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ABSTRACT

One of the central themes in multi-band automatic speech
recognition (ASR) is to devise a strategy for recombining
sub-band information. This in turn raises two questions:
(1) at what phonetic unit should the recombination take
place? (2) How asynchronously should the sub-bands be
run? Theoretically asynchronous multi-band ASR should
perform at least as well as synchronous multi-band ASR.
However, in the past few years, there are conflicting results
on the issue. In this paper, we study the asynchrony is-
sue under the framework of HMM composition in which a
model-based recombination strategy is used to recombine
sub-band HMMs at the state level. We hypothesize that
re-estimation of the transition probabilities is crucial for
multi-band ASR (using HMM composition). Experiments
on connected TI digits show that for both clean speech
and noisy speech (with additive white noise of 10db), H-
MMs composed from sub-band HMMSs in which transition
probabilities are trained with Baum-Welch algorithm out-
perform those in which transition probabilities are set uni-
formly (e.g. 0.5 in common left-to-right HMMs) by about
20%. Recombining sub-bands with a maximum asynchrony
limit of one state gives a further ~ 15% improvement over
synchronous recombination on both clean speech and noisy
speech. Finally relaxing asynchrony to more than one state
results in worse performance.

1. INTRODUCTION

Recently, multi-band speech recognition has been proposed
by Bourlard et al. [3] and Hermansky et al. [5]. This ap-
proach is motivated by the empirical findings by Harvey
Fletcher of Bell Labs [1] from a thorough study of human
speech recognition. In multi-band approach, the full fre-
quency band is divided into sub-bands and a speech recog-
nizer is built for each band. During recognition, decisions
from individual sub-band recognizers are recombined to ar-
rive at a final decision at some phonetic/linguistic level.

One major issue in multi-band ASR is how to recom-
bine sub-band information. Some researchers observed that
transitions in sub-bands occur asynchronously [7, 4] and
suspected that it may be advantageous to combine sub-
band decisions in this way. There are two approaches to
recombining sub-bands asynchronously:

(1) Segment-based approach includes the classical two-
level dynamic programming algorithm and the level-

building algorithm [9]. An efficient hybrid of these
two algorithms is recently suggested by [4]. One ad-
vantage of segment-based methods is that they allow
recombination at larger (phonetic) units.

(2) Frame-based or model-based approach creates a com-
posite HMM out of the sub-band HMMs [8] which
encapsulates state asynchrony in the models so that
subsequent decoding can be done synchronously at
the frame level.

Although theoretically, an asynchronous multi-band sys-
tem should perform at least as well as a synchronous sys-
tem, since if synchrony is really preferred, an asynchronous
system may simply fallback to the synchronous mode. How-
ever, the opposite is empirically found in [8]. In this paper,
we study the effect of transition probabilities on the asyn-
chronous recombination of sub-band HMMs. We first no-
tice that, in practice, transition probabilities of full-band
systems are obtained either from Baum-Welch training [2]
or by simply setting them uniformly to the reciprocal of
the number of outgoing arcs of a state. The latter case is
commonly used in hybrid ANN/HMM systems. The main
justifications are: (1) the exponential duration model im-
plicitly implied for an HMM is not correct; (2) empirically,
many people did not find them helpful anyway; and (3) the
dynamic range of transition probabilities are much smaller
than that of observation probabilities. Thus, in our study,
we will investigate both ways of setting the transition prob-
abilities . To avoid explosion of the state space in HMM
composition, only 2-band systems are studied. We also fol-
low the procedure in [8] and vary the maximum degree of
asynchrony (in terms of number of states) in each experi-
ment. In Section 2, we first present the HMM composition
algorithm followed by recognition experiments in Section 3.
Discussion and conclusions are made in Section 4.

2. HMM COMPOSITION ALGORITHM

HMM composition algorithm is similar to Parallel Mod-
el Combination (PMC) [10]. PMC is originally applied
to noise compensation where a clean speech model is com-
bined with a noise model to simulate a “noisy” speech mod-
el. Mirghafori et al. applied the algorithm to multi-band
ASR [8] in which sub-band HMMs are recombined in a
similar manner to form a composite HMM so as to allow
asynchronous state transitions of the various sub-bands.



Figure 1: HMM composition of two 3-states left-to-right
sub-band HMMs with a maximum asynchrony limit of two
states.

For the sake of completeness, we briefly describe the algo-
rithm below.

To illustrate the idea, HMM composition is applied to
a 2-band system consisting of two 3-state left-to-right sub-
band HMMs as shown in Figure 1, allowing a maximum
asynchrony of two states. In this case, the composite HM-
M can have 3% = 9 “composite states”, (i,5), 1 < i,j < 3,
where state i of the first sub-band HMM recombines with
state j of the second sub-band HMM. For instance, at the
composite state (3, 1), the third state of the first sub-band
HMM recombines with the first state of the second sub-
band HMM. In the composite HMM, there are two kinds
of composite states: synchronous or asynchronous states.
If all HMMs are strictly left-to-right with the same num-
ber of states which are numbered successively from left to
right, then a synchronous state has the form (4,i) and an
asynchronous state is represented by (%, 7),%? # j. Notice
that sub-bands are automatically synchronized at the be-
ginning and ending states but asynchronous paths inside
the composite model are allowed during decoding.

