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ABSTRACT

In this paper, we cast discriminative training problems into standard
linear programming (LP) optimization. Besides being convex and
having globally optimal solution(s), LP programs are well-studied
with well-established solutions, and efficient LP solvers are freely
available. In practice, however, one may not have complete knowl-
edge of the feasible region since it is constructed from a limited num-
ber of competing hypotheses based on the current model — not the
final model which, by definition, is not knowna priori at the time of
hypotheses generation. We investigate an iterative LP optimization
algorithm in which an additional constraint on the parameters being
optimized is further imposed. Our proposed method is evaluated on
the estimation of global and state-dependent stream weights and bi-
ases of a multi-stream hidden Markov model system. Results show
that the stream weights and biases found by our iterative LP op-
timization algorithm may give better recognition performance than
the ones found by a brute-force grid search.

Index Terms: iterative linear programming, discriminative training,
multi-stream HMM, parameter tying.

1. INTRODUCTION

Linear weighting functions are commonly found in automatic speech
recognition (ASR). For instance, in a multi-stream hidden Markov
model (HMM) (which is used in discrete HMM system [1, 2], multi-
band ASR [3], and audio-visual ASR [4, 5]), the state log-likelihood
is usually computed as a linear combination of the per-stream state
log-likelihoods; in Viterbi search, the recognition score of a test ut-
terance is a linearly weighted sum of the acoustic score and language
score. It is known that the parameter of these linear functions cannot
be determined by maximum-likelihood estimation as it will simply
give all the weights to the most probable factor. As a consequence,
discriminative training is commonly employed to estimate these lin-
ear functions in ASR by minimizing the classification errors (MCE),
by maximizing the mutual information (MMI), or by maximizing the
entropy (MAXENT), and so forth.

In this paper, we propose to improve the estimation of these lin-
ear functions by casting the respective problems into the standard
linear programming (LP) optimization framework. Our proposed
LP approach has the following advantages over other discriminative
training schemes:
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• Since linear programming problem is convex, the solution(s)
is/are guaranteed to be globally optimal (though they may not
be unique).

• Unlike some other discriminative training methods like MCE
estimation that perform corrective training, LP utilizes all
training data — both correct and incorrect data — to perform
the joint optimization of the parameters in a linear function.

• There are fewer system parameters to tune. For instance,
unlike gradient-based solutions, there is no learning rate to
tune; also, unlike MCE training which introduces nonlinear-
ity through the use of the sigmoid function, it does not need
to tune the sigmoid function parameters.

• LP optimization is very well studied with established solu-
tions, and efficient LP solvers are freely available.

Since LP solutions are supposed to be globally optimal, it re-
quires complete knowledge of the feasible region (for searching the
solution). However, as we will illustrate in the rest of the paper, the
feasible region has to be constructed from the competing hypotheses
in relevant ASR problems. Since the competing hypotheses are gen-
erated by the current model, and usually from N-best list or decoding
lattice, they are not complete (due to pruning) and they are unlikely
the same as those of the final model, which, by definition, cannot
be knowna priori. Hence, the globally optimal solution found using
the competing hypotheses generated by the current model may not be
really the true optimal solution. We devise an iterative LP optimiza-
tion algorithm and impose an additional constraint on how much the
parameters being optimized can be changed in each iteration.

To illustrate the idea of our novel iterative LP optimization,
we will show how the stream weights and biases of a multi-stream
HMM can be estimated using the new approach below by consider-
ing frame or word recognition correctness.

2. FORMULATION OF THE ESTIMATION OF STREAM
WEIGHTS/BIASES AS AN LP PROBLEM

For simplicity, we will formulate the estimation of stream weights
and biases of a multi-stream HMM by first considering the recogni-
tion correctness at the frame level, and then extend the formulation
to the word level.

