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ABSTRACT

It is generally believed that the transition probabilities in a hidden
Markov model (HMM) have a limited role in the speech decoding
process. In this paper, through a series of recognition experiments
on Wall Street Journal (WSJ) read speech and SVitchboard (SVB)
conversational telephone speech, we find that the HMM transition
probabilities may be more important than we once thought. The ex-
periments include: (1) setting or not setting all outgoing transition
probabilities equal; (2) the introduction of word-final triphones and
the re-estimation of their transition probabilities; (3) besides gram-
mar factor and insertion penalty, the addition of a third decoding
parameter called transition factor to scale the transition probabil-
ity score during decoding. The results of the above three experi-
ments enable us to improve the the word accuracy of the WSJ and
SVB speech recognition task by 0.7% and 5.3% absolute respec-
tively when compared to their baseline model in which all transition
probabilities are simply set to 0.5.
Index Terms: transition probabilities, transition factor, phone dele-
tion modeling, word-final triphones.

1. INTRODUCTION

It is a common belief that the transition probabilities in a hidden
Markov model (HMM) have limited contribution during speech de-
coding. However, in our recent work on explicit modeling of phone
deletions, when we construct what we call context-dependent frag-
mented word models (CD-FWM) in which skipping arcs are added
to word models composed from well-trained triphones [1], we notice
that the transition probabilities of the skipping arcs seem to matter.
If we make all the outgoing transitions from a state of the CD-FWMs
equal to each other and re-estimate the remaining model parameters,
the recognition performance of the resulting model is significantly
worse. The finding prompts us to re-visit the “common belief” again.

In this paper, we would present three experiments designed to
study the contribution of the transition probabilities in a continuous-
density hidden Markov model (CDHMM) for the recognition of read
speech and spontaneous conversational speech. The experiments are
conducted to answer the following three questions:

1. May we ignore the contribution of the transition probabilities
and simply set them to 0.5 (since all CDHMMs in our exper-
iments have the common strictly left-to-right topology with
no skipping arcs)?

2. It is well-known that it is necessary to balance the dynamic
ranges of acoustic score and language score by a grammar

factor. Since the language score and the transition probabil-
ity score are true probabilities (with a value between 0.0 and
1.0), if grammar factor helps, will the addition of a transition
factor help too?

3. There are great variations in the realization of the coda of
a syllable, especially in conversational speech [2]. [3] also
shows that word boundary information may be utilized to
improve Arabic speech recognition. Here we create addi-
tional word-final triphones (WFT) which differ from the their
generic triphone counterparts mainly by the transition proba-
bilities. Will WFTs improve speech recognition?

This paper is organized as follows. In Section 2, we first describe
the two recognition tasks in this study, their corpus and experimental
setup. The design of the experiment for each of the above three ques-
tions is then detailed in Section 3–5. Finally, Section 6 summarizes
the findings and gives the concluding remarks.

2. RECOGNITION TASKS AND THEIR SETUP

Two speech recognition tasks are used for this investigation:

• WSJ: Wall Street Journal corpus [4] with a testing vocabulary
of 5000 words. It consists of read speech.

• SVB: SVitchboard corpus [5] with a closed vocabulary of 500
words. It was extracted from Switchboard I [6]. It consists of
spontaneous conversational speech.

In both tasks, acoustic vectors were extracted at every 10ms over
a window of 25ms. Triphone models were then constructed using the
HTK toolkit. All models are strictly left-to-right 3-state CDHMMs
with a Gaussian mixture density at each state. In addition, there
are a 1-state short pause model and a 3-state silence model. Finally
recognition was performed again using the HTK toolkit with a beam
width of 350.

All system parameters such as the decoding parameters and the
state-tying tree were optimized using their development data set.

Table 1. Details of various Wall Street Journal data sets.

Data Set #Speakers #Utterances Vocab Size OOV
SI284 283 37,413 13,646 11.95%

si dt 05.odd 10 248 1,260 0
Nov’93 10 215 1,004 0.29%



Table 2. Details of various 500-word Svitchboard data sets.

Set #Speakers #Utterances #Words Duration

train 324 13,597 51,324 3.69 hrs
dev 107 4,871 18,075 1.32 hrs
test 107 5,202 20,021 1.43 hrs

2.1. 5000-Word Wall Street Journal Task

2.1.1. Speech Corpus

The standard SI-284 Wall Street Journal (WSJ) training set was used
for training the speaker-independent model. It consists of 7,138
WSJ0 utterances from 83 WSJ0 speakers and 30,275 WSJ1 utter-
ances from 200 WSJ1 speakers. Thus, there is a total of about 70
hours of read speech in 37,413 training utterances from 283 speak-
ers. All the training data are endpointed.

