SUBSPACE GAUSSIAN MIXTURE MODEL WITH STATE-DEPENDENT SUBSPACE
DIMENSIONS

Tom Ko, Brian Mak

Department of Computer Science & Engineering

Hong Kong University of Science & Technology

{tomko, mak}@cse.ust.hk

ABSTRACT

In recent years, under the hidden Markov modeling (HMM) frame-
work, the use of subspace Gaussian mixture models (SGMMs) has
demonstrated better recognition performance than traditional Gaus-
sian mixture models (GMMs) in automatic speech recognition. In
state-of-the-art SGMM formulation, a fixed subspace dimension is
assigned to every phone states. While a constant subspace dimen-
sion is easier to implement, it may, however, lead to overfitting or
underfitting of some state models as the data is usually distributed
unevenly among the states. In a later extension of SGMM, states
are split to sub-states with an appropriate objective function so that
the problem is eased by increasing the state-specific parameters for
the underfitting state. In this paper, we propose another solution
and allow each sub-state to have a different subspace dimension de-
pending on its amount of training frames so that the state-specific
parameters can be robustly estimated. Experimental evaluation on
the Switchboard recognition task shows that our proposed method
brings improvement to the existing SGMM training procedure.
Index Terms: subspace Gaussian mixture model, phonetic dimen-
sion, sub-state, regularization.

1. INTRODUCTION AND RELATION TO PRIOR WORK

In recent years, the use of subspace Gaussian mixture model
(SGMM) [1, 2, 3] to represent states in hidden Markov model
(HMM) for automatic speech recognition (ASR) has received a lot
of attention. It has been reported continually that SGMM produces
better recognition performance over traditional Gaussian mixture
model (GMM) in many speech recognition tasks. In SGMM, the
state-dependent GMM parameters are generated by a projection of
the globally shared parameters [4] using state-dependent subspace
vectors. The compact representation of SGMM greatly reduces the
number of free model parameters which can be then estimated ro-
bustly even when the amount of training data is highly limited.

In the state-of-the-art SGMM formulation, the phonetic sub-
space dimension S’ is a constant that is fixed for all phonetic states.
Due to the uneven distribution of data over the different phonetic
states, some states may suffer from overfitting when S is large while
some others may suffer from underfitting when S is small. The later
extension to the use of sub-states can ease the problem by increasing
state-specific parameters appropriately for states with more training
data. From Fig. 1, we can see that the data distribution over the sub-
states may get more even (i.e., closer to the ideal curve) by using
more sub-states.
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Fig. 1. Data coverage of SGMM-HMM systems with different
number of sub-states. The systems were trained using 30 hours of
Switchboard data; the number of tied states is fixed to 5000.

Based on the framework of SGMM, regularized SGMM [5] is
proposed to address the possible overfitting that arises when the
training data is highly limited. In their work, maximum likeli-
hood estimation of the sub-state vector v is regularized by adding a
penalty term to the objective function. Both ¢; - and />-regularization
have been tried with limited success. When regularization is used,
some elements of the sub-state vectors are driven towards zero.

In this paper, we would like to use another approach to address
the overfitting and underfitting problems caused by the uneven dis-
tribution of data. We propose to use a state-dependent subspace di-
mension Sj,, for each sub-state m of the tied state j. Intuitively, a
sub-state with more training data should use a larger S, value, and
a sub-state with less training data should use a smaller S}, value.

Our proposed method is different from the regularized
SGMM [5] in the following aspects:

e In [5], column vectors in the shared mean projection M; are
not individually weighted. Thus, all elements in the sub-state
vector v;,, receive the same force shrinking them towards
zero from the regularization term. In contrast, our method is
more similar to the regularization term used in [6, 7] where
the eigenvectors are individually weighted. In our proposed



method, some elements of a sub-state vector v, are forced
to zero if it has less training data, and we do that by pushing
all these zero elements to the end of the sub-state vector. As
a side effect, the leading column vectors of M; will be effec-
tively shared by a larger number of sub-states, and thus are
considered to be more “important”.

e Our method is more like choosing the number of eigenvec-
tors in the eigenvoice speaker adaptation method [8], and a
hard decision is made on the number of vectors composing
the phonetic subspace.