2.1. Based on Frame Recognition Correctness

Let us denote an observation vector at timet asxt and the HMM
state that generates it asyt for t = 1, . . . , T . Using the common
HMM notation, the probability ofxt at statej is given bybj(xt). In



a multi-stream HMM withK streams andN states, the state pdf is
represented by a factored pdf as follows:
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However, that will render the problem intractable. In this paper, we
will not pursue this requirement, and we will treatlog cj as a bias
for each state andlog bj(xt) should be treated more as a likelihood
score than a strict probability term.

Furthermore, with the following variable substitutions1:
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vj = log cj ,

Eqn. (2) can be expressed in vector form as

log bj(xt) = w′
jzjt + vj . (3)

2.1.1. The Basic Requirement

For each training framext = [x
′(1)
t , . . . ,x

′(K)
t ]′ belonging to the

truth stateyt, we would like its probability computed by the truth
state to be greater than its probability computed by any other com-
peting state. That is,

∀j 6= yt log byt(xt)− log bj(xt) ≥ 0

⇒ (w′
yt

zytt −w′
jzjt) + (vyt − vj) ≥ 0 .

To allow possible “noise” in the training data, we may relax the re-
quirement by introducingslack variablesξtj ≥ 0, and require

(w′
yt

zytt −w′
jzjt) + (vyt − vj) + ξtj ≥ 0 . (4)

The slack variables basically implements the hinge loss function so
that their values for correctly recognized frames are zero, and their
values for incorrectly recognized frames are positive. From another
point of view, the slack variables are a measure of frame recognition
errors.

1In this paper, vector quantities are written in bold.

2.1.2. LP Form

From Eqn. (4), we may formulate the estimation of the stream
weight vectorwj as a standard LP problem as follows:

minwj ,vj
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Note that

• although we formulate the problem with state-dependent
weightswj , state-dependent biasesvj , and frame-and-state-
dependent errorξtj , one may tie these parameters to provide
various degrees of smoothing for his problem at hand.

• this is not corrective training; all training frames are used.
The LP solver will find optimal weights that will increase the
number of correctly recognized frames, and reduce the log
likelihood difference between the correct state and competing
states for the incorrectly recognized frames.

• in the basic setting, the sum of weights is set to 1; in the LP
formulation, we only require the sum to be a constant.

2.2. Based on Word Recognition Correctness

The LP formulation in Eqn. (5) can easily be extended to consider
recognition accuracy at the word level. For theith instanceXmi of
the word,Xm, m = 1, . . . , M , whereM is the vocabulary size, we
would like to have its probability given by the HMMλm of the word
Xm greater than that of all its competing hypotheses. That is, if the
functionT (·) maps an instance of a word in an utterance to its time
span,λ̄m represents the models in a competing hypothesis,ȳt repre-
sents the state in the competing hypothesis at timet, and we ignore
the contribution of likelihoods due to the transition probabilities, we
have,

∀i,∀m log P (Xmi|λm)− log P (Xmi|λ̄m) ≥ 0

⇒
P
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zȳtt) + (vyt − vȳt)
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Thus, if we assume that the slack variable is tied at the word level,
then the corresponding LP problem is,

minwj ,vj
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2.2.1. Iterative LP Optimization

There is one problem with the formulation as described in Eqns. (10
– 14). LP optimization gives a globally optimal solution in the fea-
sible region. However, in speech recognition, we can only generate
the competing hypotheses — hence the feasible region — using the
current models. Once we change the stream weights and biases ac-
cording to the LP solution, there will be a new set of models, and
they may give a different feasible region as they will probably gen-
erate a different set of hypotheses. Thus, unless we have complete
knowledge of the feasible region, the globally optimal solution given
by LP optimization is only correct with respect to the feasible region
created by the current set of competing hypotheses. Other discrimi-
native training methods such as MCE have the same problem, but the
problem is not as serious as ours since those methods do not find a
globally optimal solution in an iteration but try to approach the local
optimum slowly in an iterative algorithm. Here, we investigate an
iterative LP optimization approach as follows: The LP optimization
will run iteratively. In each iteration, the competing hypotheses are
generated by the current model, and LP optimization is performed
with an additional constraint to control the amount of change inw
as follows:

∀j,∀k, ∆w
(k)
j ≤ ∆wmax. (15)

Then, a new model is obtained with the neww, which then is used
to generate a new set of competing hypotheses, and the algorithm is
repeated. By carefully controlling how much the parameters being
optimized (∆wmax here) can change in each iteration, it is hoped
that the locally optimal solution in each LP iteration will converge
to the globally optimal solution.

