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Abstract
Eigenspace-based MLLR (EMLLR) adaptation has been shown
effective for fast speaker adaptation. It applies the basic idea of
eigenvoice adaptation, and derives a small set of eigenmatrices
using principal component analysis (PCA). The MLLR adapta-
tion transformation of a new speaker is then a linear combina-
tion of the eigenmatrices. In this paper, we investigate the use of
kernel PCA to find the eigenmatrices in the kernel-induced high
dimensional feature space so as to exploit possible nonlinearity
in the transformation supervector space. In addition, composite
kernel is used to preserve the row information in the transfor-
mation supervector which, otherwise, will be lost during the
mapping to the kernel-induced feature space. We call our new
method kernel eigenspace-based MLLR (KEMLLR) adaptation.
On a RM adaptation task, we find that KEMLLR adaptation
may reduce the word error rate of a speaker-independent model
by 11%, and outperforms MLLR and EMLLR adaptation.

1. Introduction
When the amount of adaptation speech is really small, say, a few
seconds, eigenvoice-based adaptation methods [1, 2, 3, 4] have
been shown more effective than the traditionally more popular
methods such as the Bayesian-based MAP adaptation [5] and
the transformation-based MLLR adaptation [6]. Eigenspace-
based MLLR (EMLLR) adaptation [2] is a variant of the stan-
dard EV adaptation [1]. Instead of finding a small set of eigen-
voices in the speaker supervector space as in the EV adaptation,
EMLLR looks for a small set of eigenmatrices in the MLLR
transformation supervector space. The acoustic model of a new
speaker is then obtained by an MLLR transformation of the
speaker-independent (SI) model, which is now a linear com-
bination of the set of eigenmatrices.

Recently, we proposed an improvement to the EV adapta-
tion called kernel eigenvoice (KEV) adaptation [7, 8] by ex-
ploiting possible nonlinearity in the speaker supervector space
using kernel methods [9]. In this paper, we would like to apply
similar kernel method to improve the performance of EMLLR
adaptation. The basic idea is to map the speakers’ MLLR trans-
formation supervectors to a high dimensional feature space1 via
some nonlinear map, and then apply principal component analy-
sis (PCA) there to derive the eigenmatrices in the feature space.
During the actual computation, the exact nonlinear map need
not be known, and the kernel eigenmatrices are obtained by
kernel PCA. The computational procedure depends only on the

1In the kernel methods terminology, the original space where raw
data reside is called the input space and the space to which raw data are
mapped is called the feature space. In order not to confuse this with the
acoustic feature space in speech, the feature space in kernel methods
will be simply called the “feature space” but may be sometimes called
the “kernel-induced feature space” for additional clarity.

inner products in the feature space, which can be obtained effi-
ciently with a suitable kernel function. Our new method will be
called kernel eigenspace-based MLLR (KEMLLR) adaptation.

One major challenge in KEMLLR adaptation is to preserve
the row information in the transformation supervectors which,
otherwise, will generally be lost during the mapping to the
kernel-induced feature space. Our solution is the use of com-
posite kernel.

2. Review of Eigenspace-based MLLR
(EMLLR) Adaptation

Suppose there is a set of N speaker-dependent (SD) acoustic
models which are hidden Markov models (HMMs) of the same
topology with mixture Gaussian states. These SD models are
estimated from the speaker-independent (SI) model by MLLR
transformation. For simplicity, the following discussion as-
sumes that only one global MLLR transform is used; its exten-
sion to multiple MLLR transforms using regression classes of
Gaussians should be straight-forward. Thus, for the ith speaker,
the mean vector of his gth Gaussian µ(i)

g ∈ R
d is

µ(i)
g = Y(i)′ξ(si)

g

where Y(i)′ ∈ R
d×(d+1) is the global MLLR transformation

for the ith speaker, and ξ(si)
g = [µ(si)