The standard Nov’93 5K test set with non-verbalized punctua-
tions was used for evaluation using the standard 5K-vocabulary bi-
gram that comes along with the WSJ corpus. The set si dt 05.odd
contains alternate sentences from the 1993 WSJ 5K Hub develop-
ment test set after sentences with OOV words are removed. It was
used to tune the system parameters. A summary of these data sets is
shown in Table 1.

2.1.2. Experimental Setup

The traditional 39-dimensional MFCC vectors are used; they consist
of 12 MFCCs and normalized log frame energy, and their first- and
second-time derivatives. There are altogether 18,777 cross-word tri-
phones based on 39 base phonemes. Each triphone state has a Gaus-
sian mixture density of at most 16 components. There are totally
6,481 tied states which were derived from a phonetic decision tree.

2.2. 500-Word SVitchboard Task

2.2.1. Speech Corpus

SVitchboard (SVB) [5] is a conversational telephone speech corpus
that is defined using subsets of the Switchboard-1 corpus [6]. It fur-
ther defines several small vocabulary data sets ranging from 10 to
500 words, of which each task has a completely closed vocabulary.
Each data set is further divided into five partitions, A – E, such that
the speakers of one partition do not overlap with the speakers in any
other partitions. In this paper, the Svitchboard 500-word task was
used. Partitions A, B, and C were used for training; partition D was
used for development, and partition E was used for testing. A sum-
mary of these data sets is shown in Table 2.

2.2.2. Experimental Setup

The number of base phonemes is originally 42 but it is reduced to
39 by converting [ax] to [ah], [el] to [ah l], and [en] to [ah n]. Thus,
the baseline triphone system consists of 62,402 virtual triphones and
7,254 real triphones based on the final 39 base phonemes. There are
totally 665 tied states, and each state has a Gaussian mixture density
of at most 32 components.

The acoustic vector consists of 12 perceptual linear prediction
(PLP) coefficients and the normalized log energy, as well as their
first- and second-order derivatives. The lexicon provided by the
Switchboard Transcription Project [7] was used. Finally, a bigram-
backoff language model was constructed from the training data (par-

titions A–C) using the language modeling toolkit SRILM [8]. It has
a perplexity of 36.4 on the test set.

Table 3. Results of Experiment 1. Recognition performance is mea-
sured in word recognition accuracy (%). (Figures with an ∗ are sta-
tistically and significantly better than other results in the same col-
umn.)

Model WSJ SVB

baseline1: set all aij = 0.5, train other parameters 91.35 41.36
baseline2: all HMM parameters are trained 91.40 44.26∗

model3: baseline2 pdf’s, reset all aij to 0.5 91.31 41.65

Table 4. Comparison of triphone systems on the 500-word SVB test
set. (WAC is word accuracy in %).

System WAC

HTK; PLP [9] 38.80
GMTK [10]; PLP [9] 40.80
HTK; PLP (our baseline2) 44.26
GMTK; PLP + Fisher-trained, factored AF tandem [9] 46.20
GMTK; PLP + tuning on larger development set [11] 48.10

3. EXPERIMENT 1: EQUAL TRANSITION
PROBABILITIES

Due to the common belief that the transition probabilities are not
important in decoding, there are some practices of setting all of them
to the same value, namely, 0.5 for a strictly left-to-right HMM that
has no skipping arcs. Another reason that supports the practice is that
the duration model deduced from the HMM transition probabilities
is wrong.

For each of the two speech recognition tasks, we compare the
following three models:

• baseline1: all transition probabilities aij’s are set to 0.5, and
only the remaining HMM parameters are estimated.

• baseline2: all HMM parameters are estimated; this is always
the base case in all experiments in this paper.

• model3: reset all transition probabilities aij’s in baseline2
models to 0.5 before using them for decoding. That is,
model3 has the state pdf’s of baseline2 model, but the transi-
tion probabilities of baseline1 model.

The performance of these three models is shown in Table 3. Be-
fore we discuss the results, we would like to remark that the SVB
task is difficult if one is restricted to use only the resources avail-
able from the corpus, and thus the low recognition accuracies. Ta-
ble 4 compares the results of various systems on the 500-word SVB
task reported in the literature. One may see that our baseline2 result
compares favorably among the top three systems that do not use data
other than the SVB 500-word corpus. The 4th system made use of
articulatory tandem features trained on the Fisher corpus [12], while
the 5th system was tuned on a larger development set, of which the
details were not described in [11].

