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ABSTRACT

In this paper we study using the classification-based Bhat-
tacharyya distance measure to guide biphone clustering. The
Bhattacharyya distance is a theoretical distance measure be-
tween two Gaussian distributions which is equivalent to an
upper bound on the optimal Bayesian classification error
probability. It also has the desirable properties of being com-
putationally simple and extensible to more Gaussian mix-
tures. Using the Bhattacharyya distance measure in a data-
driven approach together with a novel 2-Level Agglomera-
tive Hierarchical Biphone Clustering algorithm, generalized
left /right biphones (BGBs) are derived. A neural-net based
phone recognizer trained on the BGBs is found to have bet-
ter frame-level phone recognition than one trained on gen-
eralized biphones (BCGBs) derived from a set of commonly-
used broad categories. We further evaluate the new BGBs
on an isolated-word recognition task of perplexity 40 and
obtain a 16.2% error reduction over the broad-category gen-
eralized biphones (BCGBs) and a 41.8% error reduction over
the monophones.

1. INTRODUCTION

Perhaps the most significant advance in speech recognition
during the past decade has been the incorporation of context-
dependent phonetic units into frame-based systems. Cur-
rently, the most popular choices of subword units are the
generalized biphones (GB) or generalized triphones (GT).

There are two basic approaches to derive these generalized
phones: (1) The knowledge-driven approach employs linguis-
tic knowledge about the coarticulatory influences between
~ neighboring phones. For example, L. Deng et al. [3] defined
contexts based on broad phonetic categories and classified
the articulatory effects on vowels and consonants each to 5
types and derived 25 generalized contexts for each phone.
A. Ljolje [8] used more detailed contextual effects to derive a
set of 19 left-context classes and 18 right-context classes. (2)
The data-driven approach evaluates all contexts in the train-
ing data, and uses some distance measure with a clustering
algorithm to split or merge the contexts to a specified number
of generalized contexts. This usually uses an information-
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theoretic distance measure commonly employed with Hidden
Markov models. Examples are works from D’Orta et al. [4],
Juang and Rabiner [10], and Lee [6]. Lee et al. [7] later sug-
gested another tree-based allophone clustering method. All
allophones are placed in the root of the decision tree and
each node of the tree is associated with a binary question,
which is selected from a set derived by a linguistic expert.
The “best” question is assigned to a node if it results in
a binary split with minimal loss of entropy. Though some
of the linguistically-motivated phone units derived using the
first approach work quite well, the second approach is more
popular because (a) it is difficult and tedious for even a lin-
guistic expert to come up with broad phonetic classes in the
case of biphones and triphones; and, (b) more importantly,
most of contemporary frame-based recognizers are acousti-
cally motivated; the second method fits well into their work-
ing paradigm by making full use of the acoustic information
from the data. It is the data-driven approach we adopt in
this paper.

‘As we have been working on speech recognition using the

neural-network approach in which no HMMs are built, it is
natural for us to explore distance measures other than the
information-theoretic ones to do phone (context) clustering.
Speech recognition is, after all, a classification problem; thus
we study using the classification-based Bhattacharyya dis-
tance measure to guide phone clustering. The Bhattacharyya
distance is a theoretical distance measure between two Gaus-
sian distributions which is equivalent to an upper bound on
the optimal Bayesian classification error probability. It also
has the desirable properties of being computationally simple
while at the same time being extensible to more Gaussian
mixtures.

2. BHATTACHARYYA DISTANCE

The Bhattacharyya distance is covered in many texts on sta-
tistical pattern recognition (for example, [5]). We will give a
brief review here with the following notations:

w; :casst,i=1,2

P; : a priori probability of w;

M; : mean vector of class w;

E; : covariance matrix of class w;
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Figure 1: Agglomerative hierarchical clustering of 39 context-independent monophones

The Bhattacharyya distance, Dohqt, is @ separability measure
between two Gaussian distributions and is defined as follows:
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The first term of eqn.(1) gives the class separability due to
the difference between class means, while the second term
gives the class separability due to the difference between class
covariance matrices. Furthermore, the optimal Bayes clas-
sification error between the two classes is bounded by the
following expression:

e < VPP, exp(—~Donat) (2)

We will refer to the upper bound of the error probability
evaluated from the inequality(2) with P; = P, = 0.5, as the
Bhattacharyya error, €bha: - That is,

€bhat = 0.5 exp(—Dphat) 3)

By setting the two prior probabilities equal, the two terms
€phat and Dyppg: are equivalent in that both indicate the “in-
trinsic” separability of the two distributions, regardless of
their prior probabilities. In summary, advantages of using
the Bhattacharyya distance are that

e it is computationally very simple; and,

¢ by deriving it from an error bound rather than from
an exact solution, it provides a “smoothed” distance
between the two classes in study, which is more ap-
propriate since we do not believe our data to be truly
normally distributed.

