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Abstract
With the advance in semiconductor memory and the availabil-
ity of very large speech corpora (of hundreds to thousands of
hours of speech), we would like to revisit the use ofdiscrete
hidden Markov model(DHMM) in automatic speech recogni-
tion. To estimate the discrete density in a DHMM state, the
acoustic space is divided into bins and one simply count the rel-
ative amount of observations falling into each bin. With a very
large speech corpus, we believe that the number of bins may
be greatly increased to get a much higher density than before,
and we will call the new models, thehigh-density discrete hid-
den Markov model(HDDHMM). Our HDDHMM is different
from traditional DHMM in two aspects: firstly, the codebook
will have a size in thousands or even tens of thousands; sec-
ondly, we propose a method based on scalar quantization in-
dexing so that for ad-dimensional acoustic vector, the discrete
codeword can be determined inO(d) time. During recogni-
tion, the state probability is reduced to anO(1) table look-up.
The new HDDHMM was tested on WSJ0 with 5K vocabulary.
Compared with a baseline 4-stream continuous density HMM
system which has a WER of 9.71%, a 4-stream HDDHMM sys-
tem converted from the former achieves a WER of 11.60%, with
no distance or Gaussian computation.

1. Introduction
The recent success of many automatic speech recognition sys-
tems owes much to the advances in hidden Markov modeling
(HMM) [1]. HMM may be roughly categorized into 3 types:

• discrete HMM(DHMM) [2] in which state observation
statistics is modeled by discrete density;

• semi-continuous or tied-mixture HMM(SCHMM) [3, 4]
in which a pool of Gaussians are shared by all states,
and state probability densities are different only in their
mixture weights of these globally shared Gaussians; and,

• continuous density HMM(CDHMM) [2] in which each
state is modeled by a separate mixture of Gaussian den-
sities.

Each of the 3 types of HMMs has many variants that differ
mainly in their parameter sharing details, and the way the acous-
tic space is partitioned into multiple subspaces and/or multi-
ple streams. Examples are phone-tied mixture HMM, state-
clustered tied-mixture HMM [5], and subspace distribution
clustering HMM (SDCHMM) [6], etc. In general, the model
complexity increases from DHMM, SCHMM, to CDHMM.

With the advance in semiconductor memory and thus its
falling price, and the availability of very large speech corpora
(of hundreds to thousands of hours of speech), we would like

to revisit the use ofdiscrete hidden Markov model(DHMM)
in large-vocabulary continuous speech recognition (LVCSR).
DHMM is attractive for the following reasons:

• it is simple: the density estimation is merely a bin count-
ing process, and its state probability can be found by a
table lookup.

• the state distribution is non-parametric; in theory, it can
model any distribution if there are sufficient training
data.

• the state likelihoods can be handled more easily since
they are really probabilities which has a smaller and pre-
dictable dynamic range between 0.0 and 1.0.

In the past, DHMM is only used for simple task. There are
at least three reasons for that. Firstly, to implement DHMM,
all acoustic vectors are vector-quantized (VQ) but the VQ code-
book cannot be too large, otherwise it will take a long time to
find the codeword for a new acoustic vector. Secondly, a lot
of memory will be required to store a large discrete density for
each HMM state. Thirdly, the discrete density of a large code-
book requires a lot of training data which are lacking in the past.
As a result, usually 256 to 1024 codewords are used. How-
ever, a small codebook will induce larger quantization errors
that are unacceptable for complicated tasks which require high
accuracy. The use of multiple-stream codebooks may alleviate
the problems but only with the additional assumption that the
streams are independent.

Some of the limitations of a large codebook are fading with
the advances in semiconductor technologies and the release of
very large speech corpora. In this paper, we propose the use of
DHMM in which the discrete densities have a very high den-
sity involving thousands to tens of thousands of codewords; we
call our new HMM, the “high-density discrete hidden Markov
model” (HDDHMM). There are two major problems to solve
for such HDDHMM:

• How to find the codeword for an acoustic vector fast?

• Data scarcity problem: How to train such high-density
discrete densities for each HMM state?

For fast determination of a codeword, we propose repre-
senting a full-space codeword by the combinatorial product of
the scalar quantization codewords from each dimension. As a
result, a codeword can be determined inO(d) time for a d-
dimensional acoustic vector, independent of the number of bins.
To solve the data scarcity problem, we suggest a simple and
quick conversion of CDHMM to HDDHMM.