We evaluated our proposed method on the Switchboard corpus.
Different ways of determining the variable subspace dimension were
also compared. The rest of the paper is organized as follows. In
Section 2, a review of the SGMM formulation is given. We then
describe our proposed method in Section 3. That is followed by
experimental evaluation in Section 4 and conclusions in Section 5.

2. REVIEW OF SGMM

Table 1. Description of various SGMM parameters.

Notation Description
i Gaussian component index
j tied-state index
m sub-state index
M; number of sub-state for tied-state j
I number of Gaussians for each state/sub-
state
v;/vjm  state-specific/sub-state-specific ~ subspace
vector
M; mean projection matrix for the <th Gaussian
Wi weight projection vector for the ith Gaus-
sian
Cjm sub-state weight
v(® speaker-specific subspace vector
N; mean projection matrix for the ith Gaussian
regarding the speaker offset
u; weight projection vector for the ith Gaus-

sian regarding the speaker offset

The basic form of SGMM can be expressed by the following
formulas:

I
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The description of various SGMM parameters is summarized
in Table 1. The means of Gaussian ¢ of state j is generated from
the state-specific vector v; through the shared mean projection M;.
This is similar to eigenvoices [8] and cluster adaptive training [9]. In-
deed, SGMM has a high novelty in generating the Gaussian weights
through the weight projections w;.

The above basic form of SGMM can be extended to the use of
sub-states as follows:
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In this paper, our experiments are based on two further exten-
sions of SGMM related to speaker adaptation. The first extension [3]
is the addition of a speaker-dependent offset to the mean vector of
each Gaussian. Thus, eqs. (4) and (5) become
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where A and b(®) are the speaker-specific transformation matrix
and bias vector respectively, and x’ = A® gz + b is the trans-
formed feature vector after constrained MLLR (CMLLR) transfor-
mation [10]. The second extension is called symmetric subspace
Gaussian mixture model (SSGMM) [11]. In SSGMM, besides the
mean vectors, the weight vectors are also symmetrized. Thus, eq.
(6) becomes
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Similar to speaker adaptive training (SAT) [12], N; and u; are esti-
mated during training, while v(*) of the test speakers are estimated
during decoding. For ease of explanation, the above extensions re-
lated to speaker adaptation will be omitted in the SGMM formulation
in the following section.

3. SGMM WITH STATE-DEPENDENT SUBSPACE
DIMENSIONS

In the SGMM formulation described in Section 2, a constant sub-
space dimension S is used for every sub-state so that vj,, €
RS, V(j,m). In this paper, we would like to further generalize
the SGMM framework using a variable subspace dimension S;m,
for each sub-state. Thus, we require v;, € R%™ V(j,m) and
5% < S < 8P, where S“P and S'° are the upper bound and the
lower bound of the subspace dimension respectively. Our proposed
method can be simulated by assigning zeros to the last (S“? — Sj,)
elements starting from the (S, + 1)th position during the estima-
tion of v,,. That is, we have

I Vjm1
Sim
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There are S“? column vectors in M; accordingly. Due to the
structure of v;, in eq. (10), only the leading S}, column vectors of
M; are effective in generating (¢ through eq. (5). Thus, although
M; is globally shared across all sub-states, the leading column vec-
tors are shared by more sub-states while those trailing column vec-
tors are shared by fewer sub-states. The same also applies to the
weight projection vectors.

In our work, we follow the training procedures suggested in [13],
where M; and w; are re-trained after the re-estimation of v,,, and
maximum likelihood estimation is employed. The auxiliary function
for the mean projection matrix M is:
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and tr() is the trace function of a square matrix; z(t) is the feature
vector at time ¢; 7;m;(t) is the posterior of (t) over Gaussian i in
the mth sub-state of the jth tied-state; v mi = >, Vjmi(t) is the
occupation count of the Gaussian. Provided that Q; is not singular,
there is a closed-form solution, which is

M, =Y, Q;". (14)

In order to compute Y; and Q; in egs. (11) and (13), technically, it
is easier to keep every v;,, with the same dimension. That is why
our method was simulated by the structure of v, in eq. (10).