Table 1. Word accuracy of the baseline model and the model with
the “best” global stream weights found by grid search.

CDHMM Word Accuracy

4-stream, global weights,∀j, ∀k, w
(k)
j = 1 91.43%

4-stream, global weights found by grid search 92.23%

Table 2. Effect of tying stream weights when the LP is formulated
in terms of frame recognition correctness, and solved using 3,600
training frames.

Weight Tying Word Accuracy
state-dependent 90.86%

phoneme-dependent 91.14%
global 92.19%

3. EXPERIMENTAL EVALUATION

Discriminative training by the proposed (iterative) linear program-
ming (LP) optimization approach was evaluated in the estimation of
stream weights and biases for a 4-stream continuous density HMM
(CDHMM) system. Monophone HMMs were used so that when the
LP approach was formulated in terms of frame recognition correct-
ness, the number of competing states, being 143, was small enough
that complete knowledge of the feasible region could be constructed,
and onlyone iterationof the LP optimization was needed to obtain
the globally optimal solution. On the other hand, when the LP ap-
proach was formulated in terms of word recognition correctness, in-
complete knowledge of the feasible region, which was constructed

from N-best competing hypotheses, required iterative LP optimiza-
tion with an additional constraint on the maximum amount of change
in weights and biases.

3.1. Baseline Systems

The speaker-independent (SI) training set of the Resource Manage-
ment Corpus (RM1) was used for training the SI model. It consists
of 3990 utterances from 109 speakers. Evaluation was done on the
300 utterances in the SI Feb’91 test set using the standard word-pair
grammar with a perplexity of 60. All model training and decoding
was performed using the HTK software.

The conventional 39-dimensional MFCC vectors were extracted
at every 10ms over a window of 25ms. Each MFCC vector was split
into 4 streams: static MFCCs, delta MFCCs, delta-delta MFCCs,
and energies respectively. The SI model consists of 47 monophones
plus the silence and short pause. Each of them was modeled as a
4-stream CDHMM which is strictly left-to-right and has three states
with 10 Gaussian mixture components per state. The models were
trained by fixing all stream weightsw(k)

j and biases to 1.
We also tried to locate the optimal global stream weights through

an extensive grid search in the numerical region of 0.7 – 1.5 for all
the stream weights simultaneously. Table 1 shows the word recogni-
tion accuracies of the 4-stream baseline HMMs with global stream
weights set to 1, or found by brute-force grid search. It can be seen
that better stream weights are found by the grid search, which reduce
the word error rate (WER) of the baseline system by 9.33%.

3.2. Experiment 1: LP Optimization with Complete Knowledge
of the Feasible Region Based on Frame Recognition Correctness

Thirty-six seconds or 3,600 frames of speech were randomly se-
lected from the training set so that the amount of training frames
for each truth state2 was the same. The truth state of a frame was
obtained from forced alignments of the training utterances using
the baseline 4-stream 10-mixture CDHMMs with uniform stream
weights and bias of 1. The log likelihood vectorszjt were then com-
puted from each frame accordingly for all 144 possible state. Thus,
each truth state likelihood had 143 competing state likelihoods at
each frame.

The sum of weights at any state
PK

k=1 w
(k)
j was set to 4. Various

tying schemes of the weights and biases at the global, phoneme, and
state level were considered. For the slack variables, we also tried no
tying at all, or tying at the frame, phoneme, and state level3. Finally,
the LP problem was solved by the Mosek software [6] using the
interior-point method.

