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Abstract

Eigenvoice (EV) speaker adaptation has been shown effective
for fast speaker adaptation when the amount of adaptation data
is scarce. In the past two years, we have been investigating the
application of kernel methods to improve EV speaker adapta-
tion by exploiting possible nonlinearity in the speaker space,
and two methods were proposed: embedded kernel eigenvoice
(eKEV) and kernel eigenspace-based MLLR (KEMLLR). In
both methods, kernel PCA is used to derive eigenvoices in the
kernel-induced high-dimensional feature space, and they dif-
fer mainly in the representation of the speaker models. Both
had been shown to outperform all other common adaptation
methods when the amount of adaptation data is less than 10s.
However, in the past, only small vocabulary speech recogni-
tion tasks were tried since we were not familiar with the be-
haviour of these kernelized methods. As we gain more expe-
rience, we are now ready to tackle larger vocabularies. In this
paper, we show that both methods continue to outperform MAP,
and MLLR when only 5s or 10s of adaptation data are available
on the WSJ0 5K-vocabulary task. Compared with the speaker-
independent model, the two methods reduce recognition word
error rate by 13.4% – 21.1%.

1. Introduction
When the amount of adaptation speech is really small, say, a
few seconds, eigenspace-based adaptation methods [1, 2] have
been shown more effective than the traditionally more popu-
lar methods such as the Bayesian-basedmaximum a posteriori
(MAP) adaptation [3] and the transformation-basedmaximum
likelihood linear regression(MLLR) adaptation [4]. The idea is
to derive from a diverse set of speakers a small set of basis vec-
tors calledeigenvoices(EV) that are believed to represent dif-
ferent voice characteristics (e.g. gender, age, accent, etc.), and
any training/new speaker is then a point in the eigenspace. In
practice, a few to a few tens of eigenvoices are found adequate
for fast speaker adaptation. Since the number of estimation pa-
rameters is greatly reduced, fast adaptation using EV is possible
with a few seconds of speech.

Recently, we have been investigating the use of kernel
methods [5] to improve the eigenspace-based adaptation meth-
ods by exploiting possible nonlinearity in their working space.
In [6], we proposed the first kernel version of EV adaptation
calledkernel eigenvoice (KEV) speaker adaptation. The idea
is to map input speaker supervectors to a kernel-induced high-
dimensional feature space via some nonlinear mapϕ, and then
apply principal component analysis (PCA) there. During the ac-
tual computation, the exact nonlinear map does not need to be
known, and the eigenvoices in KEV adaptation are obtained in

the feature space usingkernel PCA[7]. In principle, since the
KEV adaptation is a nonlinear generalization of the EV adap-
tation, the former should be more powerful than the latter, and
KEV adaptation is expected to give better performance.

Although KEV is effective, it is slow due to many online
kernel evaluations during recognition. We then proposed the
fast KEV method which we call theembedded kernel eigen-
voice speaker adaptation(eKEV) [8, 9]. eKEV adaptation
eliminates all online kernel evaluations by finding an approx-
imate pre-image of the adapting speaker model in the kernel-
induced feature space. In the mean time, we also developed
another variation of KEV called thekernel eigenspace-based
MLLR adaptation(KEMLLR) [10, 11]. KEMLLR uses the
speaker-specific MLLR transforms to represent a speaker, while
KEV uses the HMM state mean vectors to do so. Both eKEV
and KEMLLR had been shown to perform well on small- to
medium-vocabulary tasks like TIDIGITS and Resource Man-
agement (RM) [8, 9, 10, 11]. However, their effectiveness on
large-vocabulary continuous speech recognition (LVCSR) has
yet to be shown. In this paper, we report and compare the
adaptation performance of eKEV and KEMLLR on the 5K-
vocabulary Wall Street Journal recognition task. We also give
an account of our experience in porting the methods to LVCSR.

2. Review of the Two Kernel
Eigenspace-based Speaker Adaptation

Methods
2.1. Review of Embedded Kernel Eigenvoice Speaker
Adaptation (eKEV)

We will briefly outline the eKEV adaptation procedure step by
step using its illustration in Fig. 1 as follows; the details can be
found in [6, 9].