There is a relevant attempt before called thediscrete mix-
ture HMM (DMHMM) [7]. DMHMM replaces the one-
dimensional Gaussian density in each mixture component of a



CDHMM state with diagonal covariances by a discrete density,
but otherwise keeps the mixture density structure of CDHMM
intact. [7] also suggested 20–40 codewords for each dimension
of DMHMM. On the other hand, our new HDDHMM has only
one large discrete density for each stream of an HMM state, and
only a few codewords (e.g. 2 or 4) are used per dimension.

2. High-density Discrete HMM
(HDDHMM)

2.1. Construction of Full-space codewords from Per-
dimension SQ codewords

Let d be the dimension of each acoustic vector. In HDDHMM,
each dimension is scalar-quantized (SQ) toni, i = 1, . . . , d
SQ codewords. The full-space codewords are represented by
the multiplicative combination of the per-dimension SQ code-
words. As a result, the fulld-dimensional acoustic space is di-
vided intoN =

Qd
i=1 ni bins. Each HDDHMM state proba-

bility distribution becomes a discrete density consisting of the
probabilities of an acoustic observation falling into each of the
N bins. For instance, ifd = 13 for the typical static MFCC
vectors, and all dimensions are scalar-quantized ton1 = n2 =
· · · = nd = 2 codewords, then there will be213 = 8192
bins. Although scalar quantization (SQ) is employed, it is
only used to efficiently index different regions in the original
d-dimensional acoustic space through the combinatorial effect
of per-dimension SQ codewords, and discrete density is still
estimated in the acousticfull space. This is different from
DMHMM in which a discrete density is estimated in each 1-
dimensional acousticsubspace.

2.2. Finding a codeword

To find the codeword for a new acoustic vector, each of its com-
ponents will be compared with its corresponding SQ codebook
for at mostlog2 ni time. Continuing with our example of us-
ing a uniform 1-bit SQ codebook for each dimension of ad-
dimensional acoustic vector, finding a codeword is reduced tod
arithmetic comparison operations.

2.3. Multiple Streams

For the typical 39-dimensional MFCC acoustic vector in-
cluding the delta and delta delta features, even a 1-bit SQ
for each dimension will lead to a codebook size of239 =
549, 755, 813, 888. Here we adopt the common solution of us-
ing multiple independent streams. Each stream of an HMM
state has its own high-density discrete density.

2.4. State Likelihood

Given a new observationxt, for aK-stream system, it is broken
up intoK sub-vectors asxt = {x(1)

t ,x
(2)
t , . . . ,x

(K)
t }, where

x
(k)
t represents the sub-vector of thekth stream. Its probability

at states is computed as

P (xt|s) =

KY
k=1

P (x
(k)
t |s)ηk ,

whereηk, k = 1, 2, . . . , K are the stream exponents used to
weight the contributions of the various streams.

With a discrete density, the computation of the state likeli-
hood of each stream is reduced to a simple table lookup. Each
HMM state will have a table of the size ofN =

Qd
i=1 ni. For

our running example,N = 8192. Since now the table entries
are real probabilities, 1 or 2 bytes are probably enough to rep-
resent them.

3. Conversion of CDHMM to HDDHMM
Except for small systems with a few hundreds of (tied) HMM
states, even hundreds or thousands of hours of training speech
may not be sufficient to train an HDDHMM. While the prob-
lem may be perhaps solved by smoothing or interpolation tech-
niques, in this paper, we investigate a simple algorithm to con-
vert continuous density of a CDHMM state to a reliable estimate
of the discrete density of an HDDHMM.

3.1. Conversion Procedure

The conversion procedure is summarized as follows:

STEP 1 : To create aK-stream HDDHMM, a K-stream
CDHMM is first created with appropriate parameter ty-
ing.

STEP 2 : Scalar quantization (SQ) is performed on each dimen-
sion to the give the desirable number of codewords per
dimension.

STEP 3 : For each SQ codeword, determine its lower bound and
upper bound. Let’s denote these bounds for theith di-
mension by(li, ui).