3. BHATTACHARYYA DISTANCE
BETWEEN PHONES

As a first step in our study of using the Bhattacharyya dis-
tance to measure phone separability, the following simple
procedure is used to derive a Gaussian acoustic model for
each phone:

Step 1. Each phone utterance is first divided into frames of
equal duration.

Step 2. Speech features of dimension N are computed from
each frame.

Step 3. Each phone utterance is also divided into three
equal segments, each consisting of an equal number of
frames.

Step 4. Each segment of the phone is then represented by
the centroid of its constituent frame vectors.

Step 5. Finally the three centroid feature vectors are con-
catenated together to form a single 3N-dimensional vec-
tor to represent a phone utterance.

Step 6. The mean and covariance matrix of the 3N-
dimensional utterance vectors from all utterances of a
phone are computed.

Specifically in this paper, each utterance is pre-emphasized
with a filter whose transfer function is 1 —0.97z!. Then for

every 10ms frame, a 25ms Hamming window is applied, and
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the first twelve 24th-order LPC cepstral coefficients (LPCC)
are extracted. Thus, each phone utterance is represented by
a 36-dimensional feature vector.

Once the Gaussian phone models are in place, it is straight-
forward to compute the Bhattacharyya distance between any
two phones using eqn.(1).

As an example, Fig. 1 shows a clustering tree of 39 context-
independent monophones obtained by using a standard
agglomerative hierarchical clustering (AHC) procedure and
guided by a Bhattacharyya distance matrix computed over
the OGI.TS corpus [9). It can be seen that most clusters
at the bottom level are well-known confusable pairs: {1, w},
{m, n}, {er, r}, {ae, eh}, {ch, jh}, {d, t}, {s, z}, and {f, th}.

4. TWO-LEVEL AGGLOMERATIVE

HIERARCHICAL BIPHONE
CLUSTERING

In theory, we may simply compute the Bhattacharyya dis-
tance matrix among biphones containing a particular basis
phone, perform the standard agglomerative hierarchical clus-
tering and select the appropriate clusters as our generalized
biphones for that basis phone. However, in practice, we are
faced with three problems in this data-driven approach:

1. insufficient data — reliable models cannot be estimated
for some rare biphones

2. incomplete biphone coverage — some biphones never
occur in the training data

3. unbalanced data — it seems reasonable to require sim-
ilar amount of training data for the two entities during
the computation of their Bhattacharyya distance

Here we propose a novel algorithm, the 2-Level Agglomera-
tive Hierarchical Biphone Clustering (AHBC) algorithm as
shown in Algorithm 1. The problems 1 and 2 are solved by
augmenting the biphone Bhattacharyya distance matrix with
the monophone Bhattacharyya distance matrix for those un-
seen and under-represented biphones. A crude AHC is per-
formed to obtain the first-level generalized biphones. It stops
as soon as each first-level generalized biphone has a fair
amount of data in the training corpus. Acoustic models are
then re-computed for these first-level generalized biphones,

and another round of AHC is performed. The third prob-
lem of unbalanced data is solved by limiting the growth of

cluster size using the thresholds, FREQ_THRESHOLD_1 and
FREQ_THRESHOLD_ 2.

5. RECOGNITION EXPERIMENT

To evaluate the new generalized biphones (BGBs) derived
by the Two-Level AHBC algorithm, we train three separate
general-purpose phonetic neural nets using stochastic Back-
propagation with the OGI.TS corpus. Out of the 208 usable
corpus files, 148 are used for training, 30 for cross validation,
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Algorithm 1 2-Level Agglomerative Hierarchical Biphone
Clustering (AHBC) Algorithm

Step 1. Compute the Bhattacharyya distance matrix for

monophones.

Step 2. Compute the Bhattacharyya distance matrix for all
possible left(right) contexts of the basis phone; for those
contexts with counts less than COUNT_THRESHOLD,
back off with the monophones distances.