g

′

, 1]′ is the augmented
mean vector of the corresponding Gaussian in the SI model. A
speaker transformation vector is obtained by vectorizing Y. (If
we have multiple MLLR transformations, their vectorized ma-
trices are stacked up to a speaker transformation supervector.)
Let’s denote vec(Y) by y. From the N transformation vectors,
{y1,y2, . . . ,yN}, PCA is performed, and the resulting eigen-
vectors are the vectorized eigenmatrices. The task of speaker
adaptation is reduced to finding an MLLR transformation for
the new speaker, which is assumed to lie in the span of the M
leading eigenmatrices (i.e. the M eigenvectors with the largest
eigenvalues). Thus, for a new speaker, if his MLLR transforma-
tion is Y, then we have

vec(Y) = y =

M
X

m=1

wmvm , (1)

where w = [w1, . . . , wM ]′ is the eigenmatrix weight vec-
tor, and vm is the mth vectorized eigenmatrix. Let y =
[y1,y2, . . . , yd] where yr ∈ R

(d+1) is the rth row of Y′ (for
r = 1, . . . , d). Then yr is given by

yr =
M
X

m=1

wmvmr , (2)

where vmr represents the rth row of the mth eigenmatrix.



Hence, the gth Gaussian mean of the new speaker model is

µg = Y
′
ξ(si)

g

⇒ µgr = y
′

rξ
(si)
g =

M
X

m=1

wm(v′

mrξ
(si)
g ) , (3)

where µgr is the rth component of µg .
Given the adaptation data O = {o1,o2, . . . , oT }, the

eigenmatrix weights can be estimated by maximizing the likeli-
hood of O as in EV adaptation [1, 2]. Mathematically, one finds
the optimal ŵ by maximizing the following Q(w) function:

Q(w) = −
G
X

g=1

T
X

t=1

γt(g)(ot − µg(w))′C−1
g (ot − µg(w)) (4)

where γt(g) is the posterior probability of the observation se-
quence being at the gth Gaussian at time t, and Cg is the covari-
ance matrix of the gth Gaussian. Differentiating Q(w) w.r.t.
each weight, wm, m = 1, . . . , M , we get

∂Q(w)
∂wm

= 2
G
X

g=1

T
X

t=1

γt(g)(ot − µg(w))′C−1
g

∂µg(w)

∂wm

. (5)

By setting the M derivatives to zero, the optimal weights are
obtained by solving the system of M linear equations.

3. Kernel EMLLR (KEMLLR) Adaptation
In KEMLLR adaptation, we try to improve EMLLR by exploit-
ing the possible nonlinearity in the speaker transformation (su-
per)vector space. This is achieved by replacing linear PCA by
kernel PCA and the use of composite kernel.

3.1. Kernel Eigenmatrices in the Feature Space

Let k(·, ·) be the kernel with an associated mapping ϕ which
maps a speaker’s transformation vector y in the input speaker
transformation vector space Y to ϕ(y) in the kernel-induced
high dimensional feature space F . Given the set of N speaker
transformation vectors {y1, . . . ,yN} ∈ Y , their ϕ-mapped
feature vectors are {ϕ(y1), . . . , ϕ(yN )} ∈ F . Let the “cen-
tered” map be ϕ̃ so that ϕ̃(y) = ϕ(y) − ϕ̄ where ϕ̄ =
1
N

PN

i=1 ϕ(yi). In addition, let K be the kernel matrix with
Kij ≡ k(yi,yj) = ϕ(yi)

′ϕ(yj), and K̃ be its centered ver-
sion with K̃ij = ϕ̃(yi)

′ϕ̃(yj).
Kernel PCA may be performed by eigendecomposition on

K̃ as K̃ = UΛU′, where U = [α1, . . . , αN ] with αi =
[αi1, . . . , αiN ]′, and Λ = diag(λ1, . . . , λN ). The mth or-
thonormal eigenvector of the covariance matrix in the feature
space F is given by [10] as

vm =
N
X

i=1

αmi√
λm

ϕ̃(yi) . (6)

which are our (vectorized) kernel eigenmatrices in the feature
space.