In general, for a K-band system, we denote the log
likelihood of a composite state (i1,...,%x) aS Ly, ...ix)
and the log likelihood of state i in sub-band k as L;,.
In this paper, the log likelihood of each composite state is
linearly combined with sub-band weightings as follows:

K

Liy,vin) = Zkaik ) (1)

k=1

where wy, denotes the weighting of sub-band k satisfying
the constraint

dwe=1. (2)
k=1

Table 1: Total number of states IV, and transitions M for
various numbers of sub-bands and maximum asynchrony
limits L.

[ #Sub-bands [ L | N | M |
1 0] 3 5
2 0] 3 5
2 1] 7| 19
2 219 | 25
3 0] 3 5
3 1|15 | 65
3 2 | 27 | 125
4 0] 3 5
4 1|31 211
4 2 | 81 | 625

The transition probabilities of a composite HMM can
be computed as follows:

K
Blig,esig)G1seens jK):Haik!jk ®3)
k=1

where a; , is the transition probability from state iz to
Jr in sub-band k. Then these transitional probabilities are
normalized to one. ie. ) _ca, ix),» Where S is the
set of states that (i1,...,ix) transits to.

It is obvious that as the number of sub-bands and the
degree of asynchrony increase, the number of states and
transition arcs in a composite HMM increases drastically
as shown in Table 1, requiring more computation during
decoding. To alleviate the problem, one may impose a
maximum asynchrony limit. For example, with a limit
L, composite states (i1, ...,ix) are not allowed when the
following condition is satisfied:

max{il,...,iK}—min{il,...,iK}>L (4.)
3. RECOGNITION EXPERIMENTS AND
RESULTS

We chose connected TI digits [6] as our training and eval-
uation corpus for two reasons: (1) No language models are
used in the task so that we can be sure if there is any bene-
fit due to asynchronous recombination of acoustic models,
it will not be shadowed by the use of language models.
(2) If we allow a high degree of asynchrony, the generat-
ed composite HMMs can be very complex and subsequent
computation can be quite substantial. Using the simple
task allows us to concentrate on the asynchrony issue and
experiment in a more manageable amount of time.

The whole training set contains 4235 digit strings from
male speakers while the test set contains 4311 digit strings
from another set of male speakers. A two-band system with
equal sub-band weights was investigated. The frequency
range from 100Hz to 4400 Hz are equally partitioned in
the critical band scale into two sub-bands as follows:

e Band-1: 100 — 1080 Hz
e Band-2: 1000 — 4400 Hz .



Speech data were low-passed at 4400Hz and MFCCs
were extracted from a window of 20ms at a frame rate of
100Hz. Each sub-band acoustic vector consists of 6 MFCCs
and the normalized energy concatenated with their delta
and acceleration features. Cepstral mean subtraction was
performed as well.

All sub-band HMMs are strictly left-to-right whole-
word models with 6 states and 4 Gaussian mixtures per
state. Only clean speech was used to train each sub-band
HMM independently. Afterwards, composite HMMs are
generated using the HMM composition algorithm subjec-
t to a maximum asynchrony limit which is varied from
0<L<5(L=0and L =5 refer to a forced synchronous
system and a fully-asynchronous system respectively). In
any case, the sub-band state observation pdf’s are not mod-
ified during HMM composition. During decoding, Viterbi
search was run on a network of composite digit HMMs. No
(beam) pruning is performed so that all possible paths are
searched.

3.1. Full-band Results

Full-band HMMs were first trained for each digit using the
clean training data. It gives a word error rate of 3.01%
on the clean test set and 15.6% on the noisy test set with
additive white noise of 10db.

3.2. Experiment I & II: HMM Composition Using
Sub-bands with Uniform Transition Probabilities

In these two experiments, the transition probabilities of
the sub-band HMMs are uniformly set (to 0.5 in this case)
and only the sub-band state observation pdf’s are trained.
Then during HMM composition, the transition probabil-
ities in the composite HMMs are either computed using
Eqn. (3) or are re-trained using the Baum-Welch algorith-
m. The procedure is applied to clean speech in Experiment
I and noisy speech with 10dB additive white noise in Ex-
periment II. From the results tabulated in Table 2 and 3,
we found that

e It is beneficial to re-train transition probabilities af-
ter HMM composition in multi-band recognition sys-
tem. The performance with re-trained transitions
are always better than that with uniform transition-
S.

e In most cases, and certainly in the case with re-
trained transition probabilities, asynchronous recom-
bination of sub-bands produces much better recog-
nition.

e In all cases, limiting asynchrony to a maximum of
one state gives the best results — about 20% re-
duction in word error rate (WER) over synchronous
recombination of sub-bands.