Step 3. Perform the first-level AHC with compact inter-
cluster distances.

Step 4. Initialize pick.distance to INITIC_DIST_1.

Step 5. Pick all clusters from the clustering tree with
merged distance less than pick.distance and with total
data counts not exceeding FREQ.THRESHOLD.1.

Step 6. Determine coverage of the resulting “good” gen-
eralized biphones on the training data. (A general-
1zed biphone is considered good if it has more than
COUNT_THRESHOLD data count on the training data.)

Step 7. If coverage requirement is satisfied or pick.distance
is the last available, go to Step 8. Otherwise, update
pick_distance to the next greater distance in the cluster-
ing tree and go to Step 5.

Step 8. Fix each “bad” generalized biphone, which has too
few data, by merging it with a good one based on the
minimum distance between any two phones in the two
clusters.

Step 9. Compute Gaussian models and then the Bhat-
tacharyya distance matrix from the first-level general-
ized biphones.

Step 10. Perform the second-level AHC with compact
inter-cluster distances.

Step 11. Pick all clusters from the clustering tree with
merged distance less than INIT_IC_DIST_2 and with to-
tal data counts not exceeding FREQ.THRESHOLD.2.

and the remaining 30 for testing. The ratio of male speakers
to female speakers in each of the data sets is roughly 2:1.
The neural nets are two-layer MLPs with 50 hidden nodes
and 56 inputs which comprises seven 7th-order PLP coeffi-
cients plus the normalized energy for the current frame as
well as its six neighboring frames. The number of output
units depends on the type of phone units used as follows:

¢ net-MONO has 39 monophone output classes;

¢ net-BCGB has 575 output classes representing a set
of linguistically-derived and commonly-used broad-
category generalized biphones (BCGBs); and,

o net-BGB has 424 output classes representing the BGBs
derived from the two-Level AHBC algorithm.



Table 1: Frame level phone recognition results on OGI_TS Cor-
pus (Monophone and BGB are evaluated on the same speech sam-
ples; and, confusions among GBs of the same basis phone are
ignored for BCGB and BGB)

PHONE UNITS || #CLASSES #TRAINING FRAME LEVEL
FRAMES/CLASS | % CORRECT
Monophone 39 5000 30.7
BCGB 424 500 26.6
BGB 575 500 32.8

Table 2: Isolated word recognition results on OGI Names Cor-

pus (perplexity=40)

PHONE UNITS NAMES (PERPLEXITY=40)
% CORRECT | % ERROR REDUCTION
(sTD. DEV.) BY BGBs
Monophone 75.8 (0.70) 42.1
BCGB 83.3 (0.57) 16.2
BGB 86.0 (0.55) —

Table 1 gives the frame level phone recognition results of the
three phonetic nets.

5.1. Isolated Word Recognition

The comparison at frame level is of limited value because
different test data are used for the different phone units. It
is more meaningful to test the three phone types on a real-
world recognition task. Four thousand phonetically tran-
scribed names are selected from the OGI Names Corpus [2]
with balanced genders. One hundred test sets of perplexity
40 are constructed by randomly choosing ten male speaking
names and ten female speaking names 100 times without re-
placement. The three phonetic nets (net-MONO, net-BCGB,
and net-BGB) are used to recognize each test set of names
using Viterbi search with a lexical tree [1]. Recognition re-
sults are averaged over the 100 test sets as shown in Table 2.
The new generalized biphones (BGBs) obtain an error re-
duction of 42.1% over the monophones, and 16.2% over the
broad-category generalized biphones (BCGBs).

6. DISCUSSION & FUTURE WORK

In this paper, we have demonstrated that the Bhattacharyya
distance, which is derived from optimal Bayesian classifica-
tion theory, is a useful distance measure for speech phones.
We also propose a novel data-driven algorithm to derive gen-
eralized biphones using the Bhattacharyya distance matrix
among the biphones. In an isolated-word recognition task,
using the derived generalized biphones results in a 16.2%

error reduction over a set of linguistically-motivated broad-
category generalized biphones.

We have successfully extended the Bhattacharyya distance
to Gaussian mixtures, and we are going to repeat the ex-
periments described in this paper by modelling phone units
as Gaussian mixtures; we expect to get better generalized
biphones due to more accurate models.
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