The results show that the three models perform equally well in
the read speech of WSJ, and this is no surprise to many of us as many



of us have had the same observation in the past. However, we specu-
late that the phenomenon was mainly checked on read speech recog-
nition and not on spontaneous conversational speech. From Table 3,
the HMM transition probabilities actually matter for the recognition
of conversational speech in SVB. There is a performance degrada-
tion between baseline2 model and baseline1 model when all transi-
tion probabilities are set to 0.5 in the latter. The worse performance
of model3 further confirms that the loss is not due to the, perhaps,
sub-optimal Gaussian pdf’s in baseline1 model since model3 shares
the same pdf’s as the baseline2 model.

Table 5. WSJ Results of Experiment 2. (N = #tied states; WAC is
word accuracy in %.)

Model #HMMs N WAC

baseline2: trained aij 18,777 6,481 91.40
+ WFT 21,657 6,481 91.58
+ untying WFT states 21,657 7,562 91.71

Table 6. SVB Results of Experiment 2. (N = #tied states; WAC is
word accuracy in %; the figure with an ∗ is statistically and signifi-
cantly better than baseline2 result.)

Model #HMMs N WAC

baseline2: trained aij 7,254 665 44.26
+ WFT 7,768 665 44.84
+ untying WFT states 7,768 767 45.12∗

4. EXPERIMENT 2: WORD-FINAL TRIPHONES

It is known that the actual realization of the same phoneme gener-
ally depends on the position of the phoneme in a word. Position-
dependent monophones and triphones have been used for speech
recognition in the past [13, 3]. Here we limited our investigation
of word-final triphones (WFT) only for the following 4 phonemes:
/t/, /d/, /s/, and /k/. One reason is that we postulate that the word-
final plosives have more variations than other phones and in other
parts of a word, and the effect is more pronounced in spontaneous
conversational speech as they may not be well articulated before the
next word starts. Another reason is that there are not sufficient WFT
training samples for many other phonemes.

Below is the procedure for the construction of WFTs:

STEP 1: Modify the last phone in the pronunciation of each word
in the dictionary using a new word-final phone label. For
example, the pronunciation for the word “about” is modi-
fied from /ah b aw t/ to /ah b aw t:final/ where
/t:final/ is the word-final /t/.

STEP 2: Create new cross-word triphones that involve the new
word-final phone. Note that if the same triphone context may
appear at the end as well as other parts of a word, then the corre-
sponding triphone model has to be cloned, and one of the dupli-
cates is re-labeled with the new word-final phone and it now be-
comes a word-final triphone (WFT). Because all states are tied,
the new WFTs will share the same state pdf’s as the other tri-
phones, but their transition probabilities will be updated sepa-
rately.

STEP 3: Re-train all CDHMMs for another 8 EM iterations, both
the state pdf’s and transition probabilities.

STEP 4: For WFTs which have sufficient training data, untie their
states and re-train all CDHMMs for another 8 EM iterations.

It turns out that for the WSJ task, there are enough training data
for all observed WFTs of the four plosive phonemes, whereas for
the SVB task, the database is so small that only the phoneme /t/ may
have its own WFTs. We started with baseline2 model of Experi-
ment 1, added WFTs to its triphone inventory, and checked the per-
formance of the new models afterwards. The resulting model size,
number of states, and recognition performance are summarized in
Table 5 and Table 6 respectively for the two tasks.

It is observed that even with the simple addition of WFTs
for four(one) phones improves the recognition performance of
WSJ(SVB) by 0.31%(0.86%) absolute when compared with its base-
line2 model. In the SVB case, the recognition gain provided by the
WFTs of the single phone /t/ is statistically significant. More im-
portantly, if we consider only the addition of WFTs without untying
their states so that their state pdf’s are the same as their non-word-
final versions, and they only differ from their non-word-final ver-
sions in their transition probabilities, there are still 0.18% and 0.58%
absolute gain in the recognition word accuracy of the WSJ and SVB
task respectively.

5. EXPERIMENT 3: TRANSITION FACTOR

From the results of Experiments 1 and 2, it seems that the transition
probabilities may play a small but significant role in speech decod-
ing. If this is true, but since its dynamic range is much smaller than
the acoustic likelihood, they should be properly weighted just like
the language model score. Hence, in the third experiment, we inves-
tigate the addition of a third decoding parameter (after the grammar
factor for language score, and word insertion penalty) that we call
the transition factor.