STEP 1 : Speaker-dependent (SD) models are first created from
a diverse set of speakers. For small vocabulary tasks,
when there are many data per speaker, one may build an
SD model for each speaker from scratch. However, in
general, especially for large vocabulary tasks using tri-
phones, it is unlikely to have sufficient speaker-specific
training speech, and one may create SD models by MAP
or MLLR adaptation. In any case, all SD models must
have the same HMM topology.

STEP 2 : For each speaker, create hisspeaker supervectorby
concatenating all the Gaussian means in his model. The
speaker supervectors are denoted asxi, i = 1, . . . , N ,
whereN is the number of speakers in the training set.N
should be large, say, more than 100, but for illustration
simplicity, it is 5 in Fig. 1.
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Figure 1: The eKEV adaptation method. (Without the pre-imaging step, it is the KEV adaptation method.)

STEP 3 : Conceptually a speaker supervectorsxi is then mapped
to a high-dimensional feature space by a fictitious func-
tion ϕ to ϕ(xi). The exact definition ofϕ need not be
known. Instead, it is indirectly defined by a kernel func-
tionk(·, ·) such thatk(xi,xj) = ϕ(xi)

′ϕ(xj) measures
the “similarity” between theith and thejth speaker su-
pervectors.

STEP 4 : Kernel PCA is carried out using the kernel matrixK
whereKij = k(xi,xj). The result is a set of basis vec-
tors in the feature space, which we call “kernel eigen-
voices”.

STEP 5 : Using only a subspace constructed by theM leading
kernel eigenvoices (the shaded area in Fig. 1), a new
speaker is supposed to lie on that kernel eigenvoice sub-
space. Or, in other words, a new speaker supervector in
the feature space, denoted asϕ(kev)(s

(ekev)
x ), is a linear

combination of the selectedM kernel eigenvoices. Usu-
ally M is as small as about 10. The adaptation task is to
find out the combination weightsw. If we stop here, it is
thekernel eigenvoice speaker adaptation(KEV) method
we first proposed in [6].

STEP 6 :ϕ(kev)(s
(ekev)
x ) is actually not explicitly computed. In-

stead, it is mapped back to the input space by a proce-
dure calledpre-imaging. Theoretically speaking, an ex-
act pre-image is generally not possible, and eKEV only
computes an approximate pre-images

(ekev)
x of the new

speaker supervectorϕ(kev)(s
(ekev)
x ) found by KEV.

STEP 7 :s(ekev)
x is found by the principle of multi-dimensional

scaling (MDS), making use of the distance relationship
between the new speaker and a set ofn reference speak-
ers in the input space and in the feature space. In [9], we
suggested to use those who have the highest likelihoods
of the adaptation data as the reference speakers.

STEP 8 : In Fig. 1,x1, x2, x3 are the reference speakers. To find
the pre-image, we have to first find their centroidx̄, and

its distances to them||zi||. zi’s can be found bysingular
value decompositionusing the reference speaker matrix:

[x1 x2 · · ·xn] = U2Λ2V
′ = U2 [z1 z2 · · · zn] . (1)

STEP 9 : The pre-imaging algorithm also requires the distances
di between the pre-image and the reference speakers in
the input space. This can be deduced from their corre-
sponding distances in the kernel-induced feature space
when appropriate kernel functions are used. For in-
stance, Gaussian kernel is used in eKEV.

STEP 10 : Finally, using the two set of distances:||zi|| and
di, i = 1, . . . , n, and the principle of MDS, there is a
closed-form solution for the pre-image of the new kernel
speaker supervector which is expressed in terms of the
eigenvoice weights. The weights can be found by maxi-
mizing the likelihood of the adaptation data from the new
speaker.

STEP 11 : Due to the nonlinear nature of the kernel function, the
eigenvoice weights have to be determined by numerical
methods such as gradient-based iterative methods.

Notice that steps 1–6 as well as all kernel evaluations be-
tween any two speaker supervectors are done offline, which are
then used in the online execution of steps 8–11.