Using the leading M eigenmatrices, the centered trans-
formation vector of the new speaker2 in the feature space

2The notation of the transformation vector in the feature space re-
quires some explanation. In kernel methods, the existence of an object
in the feature space does not necessarily imply the existence of its pre-
image in the input space. Here, we use ϕ

(kemllr)(y) to represent the

ϕ̃(kemllr)(y) is represented by

ϕ̃(kemllr)(y) =
M
X

m=1

wmvm =
M
X

m=1

N
X

i=1

wmαmi√
λm

ϕ̃(yi) . (7)

3.2. Composite Kernel

Eqn. (3) shows that in order to compute the mean vectors of
a new speaker, one will need to access each row of his trans-
formation matrix. However, the row information, in general,
is lost during the ϕ-mapping of the transformation vectors to
the kernel-induced feature space. To preserve the row informa-
tion, a composite kernel is used: a possibly different mapping,
ϕr, r = 1, . . . , d, is used for each row vector of the transforma-
tions, and then a composite function is applied. For example,
the following direct sum composite kernel has been used in ker-
nel eigenvoice adaptation [7] with good results:

k(yi, yj) =
d
X

r=1

ϕr(yir)
′
ϕr(yjr) =

d
X

r=1

kr(yir,yjr) , (8)

where yir represents the rth constituent (i.e. matrix row in our
context) of the vector yi.

Thus, the ϕr-mapping of the rth row of the new speaker’s
transformation Y is given by

ϕ̃
(kemllr)
r (yr) =

M
X

m=1

N
X

i=1

wmαmi√
λm

ϕ̃r(yir) . (9)

3.3. Kernel Evaluation

Using Eqn. (9), the similarity between ϕ
(kemllr)
r (yr) and

ϕr(ξ
(si)
g ) can be computed as follows:

k
(kemllr)
r (yr, ξ

(si)
g )

≡ ϕ
(kemllr)
r (yr))

′
ϕr(ξ

(si)
g ) (10)

=

" 

M
X

m=1

N
X

i=1

wmαmi√
λm

ϕ̃r(yir)

!

+ ϕ̄r

#′

ϕr(ξ
(si)
g )

=

" 

M
X

m=1

N
X

i=1

wmαmi√
λm

(ϕr(yir) − ϕ̄r)

!

+ ϕ̄r

#′

ϕr(ξ
(si)
g )

= Ar(g) +
M
X

m=1

wm√
λm

Br(m, g) , (11)

where ϕ̄r = 1
N

PN

i=1 ϕr(yir) is the rth part of ϕ̄,

Ar(g) = ϕ̄
′

rϕr(ξ
(si)
g ) =

1

N

N
X

i=1

kr(yir, ξ
(si)
g ), (12)

and

Br(m, g) =
N
X

i=1

αmi(kr(yir, ξ
(si)
g ) − Ar(g)). (13)

Furthermore, the derivative of k
(kemllr)
r (yr, ξ

(si)
g ) w.r.t.

each eigenvoice weight wm, m = 1, . . . , M , is given by

∂
∂wm

“

k
(kemllr)
r (yr, ξ

(si)
g )

”

=
Br(m, g)√

λm

, (14)

image even if the pre-image y may not exist due to the intuitiveness of
the notation. Notice that our KEMLLR adaptation does not require the
existence of the pre-image y in the input transformation (super)vector
space.



which will be needed for the maximum likelihood estimation of
the eigenmatrix weights.

Notice that all the kernel values in Eqns. (12,13) may be
computed offline prior to adaptation.

