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Abstract
Recently, we proposed an improvement to the eigenvoice (EV)
speaker adaptation called kernel eigenvoice (KEV) speaker
adaptation. In KEV adaptation, eigenvoices are computed us-
ing kernel PCA, and a new speaker’s adapted model is implicitly
computed in the kernel-induced feature space. Due to many on-
line kernel evaluations, both adaptation and subsequent recog-
nition of KEV adaptation are slower than EV adaptation. In this
paper, we eliminate all online kernel computations by finding
an approximate pre-image of the implicit adapted model found
by KEV adaptation. Furthermore, the two steps of finding the
implicit adapted model and its approximate pre-image are inte-
grated by embedding the kernel PCA procedure in our new em-
bedded kernel eigenvoice (eKEV) speaker adaptation method.
When tested in an TIDIGITS task with less than 10s of adapta-
tion speech, eKEV adaptation obtained a speedup of 6–14 times
in adaptation and 136 times in recognition over KEV adaptation
with 12–13% relative improvement in recognition accuracy.

1. Introduction
Adaptation methods like the Bayesian-based MAP adapta-
tion [1] and the transformation-based MLLR adaptation [2]
have been popular for many years. Nevertheless, when the
amount of available adaptation speech is really small — say,
only a few seconds — the more recent eigenvoice-based adap-
tation method is found particularly more effective. The basic
idea of the eigenvoice (EV) adaptation method [3] is to derive
from a diverse set of speakers a small set of basis vectors called
eigenvoices that are believed to represent different voice char-
acteristics (e.g. gender, age, accent, etc.); any training or new
speaker is then a point in the eigenvoice subspace. In practice,
since the number of estimation parameters is greatly reduced,
fast speaker adaptation using EV adaptation is possible with a
few seconds of speech.

Recently, we proposed an improvement to the EV adapta-
tion called kernel eigenvoice (KEV) speaker adaptation [4, 5]
by exploiting possible nonlinearity in the speaker supervec-
tor space using kernel methods [6]. The basic idea is to map
speaker supervectors to a high dimensional feature space1 via
some nonlinear map, and then apply principal component anal-
ysis (PCA) there to derive the eigenvoices in the feature space.
During the actual computation, the exact nonlinear map need
not be known, and the kernel eigenvoices are obtained by ker-
nel PCA. In an TIDIGITS adaptation task, KEV adaptation was

1In the kernel methods terminology, the original space where raw
data reside is called the input space and the space to which raw data are
mapped is called the feature space. In order not to confuse this with the
acoustic feature space in speech, the feature space in kernel methods
will be simply called the “feature space” but may be sometimes called
the “kernel-induced feature space” for additional clarity.

shown to outperform an speaker-independent model by about
30% using less than 10s of adaptation speech [4], and was bet-
ter than EV, MAP, and MLLR adaptation [5].

However, adaptation and subsequent recognition using
KEV adaptation method can be substantially slower than EV
adaptation due to many online kernel evaluations in the com-
putation of observation likelihoods. The problem is that since
the eigenvoices found by KEV adaptation reside in the kernel-
induced feature space, a new speaker adapted (SA) model is
represented implicitly as a linear combination of these kernel
eigenvoices only in the feature space. As there is no explicit
SA model in the input speaker supervector space, any compu-
tation of its observation likelihoods has to be done online using
the implicit SA model in the feature space via expensive kernel
evaluations. Finding an object in the input space from its image
in the feature space is known as the pre-image problem in ker-
nel methods. In this paper, we attempt to solve the efficiency
problem by integrating the finding of the implicit SA model in
the feature space and its pre-image together so as to arrive at an
explicit SA model in the input speaker supervector space. The
novelty of our method is that there are no kernel evaluations
during adaptation involving the adaptation speech, and there are
no kernel evaluations at all during recognition. Consequently,
adaptation is faster and subsequent recognition runs as fast as
conventional EV adaptation. Our new method will be called
embedded kernel eigenvoice (eKEV) speaker adaptation.

2. Embedded Kernel Eigenvoice Speaker
Adaptation (eKEV)

Suppose there is a set of N speaker-dependent (SD) acous-
tic models which are hidden Markov models (HMMs) of the
same topology with mixture Gaussian states. For each speaker,
a speaker supervector is constructed by concatenating all his
HMM Gaussian mean vectors. That is, for the ith speaker, if
there are R Gaussians in his HMMs, each having a mean vec-
tor xir∈ R

n1 , r = 1, . . . , R, then his speaker supervector is
xi = [x′

i1, . . . ,x
′
iR]′∈ R

n2 and n2 = n1R.

