values for correctly recognized frames are zero, and their vm, &n >0, (12)
values for incorrectly recognized frames are positive. From another K
point of view, the slack variables are a measure of frame recognition V7, Z wj(_’ﬂ = constant, (13)
errors. k=1
; (k)
1In this paper, vector quantities are written in bold. Vi, Vk, wi” > 0. (14)



2.2.1. lterative LP Optimization from N-best competing hypotheses, required iterative LP optimiza-

) ) ) ) ] tion with an additional constraint on the maximum amount of change
There is one problem with the formulation as described in Eqns. (1§, eights and biases.

— 14). LP optimization gives a globally optimal solution in the fea-
sible region. However, in speech recognition, we can only generate i
the competing hypotheses — hence the feasible region — using thel- Baseline Systems

current models. Once we change the stream weights and biases g¢re speaker-independent (SI) training set of the Resource Manage-
cording to the LP solution, there will be a new set of models, andnent Corpus (RM1) was used for training the SI model. It consists
they may give a different feasible region as they will probably gen-of 3990 utterances from 109 speakers. Evaluation was done on the
erate a different set of hypotheses. Thus, unless we have comple3gg utterances in the SI Feb’91 test set using the standard word-pair
knowledge of the feasible region, the globally optimal solution givengrammar with a perplexity of 60. All model training and decoding
by LP optimization is only correct with respect to the feasible regionyag performed using the HTK software.

created by the current set of competing hypotheses. Other discrimi- The conventional 39-dimensional MFCC vectors were extracted
problem is not as serious as ours since those methods do not findifg 4 streams: static MFCCs, delta MFCCs, delta-delta MFCCs,
globally optimal solution in an iteration but try to approach the localgpq energies respectively. The SI model consists of 47 monophones
optimum slowly in an iterative algorithm. Here, we investigate anp|ys the silence and short pause. Each of them was modeled as a
iterative LP optimization approach as follows: The LP optimization4-stream CDHMM which is strictly left-to-right and has three states
will run itgrzﬂvﬂy- Ineach ite(;atlion, éhEF?ompet_ing_hypothesfes argyith 10 Gaussian mixture components per state. The models were
generated by the current model, an optimization is performeg|in e by fixing all stream weights!") and biases to 1.

with an ad'dltlonal constraint to control the amount of changerin We also tried to locate the optimal global stream weights through
as follows: an extensive grid search in the numerical region of 0.7 — 1.5 for all
the stream weights simultaneously. Table 1 shows the word recogni-
tion accuracies of the 4-stream baseline HMMs with global stream
) ] . . . weights set to 1, or found by brute-force grid search. It can be seen
Then, a new model is obtained with the new which then is used ¢ petter stream weights are found by the grid search, which reduce

to generate a new set of compe_zting hypotheses, and the algorith_mtﬁ,e word error rate (WER) of the baseline system by 9.33%.
repeated. By carefully controlling how much the parameters being

optimized Awmq. here) can change in each iteration, it is hoped
that the locally optimal solution in each LP iteration will converge
to the globally optimal solution.

Vi, Vk,  Aw < Awinge. (15)

3.2. Experiment 1: LP Optimization with Complete Knowledge
of the Feasible Region Based on Frame Recognition Correctness

Table 1. Word accuracy of the baseline model and the model withh'tr%_s;'x se(;londs_o_r 3,600 franr:es ﬁf speech Wire FanO;“'V Se-
the “best” global stream weights found by grid search. ected from the training set so that the amount of training frames
for each truth stafewas the same. The truth state of a frame was

[ CDHMM [ Word Accuracy | obtained from forced alignments of the training utterances using
4-stream, global weights/j, vk, w(®) — 1 91.43% the baseline 4-stream 10-mixture CDHMMs with uniform stream
weights and bias of 1. The log likelihood vectars were then com-
puted from each frame accordingly for all 144 possible state. Thus,
each truth state likelihood had 143 competing state likelihoods at
Table 2. Effect of tying stream weights when the LP is formulated each frame.
in terms of frame recognition correctness, and solved using 3,600 The sum of weights at any staEkK=1 w§k> was set to 4. Various
training frames. tying schemes of the weights and biases at the global, phoneme, and
state level were considered. For the slack variables, we also tried no

4-stream, global weights found by grid search ~ 92.23%

l Weight Tying | Word Accgracy l tying at all, or tying at the frame, phoneme, and state fev&hally,
hState'dege”degt . gg'i%’ the LP problem was solved by the Mosek software [6] using the
P onemgek—)b:)en en 92'19%‘)’ interior-point method.