3.4. Gradient of Gaussian Means

Eqn. (5) requires the gradient of µ
(kemllr)
g w.r.t. each eigen-

matrix weight wm, m = 1, . . . , M . Since the eigenmatrices
reside in the kernel-induced feature space and not in the acous-
tic observation space, we have to relate µ

(kemllr)
gr with w via

the kernel values k
(kemllr)
r (yr, ξ

(si)
g ). This can be done if we

have a kernel function that is a function of the inner product of
its inputs since µgr = y′

rξ
(si)
g . That is, we need a kernel func-

tion kr such that kr(u, v) = F (u′v), where F is invertible.
Then,

µ
(kemllr)
gr = y

′

rξ
(si)
g = F

−1(k(kemllr)
r (yr, ξ

(si)
g )) , (15)

which, in turn, is a function of w as given by Eqn. (11), and its
derivative w.r.t. wm can be readily obtained.

3.4.1. Gaussian Kernels

Let’s consider the following Gaussian kernel

kr(u,v) = exp(−βr‖u − v‖2) . (16)

The Euclidean distance between u and v is given by

‖u − v‖2 = − 1

βr

log kr(u,v) . (17)

Since

‖u − v‖2 = ‖u‖2 + ‖v‖2 − 2u′
v

⇒ u
′
v =

1

2
(‖u‖2 + ‖v‖2 − ‖u − v‖2) , (18)

and in our case, u = yr and v = ξ(si)
g , therefore, we have

µ
(kemllr)
gr =

1

2

"

‖ξ(si)
g ‖2 +

1

βr

log

 

k
(kemllr)
r (yr, ξ

(si)
g )

k
(kemllr)
r (yr,0)

!#

. (19)

Substituting Eqns. (11,12,13) into Eqn. (19), differentiating
the result w.r.t. wm, and making use of the gradient in Eqn.(14),

we get
∂µ

(kemllr)
gr

∂wm

=
1

2βr

√
λm

"

Br(m, g)

k
(kemllr)
r (yr, ξ

(si)
g )

− Br(m,−1)

k
(kemllr)
r (yr,0)

#

, (20)

where we use the index g = −1 to represent a special aug-
mented vector ξ

(si)
−1 which is the zero vector 0.

3.5. ML Estimation of Eigenmatrix Weights

Using Eqn. (20), the derivatives of Q(w) of Eqn. (5) w.r.t each
of the M weights wm, m = 1, . . . , M , can be obtained. How-
ever, due to the nonlinearity of the kernel functions, there is no
closed form solution for the optimal w. Instead, the eigenmatrix
weights are found using Gradient Ascent algorithm. That is, the
estimate of w at the nth Gradient Ascent iteration is updated
using the learning rate η(n) as follows:

w(n + 1) = w(n) + η(n)
∂Q(w)

∂w
.

3.6. Robust KEMLLR

When the amount of adaptation data is really small, the MLLR
transformation found by KEMLLR may not be reliable. To get
a more robust estimate , the transformation found by KEMLLR
is interpolated with the identity matrix. Equivalently, a mean
vector found by KEMLLR is interpolated with the correspond-
ing SI mean vector as follows:

µ
(rkemllr)
gr = w0µ

(si)
gr + (1 − w0)µ

(kemllr)
gr , 0 ≤ w0 ≤ 1.0 . (21)

And the gradients of the Gaussian means are updated as
below:

∂µ
(rkemllr)
gr

∂w0

= µ
(si)
gr − µ

(kemllr)
gr , (22)

and

∂µ
(rkemllr)
gr

∂wm

= (1 − w0)
∂µ

(kemllr)
gr

∂wm

, m = 1, . . . , M. (23)

4. Experimental Evaluation
The proposed KEMLLR speaker adaptation method was evalu-
ated on the DARPA Resource Management continuous speech
database RM1. RM1 comprises a speaker-independent (SI) sec-
tion and a speaker-dependent (SD) section. The SI section con-
sists of 3990 training utterances from 109 speakers. On the
other hand, there are 12 speakers in the SD section, each having
600 utterances for training, 100 utterances for development, and
100 utterances for evaluation.