2.1. Variance Normalization

Because the pre-image finding algorithm uses Euclidean dis-
tance constraints, the constituent means of a speaker supervec-
tor x is first normalized by its own covariance to the normalized
supervector y = C− 1

2 x where
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Figure 1: The eKEV adaptation method. (Without the pre-imaging step, it is the KEV adaptation method.)

Similarly, the new speaker’s adapted model will be represented
by s

(ekev)
x and s

(ekev)
y in the original and normalized input su-

pervector space respectively.

2.2. Kernel Eigenvoices

Let k(·, ·) be the kernel with an associated mapping ϕ which
maps a speaker y ∈ R

n2 in the normalized input speaker su-
pervector space Y to ϕ(y) ∈ R

n3 in the kernel-induced high
dimensional feature space F . Given the set of N speaker super-
vectors {y1, . . . ,yN} ∈ Y , their ϕ-mapped feature vectors are
{ϕ(y1), . . . , ϕ(yN )} ∈ F . Let the “centered” map be ϕ̃ so that
ϕ̃(y) = ϕ(y) − ϕ̄ where ϕ̄ = 1

N

PN

i=1 ϕ(yi). In addition, let
K be the kernel matrix with Kij ≡ k(yi, yj) ≡ ϕ(yi)

′ϕ(yj),

and K̃ be its centered version with K̃ij = ϕ̃(yi)
′ϕ̃(yj).

Kernel PCA may be performed by eigendecomposition on
K̃ as K̃ = UΛU′, where U = [α1, . . . , αN ] with αi =
[αi1, . . . , αiN ]′, and Λ = diag(λ1, . . . , λN ). The mth or-
thonormal eigenvector of the covariance matrix in the feature
space F is given by [7] as

vm =
N
X

i=1

αmi√
λm

ϕ̃(yi) , (2)

which are our kernel eigenvoices in the feature space F .

2.3. Composite Kernel

In our KEV adaptation, composite kernels are used to preserve
HMM state information which is generally lost during the ϕ-
mapping of speaker supervectors from the input space Y to the
feature space F . That is, a possibly different mapping is used
for each of the R constituent Gaussian means, and then a com-
posite function is applied. For example, the following direct
sum composite kernel was used in [4, 5] with good results:

k(yi,yj) =
R
X

r=1

ϕr(yir)
′
ϕr(yjr) =

R
X

r=1

kr(yir,yjr) . (3)

The direct sum composite kernel again will be used in the
following discussion of eKEV adaptation though its use is not
necessary for the eKEV adaptation method. They are retained

so that we may compare KEV and eKEV adaptation using the
same kind of kernels; another reason is that they give good
adaptation performance in our previous works [4, 5].

2.4. eKEV Adaptation Procedure

In eKEV adaptation, all online kernel evaluations with speech
observations are eliminated by using the analytical solution
in [8] to find an approximate pre-image2 of the adapted model
found by KEV adaptation which resides in the feature space.
The method uses the distances between the expected pre-image
and a set of “reference speakers” as constraints and solves for
the optimal pre-image in the least-square sense3.

The eKEV adaptation method is illustrated pictorially in
Figure 1 where there are only 5 training speakers x1 – x5 and
x1 – x3 are chosen as the reference speakers.

STEP 1: Similarity between the New Speaker and the Refer-
ence Speakers in the Feature Space

As in EV adaptation, the adapted speaker model ϕ̃(s
(ekev)
y ) is a

linear combination of the M leading kernel eigenvoices in the
feature space. Using Eqn. (2), we have

ϕ̃(s
(ekev)
y ) =

M
X

m=1

wmvm =
M
X

m=1

N
X

i=1

wmαmi√
λm

ϕ̃(yi) . (4)

And its rth constituent is given by

ϕ̃r(s
(ekev)
yr ) =

M
X

m=1

N
X

i=1

wmαmi√
λm

ϕ̃r(yir) . (5)

Hence, the similarity between the rth constituent s(ekev)
yr of the

new speaker model s
(ekev)
y and the rth constituent yjr of the

jth reference speaker yj in F can be computed by

kr(s
(ekev)
yr ,yjr) ≡ ϕr(s

(ekev)
yr )

′
ϕr(yjr)

= Ar(j) +
M
X

m=1

wm√
λm

Br(m, j) , (6)

2Generally speaking, an exact pre-image may not exist.
3It is analogous to finding the location of an object using a set of

global positioning system satellites.



where
Ar(j) =

1

N

N
X

i=1

kr(yir,yjr) , (7)

and

Br(m, j) =

N
X

i=1

αmi (kr(yir,yjr) − Ar(j)) . (8)