We applied the large-margin iterative linear programming
(LMILP) method in [14] for the discriminative training of the new
transition factor. In fact, the grammar factor and word insertion
penalty could also be estimated by LMILP. In [14], we showed that
the grammar factor and word insertion penalty found by LMILP
work at least as well as the ones found by an exhaustive grid search.
Nevertheless, in this paper, only the transition factor was determined
by LMILP, whereas the grammar factor and word insertion penalty
were found by grid searches.

5.1. Review of LMILP

Details of the mathematical formulation for the LMILP training of
the transition factor are similar to those for grammar factor and/or
word insertion penalty, and the readers are referred to our paper [14].
In brief, LMILP is a discriminative training procedure for the un-
known parameters in a linear function. In speech recognition, we
would like to find the best word sequence such that

ŵN
1= argmax

wN
1 ,N

{
b(xT

1 ,wN
1 ) +Ktfa(x

T
1 ,wN

1 ) +Kgf l(w
N
1 ) +KwipN

}
,

where xT
1 is the observation sequence; wN

1 is the decoded word
sequence; a(·), b(·), and l(·) are the transition probability score,
acoustic score, and language score respectively; Ktf , Kgf and Kwip

are the decoding parameters and they are called the transition fac-
tor, grammar factor and word insertion penalty respectively. During
LMILP, an N-best list is generated for each training utterance so that



linear inequality constraints, which require the correct hypothesis to
have greater recognition score than its competitors, may be derived.
Obviously this cannot be guaranteed for all competitors and slack
variables are introduced to the inequalities. Hence, the problem of
finding the optimal decoding parameters is done through the min-
imization of the sum of these slack variables. For a more robust
solution, a margin is added to the inequality constraints.

After a solution is found, a new N-best list may be generated
using the new transition factor, and the procedure repeats until some
convergence criterion is met.

5.2. Finding the Transition Factor by LMILP

Some details of the procedure are given below.

• The N-best hypotheses were generated by reserving 3 tokens
at each state during Viterbi decoding.

• 20 best competing hypotheses were considered.

• All the utterances in the development set were used for
LMILP training.

• The slack variables were tied for each utterance.

• The procedure started with Ktf = 1.0 and stopped when the
change of its values between successive iterations was less
than 0.01.

• The margin was set to a very large value, 10000. Basically,
we want to set the margin to infinity so that each training data
is effectively utilized in finding the optimal transition factor.

• The procedure was run on the models with WFTs in which
the states were untied and re-trained.

Table 7. Results of Experiment 3. (WAC is word accuracy in %; fig-
ures with an ∗ are statistically and significantly better than baseline2
result.)

Model WSJ SVB

baseline1: all aij = 0.5 91.32 41.36
baseline2: trained aij 91.40 44.26
+ WFT 91.58 44.84
+ untying WFT states 91.71 45.12∗

+ transition factor 92.02∗ 46.66∗

The optimal transition factors for the WSJ and SVB tasks are
found to be 3.60 and 2.55 respectively. The ensuing recognition per-
formance results are shown in Table 7 together with the results from
the last two experiments.

The use of the transition factor to scale the transition probability
score in the hypothesized word sequences gives an addition perfor-
mance gain of 0.31% and 1.54% absolute in the WSJ and SVB task
over their best model after the addition of WFTs and untying the
WFT states. Moreover, the recognition improvement in the SVB
task is more pronounced than that in the WSJ task.

6. SUMMARY AND CONCLUSIONS

This work presents three experiments to investigate the importance
of the transition probabilities for speech recognition. The results
show that the transition probabilities may give a small but significant
contribution. From the experiments, it is advised to jointly estimate

the transition probabilities together with other HMM parameters in-
stead of simply setting them to 0.5. Then during decoding, a tran-
sition factor may be added to scale the transition probability score
to further enhance the recognition performance. In our study, com-
pared with the baseline1 model in which all transition probabilities
are set to 0.5 before HMM training, the use of the re-estimated transi-
tion probabilities, word-final triphones, and transition factor together
gives about 8% and 9% word error rate reduction on the recognition
performance of the 5000-word WSJ task and 500-word SVB task
respectively.

We caution that SVB is a small though difficult task, and ad-
vanced recognition techniques and external data are not employed in
our studies. Further investigation is required to confirm the current
findings when they are applied in larger speech corpora.
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