3.1. Determining the State-dependent Subspace Dimensions

The major guideline in determining the state-dependent subspace di-
mension is to assign larger subspace dimensions to the sub-states
with more training data. Here, we investigate two ways of dimen-
sion assignment.

1. absolute-count-based method, Sjm o vjm: We let Sj,, be
proportional to yjm = »_,7jm: Which is the occupation
count of the sub-state (j, m). S;m is computed as follows:

&m:[%§}+y° (15)

where ko is a constant. If the resulting S;., is larger than
SYP. Sim = S“P.

2. ordinal-count-based method, Sjp, o Ijm: We sort the sub-
states according to their occupation counts in ascending order
and let I;,,, be the ordinal of the sub-state in this sorted order
where 1 < Ly, < > ; M. We then let Sjm be proportional
t0 Ijm. Sjm is computed as follows:

Sim = [ S22

SR TARICRE S’O)W + 8% (16)
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4. EXPERIMENTAL EVALUATION

Two training sets from Switchboard I [14], a 30-hour training set
and a 100-hour training set were used separately for the acoustic

model estimation . We first evaluated our method on the basic
form of SGMM (with no sub-states) using the 30-hour training set,
and then on SGMM with sub-states using the 100-hour training set.
The 30-hour training set contains 24,569 utterances and the 100-hour
training set contains 76,615 utterances. Recognition results are re-
ported on the standard Hub5 2000 evaluation set. It consists of 1,831
Switchboard utterances and 2,628 Callhome utterances. There are a
total of about 2 hours of conversational speech.

MFCC features with cepstral mean and variance normalization
were used as the acoustic vectors. Seven consecutive feature vectors,
each consisting of 13 static MFCC coefficients, were concatenated,
and then they were reduced to 40-dimensional feature vectors using
LDA [15]. MLLT [16], SAT [12] and fMLLR [10] were then applied
on the features and acoustic models.

A trigram language model was trained on all the transcribed data
of Switchboard I (about 284 hours) using the SRILM toolkit [17].
Acoustic model estimation and recognition were performed using
the Kaldi toolkit [13]. Each system was trained for 25 iterations. S
and S“? were initialized to 41 and were increased to meet the target
value in the subsequent iterations if necessary. No renormalization?
was applied on the SGMM parameters.

A series of SGMM systems were implemented to answer the
following questions:

e [s alarger subspace dimension better?

o [s the use of variable state-dependent subspace dimensions
better than the use of a fixed subspace dimension?

e Which of the two methods in Section 3.1 is better to deter-
mine the state-dependent subspace dimensions?

e How is our method compared with regularized SGMM?

In [5], £1-norm, £2-norm and elastic net have been reported with
similar performance. For the last question, we implemented a regu-
larized SGMM using the ¢2-norm regularization where an /> penalty
is added to the original ML objective function of v, as follows:

Vim = argmax logp(O|Vjm,0) — A2 Z [V jmr|? (17)

Vim T

where O denotes all the acoustic observations; 6 denotes the current
SGMM parameters; A; is the regularization parameter to weight the
£ penalty and v, is the rth element of v .

4.1. Experiments on Basic SGMM with No Sub-states
The following 5 basic SGMM systems with no sub-states were
trained for comparison:

e basic SGMM with a fixed subspace dimension, S =41

e basic SGMM with a fixed subspace dimension, S = 200

e basic SGMM with a fixed subspace dimension, S = 200, us-
ing {2-norm regularization3, A2 =10

e basic SGMM with state-dependent subspace dimension,
Sjm O Yjm, SUP =200, S = 41, ko = 100

e basic SGMM with state-dependent subspace dimension,
Sim o Ljm, S* =200, S =41

I'The partition of these two training sets were suggested by the Switch-
board recipe in the Kaldi toolkit.

2We empirically find that using no renormalization does not affect the
accuracy in our task.

3The Ao value is the same as the one used in [5].