STEP 2: Finding the Distances of all Reference Speakers from
Their Centroid in the Input Space

Without loss of generality, let the column vectors of Y =
[y1, . . . ,yn] be the n reference speakers. Assuming that the
rank of Y is q, singular value decomposition (SVD) of the cen-
tered Y gives

Ỹ = U2Λ2V
′ = U2Z , (9)

where U2 = [e1, . . . , eq] is an n2 × q matrix with orthonormal
columns ei; Λ2 = diag(λ1, . . . , λq) is a q × q diagonal matrix
containing the eigenvalues; Z = [z1, . . . , zn] is a q × n matrix
with columns zi being the projections of yi onto the ej’s. Thus,
‖zi‖2 gives the squared Euclidean distance of each yi from the
centroid ȳ. They are collected into a vector,

d0 = [‖z1‖2
, ‖z2‖2

, . . . , ‖zn‖2]′ ∈ R
n . (10)

STEP 3: Finding the Distance Constraints between the New
Speaker and the Reference Speakers in the Input Space

It is further assumed that the required pre-image s
(ekev)
y lies in

the span of the n reference speakers. If the direct sum com-
posite kernel of Eqn. (3) is used, and each constituent ker-
nel is an isotropic Gaussian kernel of the form: kr(u,v) =
exp(−βr‖u − v‖2) , then we have

kr(s
(ekev)
yr ,yjr) = e

−βr‖s
(ekev)
yr −yjr‖

2

= e
−βrdjr .

Thus, the squared Euclidean distance dj between s
(ekev)
y and

yj in the input space can be computed from their similarity in
the feature space as follows:

dj ≡
R
X

r=1

djr = −
R
X

r=1

1

βr

log kr(s
(ekev)
yr ,yjr) . (11)

These distances can be computed using Eqns. (6,7,8), and are
collected into the vector

d(w) = [d1, d2, . . . , dn]′ ∈ R
n . (12)

STEP 4: Finding the Distance Gradients

Differentiating d of Eqn. (11) w.r.t. the mth eigenvoice weight
wm, we get

∂dj

∂wm
= − 1√

λm

R
X

r=1

Br(m, j)

βrkr(s
(ekev)
yr (w),yjr)

, j = 1, . . . , n . (13)

STEP 5: Finding the Pre-image

From [8], an approximate pre-image that optimally satisfies the
distance constraints in d in the least-square sense is given by
the following equation:

s
(ekev)
x (w) = C

1

2 s
(ekev)
y = C

1

2 (Pd(w) + q) , (14)

where
P = −1

2
U2Λ

−1
2 V

′ and q = −Pd0 + ȳ , (15)

and U2, Λ2, and V are given by Eqn. (9).

STEP 6: ML Estimation of Kernel Eigenvoice Weights

A maximum likelihood estimation of w may be found by max-
imizing the following Q(w) function:

Q(w) = −
R
X

r=1

T
X

t=1

γt(r)‖ot − s
(ekev)
xr (w)‖2

Cr
, (16)

where γt(r) is the posterior probability of the observation se-
quence O = {o1, . . . ,oT } being at the rth Gaussian at time
t; s

(ekev)
xr is the rth constituent of the new speaker’s model

which is also the mean vector of his rth HMM Gaussian; ‖ot −
s
(ekev)
xr (w)‖2

Cr
≡ (ot − s

(ekev)
xr (w))′C−1

r (ot − s
(ekev)
xr (w))

and Cr is the covariance matrix of the rth Gaussian.
Now, from Eqns. (1,14), we have

s
(ekev)
xr (w) = C

1

2
r (Prd(w) + qr) , (17)

where Pr∈ R
n1×n consists of the ((r−1)n1 +1)th to (rn1)th

rows of P, and qr = −Prd0 + ȳr. Substituting Eqn. (17) into
Q(w) and differentiating the result w.r.t. wm, we have

∂Q

∂wm
=

R
X

r=1

T
X

t=1

γt(r)(ot − s
(ekev)
xr (w))′C−1

r

∂s
(ekev)
xr (w)
∂wm

. (18)

From Eqn. (17), we get

∂s
(ekev)
xr (w)
∂wm

= C
1

2
r

 

Pr

∂d(w)
∂wm

+ qr

!

. (19)

Finally, substituting the results of Eqns. (19, 13) into
Eqn. (18), the derivative of Q(w) w.r.t. each eigenvoice weight
wm can be readily obtained. The gradient of Eqn (18) is nonlin-
ear in w and there is no closed form solution for the optimal ŵ.
As in KEV adaptation, the Gradient Ascent algorithm is used to
search for the optimal eigenvoice weights.