It is found that global stream biases and frame-dependent slack
variables give the best results regardless how stream weights are tied.
Table 2 presents the results when the stream weights were tied in
various levels with global stream biases and frame-dependent slack
variables. It can be seen that global stream weights give the best
accuracy of 92.19%. We further ran experiment for this best setting
with more training frames, and confirmed that the recognition perfor-
mance had already converged, though a slightly better performance
of 92.23% — which is the same as the result obtained through com-
putationally extensive grid search — could be obtained with 7,200
or more training frames.

2There are totally3× 47 + 3 = 144 states in the HMMs.
3The frame-level tying of the slack variables means that for a training

framext, its log likelihood from the truth state has to be better thanall com-
peting states — both the nearby and the farthest competing states — by the
same amount.



Table 3. Estimation of state-dependent stream weights when the LP
is formulated in terms of word recognition correctness using (one
iteration of) LP without any constraint on∆w.

Size of N -best List Word Accuracy
10 89.98%
25 90.66%
50 90.50%
250 90.86%
800 90.90%

3.3. Experiment 2: Iterative LP with Incomplete Knowledge of
the Feasible Region Based on Word Recognition Correctness

The LP formulation of Experiment 1 is based on frame recognition
correctness. It does not match with the common WER performance
measure in ASR, though usually we expect increasing frame accu-
racy to give non-decreasing word accuracy. Here, we repeated the
LP optimization but minimized the word recognition errors to esti-
mate the144 ∗ 4 = 576 state-dependent stream weights; stream bi-
ases were assumed global. In the following experiments, the initial
HMMs used the stream weights found by Experiment 1 to compute
the competing hypotheses.

3.4. Experiment 2.1: Single LP Iteration with Different Sizes of
N-best Lists

We first investigated the conjecture that the feasible region con-
structed by an N-best list generated by a given model is incomplete.
Only one LP iteration was run as in Experiment 1 with no further
constraint on∆w. The results with different values ofN are shown
in Table 3. It is observed that the global solution found by one itera-
tion of LP optimization gives worse results than the baseline system.
Increasing the number of competing hypotheses helps slightly but
the performance is still unsatisfactory.

3.5. Experiment 2.2: Iterative LP Optimization

Experiment 2.1 was repeated using the iterative LP algorithm de-
scribed in Section 2.2.1 with 50-best competing hypotheses, and
constraining the change in all stream weights to be less than∆wmax.
The results with varied values of∆wmax are plotted in Fig. 1. It is
found that the iterative LP algorithm effectively improves the estima-
tion of stream weights. A smaller value of∆wmax gives better con-
vergence performance in a few iterations. The best state-dependent
stream weights were obtained with∆wmax = 0.01, giving a word
accuracy of 92.79% which is better than the result obtained with
global stream weights found by grid search.

4. CONCLUSIONS

We investigate the use of standard linear programming (LP) opti-
mization for discriminative training. We analyze the problem of in-
complete knowledge of the feasible region that can be constructed
from competing hypotheses in practical ASR system, and propose an
iterative LP optimization algorithm. It is empirically found that the
proposed LP approach is effective in estimating the stream weights
for a multi-stream HMM system either with (1) complete knowl-
edge of the feasible region when it is formulated on frame recogni-
tion correctness in a single iteration, or (2) incomplete knowledge of
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Fig. 1. Effect of∆w on iterative LP optimization.

the feasible region when it is formulated on word recognition cor-
rectness in several iterations with further constraint on the change in
weights. Weights estimated by (1) give the same performance as the
“optimal” global weights found by extensive (and computationally
expensive) grid search, whereas weights estimated by (2) give even
better performance.

It is worth noting that in [7], state-dependent stream weights
perform worse than global stream weights when they are trained by
maximum-entropy estimation. In light of the result, our findings are
encouraging. Future work will incorporate the estimation of state
biases into the iterative LP framework.

We would like to emphasize that the RM speech recognition task
used in this preliminary study is not the intended application of the
new method. It is only used as an example to show that our new
algorithm is effective in estimating stream weights, and should be
able to improve the performance of any multi-stream classifiers, such
as the product HMM in audio-visual ASR.
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