It is found that global stream biases and frame-dependent slack
variables give the best results regardless how stream weights are tied.
Table 2 presents the results when the stream weights were tied in

3. EXPERIMENTAL EVALUATION various levels with global stream biases and frame-dependent slack
variables. It can be seen that global stream weights give the best
Discriminative training by the proposed (iterative) linear program-accuracy of 92.19%. We further ran experiment for this best setting
ming (LP) optimization approach was evaluated in the estimation ofvith more training frames, and confirmed that the recognition perfor-
stream weights and biases for a 4-stream continuous density HMIi2nce had already converged, though a slightly better performance
(CDHMM) system. Monophone HMMs were used so that when thePf 92.23% — which is the same as the result obtained through com-
LP approach was formulated in terms of frame recognition correctPutationally extensive grid search — could be obtained with 7,200
ness, the number of competing states, being 143, was small enoughmore training frames.
B e el eglon Coul e ONSUUCe Srhre oy « 73— litsmsin ottt
. . The frame-level tying of the slack variables means that for a training
the globally optimal solution. On the other hand, when the LP apframex, . its log likelihood from the truth state has to be better ttwom-
proach was formulated in terms of word recognition correctness, inpeting states — both the nearby and the farthest competing states — by the
complete knowledge of the feasible region, which was constructedame amount.
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Table 3. Estimation of state-dependent stream weights when the LP
is formulated in terms of word recognition correctness using (one g,
iteration of) LP without any constraint aiw.
[ Size of N-best List [ Word Accuracy | . 92
10 89.98% S as
25 90.66% g
50 90.50% 8 91
250 90.86% &
800 90.90% T 05
S\
90 delta w = 0.005 —e—
\ deltaw = 0.01 ——¢—
i . i i deltaw = 0.02 —&—
3.3. Exp_erlment _2. Iterative LP with Incompl_e_te Knowledge of 89.5 el w = +inf
the Feasible Region Based on Word Recognition Correctness \
89 1 1 1 1 1
The LP formulation of Experiment 1 is based on frame recognition 1 2 3 4 5 6 7 8 9 10
correctness. It does not match with the common WER performance Iteration
measure in ASR, though usually we expect increasing frame accu-
racy to give non-decreasing word accuracy. Here, we repeated the Fig. 1. Effect of Aw on iterative LP optimization.

LP optimization but minimized the word recognition errors to esti-
mate theldd + 4 = 576 state-dependent stream We.'ghtS; stream .b."t e feasible region when it is formulated on word recognition cor-
ases were assumed global. In the following experiments, the initi

HMM d the st ahts found by E - 1t A ectness in several iterations with further constraint on the change in
S used the stream weights found by Experiment L to compu 9veights. Weights estimated by (1) give the same performance as the
the competing hypotheses.

“optimal” global weights found by extensive (and computationally
expensive) grid search, whereas weights estimated by (2) give even
3.4. Experiment 2.1: Single LP Iteration with Different Sizes of ~ better performance.
N-best Lists It is worth noting that in [7], state-dependent stream weights
perform worse than global stream weights when they are trained by
We first investigated the conjecture that the feasible region conmaximum-entropy estimation. In light of the result, our findings are
structed by an N-best list generated by a given model is incompletencouraging. Future work will incorporate the estimation of state
Only one LP iteration was run as in Experiment 1 with no furtherpiases into the iterative LP framework.
constraint oMAw. The results with different values &f are shown We would like to emphasize that the RM speech recognition task
in Table 3. Itis observed that the global solution found by one iteraused in this preliminary study is not the intended application of the
tion of LP optimization gives worse results than the baseline systenhew method. It is only used as an example to show that our new
Increasing the number of competing hypotheses helps slightly buigorithm is effective in estimating stream weights, and should be
the performance is still unsatisfactory. able to improve the performance of any multi-stream classifiers, such
as the product HMM in audio-visual ASR.

3.5. Experiment 2.2: lterative LP Optimization
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