2.2. Review of Kernel Eigenspace-based MLLR Speaker
Adaptation (KEMLLR)

The KEMLLR procedure is simpler and similar to that of
eKEV’s STEP 1–5 and STEP 11. The exception is that in
STEP 2, an SD model is always estimated by MLLR of the
SI model, and all SD models use the same number of regres-
sion classes. Then instead of using the concatenated Gaussian
means to represent a speaker as in eKEV, the MLLR transforms
of each speaker are vectorized and the set of corresponding vec-
torized MLLR transforms of the same regression class is used
to perform kernel PCA to derive the kernel eigenvoices. Al-
ternatively, one may concatenate together all vectorized MLLR



transforms for each speaker to form a speaker transformation
supervector and perform kernel PCA on the transformation su-
pervectors. However, our experience shows that better perfor-
mance is obtained with separate kernel PCA on each MLLR
transform class. When more training and adaptation data are
available, more regression classes certainly will give better per-
formance.

Readers are referred to [10, 11] for details.

2.3. Remarks

In our experience, successful application of eKEV and KEM-
LLR requires the following additional work:

• Normalization. We found that normalization of the vari-
ous dimensions of the speaker supervectors by their vari-
ances in both methods gives more stable behaviour. Usu-
ally better adaptation performance is also obtained.

• Composite Kernels. In KEMLLR, when a transforma-
tion supervector is mapped to the kernel-induced feature
space, the row information in the original MLLR trans-
form will be lost. To preserve the row information, a
composite kernel that defines on each row segment of
the MLLR transforms must be employed. For eKEV,
the use of composite kernels is not necessary. However,
since KEV also requires them, for historical reasons, we
also employ them in eKEV. Thus, in eKEV, composite
kernels are defined on each state mean vector segment.

• Interpolation with SI . When the amount of adaptation
is really small, it is usually better to improve the reliabil-
ity of adaptation by incorporating some prior informa-
tion. It is found that by simply interpolating the model
computed by KEMLLR with the SI model, more stable
and better speaker-adapted models are obtained. How-
ever, such interpolation is not found helpful for eKEV
adaptation.

3. Porting to LVCSR
When eKEV and KEMLLR adaptation methods are ported to
LVCSR using triphones, since there are not sufficient data to
build speaker-dependent (SD) models from scratch, they are
created by MLLR adaptation of the speaker-independent (SI)
model using multiple regression classes. Below are some addi-
tional porting remarks:

• When SD models are created by adaptation, some of the
eigenvalues inΛ2 of Eqn.(1) are very small. As the pre-
image formula requires the inverse ofΛ2, small eigen-
values will lead to serious numerical problem. The small
eigenvalues should indicate that the span of then refer-
ence speakers is smaller thann − 1. We simply discard
those small eigenvalues and the eKEV algorithm then
runs fine.

• Both kernel eigenspace-based methods basically com-
putes the new speaker-adapted model as some non-linear
combination of the SD models. Since speaker models
are big in LVCSR, their storage can be a problem. Thus,
MLLR adaptation is preferred to create the SD models
so that one may simply store the MLLR transforms for
each SD model instead of the SD hidden Markov models
(HMM). On adaptation, the SD HMM mean vectors are
then computed on-the-fly.

• One appealing feature of both eKEV and KEMLLR is
that the kernel evaluations that both methods require can
be pre-computedbeforeadaptation. In eKEV, the com-
posite kernel values between any two training speakers
kr(xir,xjr) are pre-computed, wherexir is the mean
vector of therth mixture of theith speaker. Similarly,
in KEMLLR, the composite kernel valueskr(yhr, ξj)
between any MLLR transformation row vectoryhr and
any augmented SI mean vectorξj are pre-computed.

Since both methods produce a regular SD HMM at the end,
subsequent recognition does not involve any kernel evaluations
and runs as fast as normal HMM.

4. Experimental Evaluation
The two kernelized eigenspace-based speaker adaptation meth-
ods were tested on the Wall Street Journal speech corpus
WSJ0 [12]. The standard SI-84 training set was used for train-
ing the speaker-independent (SI) model. It consists of 83 speak-
ers and 7138 utterances for a total of about 14 hours of training
speech.

4.1. Acoustic Modeling

The traditional 39-dimensional MFCC vectors were extracted
at every 10ms over a window of 25ms.

The speaker-independent (SI) model consists of 15,449
cross-word triphones based on 39 base phonemes. Each of them
was modeled as a continuous density HMM (CDHMM) which
is strictly left-to-right and has three states with a Gaussian mix-
ture density of 8 components per state.