STEP 4 : Each bin in ad-dimensional stream is represented by
a multiplicative combination of the per-dimension SQ
codewords from itsd dimensions. Thus, each bin is a
hypercube with bounds{(l1, u1), (l2, u2), . . . , (ld, ud)}
for its d sides.

STEP 5 : The correspondingK-stream HDDHMM will have the
same topology as that of theK-stream CDHMM, ex-
cept that, for each stream, the CDHMM state probability
density functions are now replaced by HDDHMM’s state
distributions computed by integration. That is, if the pdf
for thekth stream of thejth CDHMM state with a mix-
ture density ofM Gaussian components is,

b
(k)
j (xt) =

MX
m=1

c
(k)
jmN(x

(k)
t ; µ

(k)
jm, Σ

(k)
jm),

the bin with bounds{(l1, u1), (l2, u2), . . . , (ld, ud)} on
the corresponding HDDHMM statej will have the fol-
lowing probability:p(k)

j (x
(k)
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=
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where N(x
(k)
it ; µ

(k)
ijm, σ

(k)
ijm) represents the univariate

Gaussian density of theith dimension of themth com-
ponent of thekth stream in thejth CDHMM state. The
per-dimension integral can be computed using theerf(·)
function as follows:
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• After the conversion, HDDHMM may be re-estimated
using the EM algorithm.

4. Experimental Evaluation
We carried out a preliminary study of the proposed HDDHMM
on the Wall Street Journal speech corpus WSJ0 [8]. We used the
standard SI-84 training set for training the acoustic models. It
consists of 83 speakers and 7138 utterances for a total of about
14 hours of training speech.

Table 1: 4 Stream definitions.

Stream MFCCs Per-dimension Bit Allocation # Bins
1 1–12 {2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 16384
2 14–25 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 4096
3 27–38 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1} 4096
4 13,26,39 {3, 3, 3} 512

4.1. Feature Extraction and Scalar Quantization (SQ)

The traditional 39-dimensional MFCC vector was extracted at
every 10ms over a window of 25ms. It was split into 4 streams
as shown in Table 1.

SQ was carried out using a subset of the training data. The
number of bits for each dimension is pre-determined as shown
in Table 1. SQ was performed per dimension using LBG quan-
tization algorithm [9], and the bounds{(li, ui)} for each SQ
codeword were recorded.

4.2. Acoustic Modeling

The baseline system consists of (1-stream) continuous density
HMMs (CDHMM) of 15,449 cross-word triphones (derived
from 39 base phonemes). There are totally 3131 tied states, and
each triphone HMM has a maximum number of 16 Gaussian
mixture components.

Then a 4-stream CDHMM system was trained as follows:
based on the baseline system, a 1-stream CDHMM with only 1
mixture per state was developed so that it had the same HMM
topology (and thus same tied states) as the original baseline
1-stream CDHMM. The 1-stream 1-mixture CDHMM system
was then converted to a 4-stream 1-mixture CDHMM system,
and the number of mixtures was grown to 16 for each stream
until we had a 4-stream 16-mixture CDHMM system.

Finally, the newly proposed HDDHMM system was con-
verted from the 4-stream 16-mixture CDHMM system using
the procedure described in Section 3.1. Basically, the conver-
sion procedure turns CDHMM state probability density func-
tions into discrete state densities of HDDHMM. Probability of
each binp, was represented by a 2-byte short integerx, with a
floor probability of10−12 using the following formula,

p = exp (−x/1185.9) .

No extra smoothing or interpolation was done at this moment.
In addition, all stream weights were set to 1.0.

Moreover, all acoustic model training were carried out by
the HTK software.

4.3. Recognition Performance

The performance of various CDHMM and HDDHMM systems
were tested on the standard nov’92 5K non-verbalized test set
using a bigram language model of perplexity 147. The test
set consists of 330 utterances from 8 speakers. Since the HD-
DHMM systems use true probabilities but the CDHMM sys-
tems use probability densities, the likelihoods computed during
recognition have very different dynamic ranges. All decoding
parameters such as the grammar factors and pruning thresholds
were first set according to the CDHMM systems. They were
then proportionally scaled for testing the HDDHMM systems
according to the likelihood ratios of the two kinds of HMMs.

4.3.1. Based on 1-Mixture Systems

We firstly compare the following context-dependent systems
which were derived from 1-mixture CDHMMs:

• CDHMM-1stream-1mix: 1-stream 1-mixture cross-
word triphone CDHMM.