3.3. Experiment III & IV: HMM Composition Us-
ing Sub-bands with Trained Transition Probabili-
ties

The assumption of uniform transition probabilities result-
s in “non-optimal” HMMs (in the maximum likelihood
sense). We repeated the previous two experiments excep-
t that the sub-band transition probabilities were trained

prior to HMM composition. Transition probabilities of the
composite HMMs were then computed or re-trained. Same
evaluation was performed as in Section 3.2 and the result-
s were tabulated in Table 4 and Table 5. The following
points are worth noting:

e Comparing Table 1 and 3, and Table 2 and 4, we no-
tice that composite HMMs generated from sub-band
models wherein transition probabilities are Baum-
Welch trained outperform their counterparts gener-
ated from sub-band models with uniform transition
probabilities, resulting in an error reduction of about
20%.

e Starting from sub-band models with Baum-Welch
trained transitions, the performance gap between H-
MM composition with computed and re-trained tran-
sition probabilities is now small, though the latter
method is still always better.

e Another main difference from Experiment I & II is
that now asynchrony of more than one state does
not help anymore — quite to the opposite, it hurts
performance.

o Nevertheless, limiting asynchrony to maximum one
state continue to gives significant gain in performance:
13.8% in clean speech and 15.2% in noisy speech with
10db white noise.

4. DISCUSSION AND CONCLUSION

HMM composition is an effective way to implement asyn-
chronous recombination of sub-bands in multi-band ASR.
Our best results show that HMM composition reduces word
error error on connected T1 digits from full-band’s 3.01% to
2.01% (relatively 33.2%) in synchronous recombination of
sub-bands, and further to 1.81% (relatively 39.9%) in the
best asynchronous recombination of sub-bands for clean
speech. The figures are 15.6%, 11.1% (relatively 28.8%),
and 9.41% (relatively 39.7%) respectively for noisy speech
with additive white noise of 10db.

Two factors seems to be important for HMM composi-
tion to be effective:

(1) The transition probabilities of the sub-band HMM-
s should be trained by the Baum-Welch algorithm.
The common heuristics of simply setting them equal
among the outgoing arcs gives inferior results.

(2) Asynchronous recombination with a maximum asyn-
chrony limit of one state helps.

The two factors together make sense: uniformly setting the
transition probabilities unnecessarily imposes the same and
probably wrong duration model on the corresponding s-
tates of various sub-bands. By examining the trained tran-
sition probabilities of the two sub-band HMMs of the same
digits, we find that the corresponding transition probabil-
ities are similar but far from 0.5 — a;; are more around
0.8 instead. As they are similar but not identical, syn-
chronous recombination are preferred though there is still
room for better performance by going asynchrony. Further
examination of the trained transition probabilities of the
composite HMMs confirms that (a) transitions from syn-
chronous states to synchronous states are more likely; and
(b) asynchronous states are less likely to make a transition



Table 2: Experiment I: % Word error rates on clean speech.
The percentages in bracket are error reductions relative to
L=0.

(Uniform Sub-band a;; Prior to Composition)

L How a;; Are Set in the Composite HMMs?
Computed (Uniform) | Re-trained

0 2.55 2.56

1 2.27 (-11.0%) 2.03 (-20.7%)

2 2.90 (+13.7%) 2.39 (-6.64%)

3 2.87 (+12.5%) 2.37 (-7.42%)

1 2.92 (+14.5%) 2.37 (-7.42%)

5 2.95 (+15.7%) 2.37 (-7.42%)

Table 3: Experiment II: % Word error rates on noisy speech
with 10db additive white noise. The percentages in bracket
are error reductions relative to L = 0.

(Uniform Sub-band a;; Prior to Composition)

L How a;; Are Set in the Composite HMMs?
Computed (Uniform) | Re-trained

0 16.24 14.34

1 13.12 (-19.2%) 11.41 (-20.4%)

2 13.74 (-15.4%) 11.67 (-18.6%)

3 13.75 (-15.3%) 11.68 (-18.5%)

1 13.77 (-15.2%) 11.71 (-18.3%)

5 13.76 (-15.3%) 11.68 (-18.5%)

that will further increase asynchrony between sub-bands.
In other words, asynchronous transitions of more than one
state are much less likely. This observation may explain
the phenomenon that systems with maximum asynchrony
limit from two to five states have similar performance.
Although our results show that asynchrony by one s-
tate improves performance over forced synchrony, further
relaxing asynchrony beyond one state results in degrad-
ed performance in all reported experiments. This may be
caused by inaccuracies of the state observation distribu-
tions in the composite HMMs. In other words, re-training
the observation distributions of composite states may be
required besides re-training the transition probabilities.
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