The SD models were created by MLLR adaptation. In
eKEV, a regression class tree of 32 classes were used, while
in KEMLLR, only a global MLLR transform was used because
from our past experience, KEMLLR requires many more eigen-
voices and since adaptation of each regression class will be done
separately, there may not be enough adaptation data to estimate
the eigenvoice weights.

4.2. Parameter Setting

There are several free system parameters in eKEV and KEM-
LLR, such as the Gaussian kernel parameters. These system pa-
rameters were empirically determined using the Resource Man-
agement (RM) corpus, and they were then applied to WSJ0 task
without any change. The recognition performance is not very
sensitive to these parameters setting once they are in the right
order of magnitude. The parameter values are listed below for
readers’ reference:

For eKEV,

• Number of eigenvoices to use: 10.

• Number of maximum-likelihood reference speakers: 5.

• Gaussian composite kernels of the form:kr(u,v) =
exp(−β‖u − v‖2) were adopted; andβ = 0.005.

For KEMLLR,

• The number of eigenvoices to use equals to the number
of speakers. That is, for RM, 109 eigenvoices were used
and for WSJ0, 83 eigenvoices were used.

• Again Gaussian composite kernels were adopted, and
β = 0.001.

In both case, the quasi-Newton BFGS algorithm was used
to search for the optimal eigenvoice weights.



Table 1: Adaptation performance on WSJ0 using 5s of speech.

Model/Method Word Accuracy (%) WERR (%)
SI 91.14 –

MAP 91.23 1.00
MLLR (diagonal) 91.45 3.50

MLLR (full) – –
eKEV 92.33 13.43

KEMLLR 92.58 16.25

Table 2: Adaptation performance on WSJ0 using 10s of speech.

Model/Method Word Accuracy (%) WERR (%)
SI 91.14 –

MAP 91.29 1.69
MLLR (diagonal) 91.37 2.60

MLLR (full) 92.36 13.77
eKEV 92.39 14.11

KEMLLR 93.01 21.11

4.3. Adaptation Performance

The following adaptation methods are compared:

SI : speaker-independent model.

MLLR (diagonal) : MLLR adaptation with diagonal trans-
form(s).

MLLR (full) : MLLR adaptation with full transform(s).

eKEV : embedded kernel eigenvoice adaptation.

KEMLLR : kernel eigenspace-based MLLR adaptation.

All acoustic model training, MAP, and MLLR adaptation
were carried out using the HTK software.

4.3.1. Procedure and Results

For each of the 8 speakers in the standard nov’92 5K non-
verbalized test set, 1–3 utterances of his speech were randomly
selected so that the amount of adaptation speech is about 5s or
10s, and his adapted model was tested on his remaining speech
in the test set. A bigram language model of perplexity 147 was
employed in the recognition. This was repeated three times and
the three adaptation results were averaged before they were re-
ported in Table 1 and Table 2.

Table 1 and Table 2 show that eKEV and KEMLLR con-
tinue to work better than MAP and MLLR on fast speaker adap-
tation with 5s or 10s in LVCSR. Their performance in LVCSR
is consistent with their performance on small- and medium-
vocabulary CSR which we reported in [6, 9, 10, 11]. For in-
stance, with 5s of adaptation data, MAP and MLLR barely
work, but eKEV and KEMLLR give 13.4% and 16.3% word
error rate reduction (WERR). With 10s, MLLR using full trans-
form gives comparable performance as eKEV’s, and KEMLLR
really outperforms both.

5. Discussions
An obvious question is: which of the two kernel eigenspace-
based adaptation to choose? eKEV or KEMLLR?

In terms of accuracy, KEMLLR outperforms eKEV. That
is especially true for 10s as eKEV’s performance saturates
quickly. KEMLLR also uses fewer transforms to achieve the
better performance. Actually, KEMLLR’s performance may
further be improved with the use of more MLLR transforms.
However, KEMLLR needs to use many more eigenvoices than
eKEV. In the WSJ0 task, eKEV uses only 10 eigenvoices but
KEMLLR uses 83. As a result, the adaptation speed of eKEV
is much faster than KEMLLR: eKEV’s adaptation time is only
about1/3–1/2 of KEMLLR’s.
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