4.1. Feature Extraction and Acoustic Modeling

As a preliminary investigation of our new KEMLLR adapta-
tion method, the following simple acoustic vectors and acoustic
models were used. Forty-seven context-independent phoneme
models were trained using the SI training set. Each phoneme
model was a strictly left-to-right 3-state hidden Markov model
(HMM) with 10 Gaussian mixtures per state. In addition, there
were a 1-state short pause model and a 3-state silence model.
The acoustic vector has a dimension d = 13, consisting of 12
MFCCs and the normalized log energy extracted from speech
frames of 25 ms long at the frame rate of 100Hz.

4.2. Experimental Procedure

From the SI model, an SD model was constructed for each of the
109 speakers in the SI training set using global MLLR adapta-
tion. As a result, we obtained a set of N = 109 transformation
vectors for deriving the kernel eigenmatrices. For each of the
12 speakers in the SD section, 3 sets of adaptation data were
randomly chosen from his 100 development utterances so that
each adaptation set was about 4–5s long, consisting of 2–3 ut-
terances. Each adaptation method was run on each of the 3
adaptation sets of each speaker, and the resulting adapted mod-
els were tested on his 100 evaluation utterances using word-pair
grammar. Reported results are the average of all adaptation sets
of all speakers.

The following models or adaptation methods are compared:

SI: speaker-independent model.

MLLR: MLLR adaptation.

EMLLR: eigenspace-based MLLR adaptation.

KEMLLR: kernel EMLLR adaptation.



Table 1: Adaptation performance of the SI model, MLLR, EM-
LLR, and KEMLLR adaptation on the evaluation set of the SD
section of RM1.

Model/Adaptation Word Accuracy WER Reduction
SI 78.27% —

MLLR 78.31% 0.18%
EMLLR 78.72% 2.07%

KEMLLR 80.63% 10.86%

MLLR adaptation was done using the HTK software with
a global diagonal transformation. EMLLR was implemented
using KEMLLR with linear kernel, and all EMLLR and KEM-
LLR models were interpolated with the SI model as said in Sec-
tion 3.6. Some of the experimental parameters for KEMLLR
were initialized or set empirically as follows (which are by no
means optimal):

• w0 was initialized to 0.5.

• The eigenmatrix weights wm, m = 1, . . . , M, were ini-
tialized by projecting the following transformation,

Y
(si) =

2

6

6

6

4

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

... 0
0 0 0 1 0

3

7

7

7

5

. (24)

onto each of the M kernel eigenmatrices.

• βr = β = 0.0001 for r = 1, . . . , d

• The learning rate for Gradient Ascent was initialized to
1.0 × 10−9 which was adjusted dynamically depending
on the increase or decrease in the Q function value after
each iteration.

• Pilot experiments on the development data found that
M = 50 eigenmatrices gave good adaptation results.

4.3. Evaluation Results

The comparative performance of the various adaptation meth-
ods and the SI model is shown in Table 1. It can be seen that for
this particular task, the performance of the various adaptation
methods and SI model is ranked in the following increasing or-
der: SI ≈ MLLR < EMLLR < KEMLLR. The improvement of
KEMLLR over EMLLR shows that the use of kernel PCA with
composite kernel is effective in deriving better eigenmatrices
for adaptation.

5. Conclusions and Future Work
In this paper, we propose an improvement to the eigenspace-
based MLLR (EMLLR) adaptation method by deriving the
eigenmatrices using kernel methods. In our novel kernel EM-
LLR (KEMLLR) adaptation, kernel principal component analy-
sis is used to exploit possible nonlinearity in the transformation
(super)vector space, and composite kernel is used to preserve
the row information in a transformation. Preliminary adapta-
tion experiments on RM1 shows that KEMLLR outperformed

MLLR and EMLLR, and reduced the word error rate of the
speaker-independent model by 11%.

KEMLLR adaptation is a nonlinear optimization problem;
it is currently solved by Gradient Ascent method and is rela-
tively slower. As a result, for this preliminary investigation, we
used simple acoustic vectors and models with a global transfor-
mation to create each speaker-dependent (SD) model. We are
finding ways to speed up the adaptation process, and will eval-
uate the method again using cross-word triphone models and
multiple transformations in the estimation of the SD models.
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