The above systems were trained using the 30-hour training set.
All the systems have 5,000 tied-states with 700 Gaussians in each
state. The values of these parameters were determined in a pre-
liminary experiment. Word recognition results of these systems are
shown in Table 2.

Table 2. Word recognition accuracy (%) of the various basic SGMM
systems with no sub-states on HUBS Eval2000. Each system was
trained using the 30-hour training set. Trigram language model was
used in recognition.

Model Description ‘ Acc. ‘
Basic SGMM with fixed subspace dimension, 66.9
S=41

Basic SGMM with fixed subspace dimension, 67.3
S =200

Basic SGMM with fixed subspace dimension, 67.2

S =200, using {2-norm regularization with Az = 10

Basic SGMM with variable subspace dimension, | 67.4
Sjm X Yim, S*P =200, §° = 41, ko = 100

Basic SGMM with variable subspace dimension, | 67.9
Sjm o Ijm, SUP =200, S'° = 41

Table 3. Word recognition accuracy (%) of the various SGMM sys-
tems with sub-states on HUBS Eval2000. Each system was trained
using the 100-hour training set, and trigram language model was
used in recognition.

| Ace. |

SGMM with fixed subspace dimension, S =41 70.4
SGMM with fixed subspace dimension, S' = 200 70.8

Model Description

SGMM with variable subspace dimension, 71.1
Sjm o Ijm, SUP =200, S'° = 41

4.2. Experiments on SGMM with Sub-states

The following 3 SGMM systems with sub-states were trained for
comparison:

e SGMM with fixed subspace dimension, S =41
e SGMM with fixed subspace dimension, S = 200
e SGMM with state-dependent subspace dimension, Sj, o
Lim, S*? =200, §'° = 41
The above systems were trained using the 100-hour training set.
All the systems have 9,000 tied-states and a total of 30,000 sub-states
with 700 Gaussians in each sub-state. These figures are suggested

by the recipe in the Kaldi toolkit. Word recognition results of these
systems are shown in Table 3.

4.3. Results and Discussions

From the results of the first set of experiments on the basic form of
SGMM (with no sub-states) using a smaller training set in Table 2,

we find that

e When a fixed subspace dimension is used, using a larger di-
mension S = 200 gives an absolute 0.4% improvement over
using the Kaldi default .S value of 41. We believe that the use
of a larger subspace dimension avoids the underfitting prob-
lem in the estimation of sub-state probability density func-
tions.

e Using variable state-dependent subspace dimensions may fur-
ther gives a 0.1% and 0.6% absolute improvement over using
a fixed subspace dimension .S = 200. The ordinal-count-based
method is better in the determination of the state-dependent
subspace dimension. We attribute the improvement to the re-
solve of overfitting of sub-states which may have occurred
when S is large. In fact, we further analyze the number of
zero elements in the two subspace dimension determination
methods and find that the absolute-count-based method re-
sults in reducing 69% of v, elements to zero, while the
corresponding figure for the ordinal-count-based method is
only 40%. The absolute-count-based method is probably too
agressive.

e Our implementation of the regularized SGMM using ¢>-norm
regularization does not suggest any improvement.

The performances of the various SGMM systems with sub-states
that were trained using the 100-hour training set are shown in Ta-
ble 3. Similar findings are observed: increasing S from 41 to 200
gives a 0.4% absolute recognition improvement, and the use of state-
dependent subspace dimensions on top of a large S gives another
0.3% improvement.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we investigate the use of variable state-dependent
subspace dimensions in SGMM to address the possible overfitting
problem caused by uneven distribution of training data over the
states/sub-states. In our proposed method, a sub-state with more
training data will be assigned a larger subspace dimension to in-
crease its model complexity. According to the structure of v, in
our method, the leading column vectors of the mean projection ma-
trix M; are considered to be more “important” as they are shared
by a larger number of sub-states whereas its trailing column vectors
will be shared by sub-states with relatively less data.

In the future, we would like to extend our method to use variable
dimensions on the speaker-subspace vectors v(*). Also, we would
like to investigate the use of variable subspace dimension on dis-
criminative training of SGMM.
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