3. Experimental Evaluation
The proposed embedded kernel eigenvoice (eKEV) adaptation
method was evaluated on the TIDIGITS speech corpus [9].
There are 163 speakers (of both genders) in each of its standard
training set and test set.

3.1. Acoustic Models

Twelve MFCCs and the normalized energy were extracted from
each speech frame of 25 ms at every 10 ms. Each of the 11 digit
models was a strictly left-to-right HMM comprising 16 states
and one Gaussian with diagonal covariance per state. Thus, the
dimension of the acoustic vectors is n1 = 13 and that of the
speaker supervector space n2 is 11× 16× 13 = 2288. In addi-
tion, there were a 3-state “sil” model and a 1-state “sp” model to
capture silence speech and pauses between digits respectively.
Furthermore, the SD HMMs shared the transition probabilities
and Gaussian variances learned in the SI HMMs.

3.2. Experiments

Supervised adaptation was carried out using 5, 10, and 20 dig-
its, which correspond to an average of 2.1s, 4.1s, and 9.6s of
adaptation speech. To improve the statistical reliability of the
results, all results were the average of 5-fold cross-validation
over all 163 test speakers.
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Figure 2: Performance comparison among MLLR, MAP, EV,
KEV, and eKEV adaptation methods using diagonal covariance
Gaussians. (Accuracy of the baseline SI model is 96.25%.)

3.2.1. Parameters Initialization

Since numerical method was used to find the optimal eigenvoice
weights, proper initialization of various system parameters can
be important for its success. Various system parameters are ini-
tialized as follows; details can be found in [10].

• The initial eigenvoice weights were the projections of the
SI model onto the corresponding kernel eigenvoices.

• βr = β = 0.0005 for r = 1, . . . , R.

• The learning rate for Gradient Ascent was 0.0001.

• The number of kernel eigenvoices M was fixed to 7.

• The 5 training speakers that give the highest likelihood
of the adaptation speech were chosen as the reference
speakers.

Experiment 1: Comparison with other adaptation methods

The following models/systems are compared: the baseline
speaker-independent (SI) model, eKEV, KEV, EV, MAP, and
MLLR adaptation methods. The speaker adapted (SA) mod-
els of the three EV-based methods were interpolated with the
SI model as described in [4]. The best setting for each adapta-
tion method was empirically found to give the best results for
comparison.

The word accuracy of the baseline SI model on the test data
is 96.25%, and the comparison results are plotted in Figure 2.
We have the following observations:

• KEV and eKEV adaptation outperform all other methods
when the amount of adaptation data is less than 10s.

• Both KEV and eKEV adaptation outperform the stan-
dard EV adaptation. It shows that nonlinear kernel
PCA using composite kernels finds more effective eigen-
voices.

• eKEV adaptation is consistently better than KEV adap-
tation by (relatively) 12–13%.

• eKEV adaptation reduces the word error rate of the SI
model by 37.0%, 40.5%, and 41.3% respectively for
2.1s, 4.1s, and 9.6s of adaptation speech.

Experiment 2: Speed Comparison

The main objective of eKEV adaptation is to improve the speed
of adaptation and recognition of KEV adaptation. Thus, all
KEV and eKEV adaptation experiments were run on a Pentium
III 1GHz machine with 512MB RAM, and their adaptation and
decoding times were recorded. It was observed that the adapta-
tion speed of eKEV adaptation is indeed an order of magnitude
faster than that of KEV adaptation. (The exact speedup factors
by eKEV adaptation over KEV adaptation are 6.24, 8.75, and
14.5 for 2.1s, 4.1s, and 9.6s of adaptation speech respectively.)
Furthermore, on average, KEV adapted models took 227s to
recognize one second of test speech, while eKEV adapted mod-
els — regular HMMs — only took 1.67s; that is, a speed up of
136 times.

4. Conclusions
In this paper, we propose an improvement to our previous KEV
speaker adaptation called embedded kernel eigenvoice (eKEV)
speaker adaptation. We show that by embedding the kernel
PCA procedure in KEV adaptation and finding an approximate
pre-image of the speaker-adapted model in the kernel-induced
feature space, we may eliminate all online kernel evaluations
involving the adaptation or testing observations. In the TIDIG-
ITS adaptation task, we obtained a speedup of 6–14 times in
adaptation and 136 times in recognition for eKEV adaptation
over KEV adaptation with a performance improvement of (rel-
atively) 12–13%.
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