• HDDHMM-4stream-1: 4-stream cross-word triphone
HDDHMM converted from the CDHMM-1stream-1mix
system.

In this experiment, we would like to find out how well the
high-density discrete distribution can represent a state proba-
bility distribution while factoring out the stream independence
assumption. In this case, since each state density has only one
multivariate Gaussian with diagonal covariance, the sub-vectors
in the 4 streams are implicitly independent of each other in both
the CDHMMs as well as in the HDDHMMs. The recognition
results are shown in Table 2. We observe∼2% (absolute) drop
in the recognition accuracy which indicates that there is room
for our conversion algorithm to improve.

Table 2: Word accuracies of context-dependent 1-mixture
CDHMM and its converted HDDHMM on WSJ0.

System Word Accuracy
CDHMM-1stream-1mix 85.22%
HDDHMM-4stream-1 83.19%

4.3.2. Based on 16-Mixture Systems

We then trained a 16-mixture cross-word triphone CDHMM
system, converted it to a 4-stream CDHMM system, and then
converted the latter again to a 4-stream HDDHMM system. In
Table 3, the following three systems are compared:

• CDHMM-1stream-16mix: 1-stream 16-mixture cross-
word triphone CDHMM.

• CDHMM-4stream-16mix: 4-stream 16-mixture cross-
word triphone CDHMM.

• HDDHMM-4stream-16: 4-stream cross-word triphone
HDDHMM converted from the CDHMM-4stream-
16mix system.



Table 3: Word accuracies of context-dependent 16-mixture
CDHMM and its converted HDDHMM on WSJ0.

System Word Accuracy
CD-CDHMM-1stream-16mix 92.25%
CD-CDHMM-4stream-16mix 90.29%
CD-HDDHMM-4stream-16 88.40%

It is found that there is a 2% (absolute) loss in recognition
accuracy when a 1-stream CDHMM system is converted to a
4-stream CDHMM system. When we move from a 4-stream
CDHMM system to a 4-stream HDDHMM system, there is an
additional 2% (absolute) performance loss — and a similar loss
is also observed in the first experiment.

4.4. Memory and Speed Comparison

HDDHMM requires much more memory space to store its state
densities than CDHMM. For instance, for our 16-mixture-based
systems, the CDHMM system requires3131× 16× (1 + 39×
2)× 4 = 15.8MB to store all its Gaussian means and variances
and mixture weights in 4-byte floats, while the HDDHMM sys-
tem requires3131×(16384+4096+4096+512)×2 = 157MB
to store all its discrete densities in 2-byte short integers.

In Fig. 1, the operating characteristics of three HMM sys-
tems are compared: 4-stream CDHMM; 4-stream HDDHMM
converted from the 4-stream CDHMM counterpart; and a con-
ventional DHMM with 256 codewords for each MFCC stream
and 64 codewords for the energy stream. All experiments were
run on a P4 3.2GHz PC with 1GB RAM. It can be seen that
our new HDDHMM performs better than the conventional dis-
crete HMM, and can run faster than the CDHMM system if the
runtime is expected to be less than 5x real time.

5. Conclusions
In this paper, we propose a new HMM called “high-density
discrete HMM” (HDDHMM). Each HDDHMM state is repre-
sented by a high-density discrete probability distribution. The
bins in the distribution are indexed by the multiplicative combi-
nation of scalar-quantized codewords from each dimension so
that the bins can be identified inO(d) time for ad-dimensional
acoustic vector. The HDDHMM state probabilities can also be
retrieved inO(1) time at the expense of more memory space for
the model densities. However, we believe that with the falling
price of memory, this is not a problem — the gain in speed is of
more interest to us than the greater memory requirement.

The results shown in this paper are very preliminary, and
the system parameters of the new 4-stream systems were not yet
tuned. Thus, we believe there are a lot of rooms for improve-
ment. For instance, SRI reported [10] a 6-stream system with
7.7% WER on WSJ0, but our 4-stream CDHMM system gives
an WER of 9.7% while our 1-stream CDHMM system matches
with SRI’s. This indicates that our 4-stream CDHMM system is
not optimal. Since our 4-stream HDDHMM is converted from
the 4-stream CDHMM, we have to first ensure that the latter has
good performance.
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