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Abstract

We have been investigating the use of kernel methods to im-
prove conventional linear adaptation algorithms for fast adap-
tation, when there are less than 10s of adaptation speech. On
clean speech, we had shown that our new kernel-based adap-
tation methods, namelgmbedded kernel eigenvoi¢eKEV)
andkernel eigenspace-based MLI(REMLLR) outperformed

their linear counterparts. In this paper, we study their unsu-
pervised adaptation performance under additive and convoluted
noises using the Aurora4 Corpus, with no assumption or prior
knowledge of the noise type and its level. It is found that both
eKEV and KEMLLR adaptation continue to outperform MAP
and MLLR, and the simple reference speaker weighting (RSW)
algorithm continues to perform favorably with KEMLLR. Fur-
thermore, KEMLLR adaptation gives the greatest overall im-
provement over the speaker-independent model by about 19%.

Index Terms: fast adaptation, kernel method, kernel
eigenspace-based MLLR, embedded kernel eigenvoice, MAP,
MLLR, reference speaker weighting.

1. Introduction

Noise robustness is a key issue for successful commercializa-
tion of speech recognition systems. This influences the design
of any new speech processing algorithm: an algorithm that is
noise robust is preferable to one that is not.

In the past few years, we have been trying to improve vari-
ous conventional linear adaptation algorithms by the use of ker-
nel methods [1] for fast speaker adaptation. In fast adaptation,
the amount of adaptation speech is less than 10s. The idea is
that for an algorithm that is based on some linear operation, one
may try to exploit possible nonlinearity in the data using the
kernel trick. Conceptually, a nonlinear function is used to map
the operands of the linear operation to a kernel-induced high-
dimensional feature space, where conventional linear methods
are then applied. It turns out that the nonlinear map need not
be known; instead, the computation depends only on the in-
ner products in the feature space, which can be obtained effi-
ciently with a suitable nonlinear kernel function. That is, the
nonlinearity is captured by the kernel function. Thus, the use of
kernel method provides an elegant nonlinear generalization of
existing linear algorithms. In [2, 3] we kernelize the eigenvoice
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adaptation method [4] in our neembedded kernel eigenvoice
(eKEV) adaptation method, whereas in [5, 6], the eigen-MLLR
adaptation is kernelized to our neernel eigenspace-based
MLLR (KEMLLR) adaptation method. On clean speech, the
two kernel-based adaptation algorithms were shown to outper-
form their linear counterparts as well as the conventional adap-
tation methods such as the Bayesian-basasgimum a poste-
riori (MAP) adaptation [7] and the transformation-baseaixi-
mum likelihood linear regressiofMLLR) adaptation [8].

Although eKEV and KEMLLR had been shown to per-
form well in fast speaker adaptation from small-vocabulary task
(using TIDIGITS [9]), medium-vocabulary task (using the Re-
source Management Corpus [10]), to large-vocabulary task (us-
ing the 5K Wall Street Journal Corpus [11]), their effectiveness
under noisy conditions has yet to be shown. In this paper, we
report and compare the adaptation performance of eKEV and
KEMLLR on the noisy large-vocabulary Aurora4 [12] recogni-
tion task, which is basically the noisy version of the 5K Wall
Street Journal task.

2. Aurora4 Evaluation
2.1. Aurora4 Corpus

The Aurorad4 Corpus was derived from the 5K WSJO Cor-
pus [11]. The training set was modified from the SI-84 WSJO
training set, and the evaluation set was modified from the
November'92 NIST evaluation set. It consists of several dif-
ferent training sets and evaluation sets, depending on how the
data were downsampled, filtered, and how noises were added.

In this study, we use only the Training Set 1 (TS1) for
training our baseline acoustic models. TS1 consists of the
7138 utterances from 83 speakers in the SI-84 WSJO training
set (recorded using the Sennheiser microphone and sampled at
16kHz) but were filtered by P.341 filtering. Similarly the eval-
uation set of WSJO, consisting of 330 utterances, was adopted
by Aurora4 after P.341 filtering. Fourteen versions of this fil-
tered evaluation set were created as follows. Each of the clean
filtered versions of the evaluation set recorded with Sennheiser
microphone and a secondary microphone were selected to form
evaluation set 1 and 8. Six different types of noises: car noise,
babble, restaurant noise, street noise, airport noise, and train
noise, of signal-to-noise level between 5-15 dB were digitally
added to evaluation set 1 and 8 to form evaluation set 2—7 and
9-14 respectively. Thus, there are totally x 330 = 4620
utterances in Aurora4’s evaluation set.



2.2. Acoustic Modeling

The feature extraction and acoustic modeling procedure follows
the practice in Aurora4 evaluation. In particular, the ETSI ad-
vanced frontend [13] was used to extract the conventional 39-
dimensional MFCC vectors at every 10ms over a window of
25ms.

The speaker-independent (SI) model consists of 15,449
cross-word triphones based on 39 base phonemes. Each of them
was modeled as a continuous density HMM (CDHMM) which
is strictly left-to-right and has three states with a Gaussian mix-
ture density of four components per state. The number of tied
states is around 3000. The reduced complexity of the HMMs
was adopted by Aurora4 evaluation community to allow more
experiments to be run to test different configurations in terms of
compression, frontend algorithm, etc.

2.3. Adaptation Experiments

Unsupervised adaptation was carried out using one single utter-
ance at a time. That is, each utterance in an evaluation set was
first used to adapt the clean Sl models, and the adapted model
obtained was then used to re-decode the same utterance to get
the final recognition result. The utterance duration varies from
the minimum 2.06s to the maximum 14.19s with an average of
7.31s. Thus, the task requires fast adaptation methods when
only one utterance is available for adaptation; this is the focus
of this research.

2.3.1. Model and Adaptation Methods

The following model and adaptation methods are compared on
the Aurora4 task [12].

S| : speaker-independent model.

MAP : MAP adaptation [7]

MLLR : MLLR adaptation [8].

RSW : reference speaker weighting [14, 15].

eKEV : embedded kernel eigenvoice adaptation [2, 3].

KEMLLR : kernel eigenspace-based MLLR adaptation [5, 6].

Since the five adaptation methods under investigation have
been well documented in the literature, they are not reviewed
here again due to the limited space. The readers are referred to
the citations for details. Briefly speaking, eKEV and KEMLLR
generalize their linear counterparts, eigenvoice (EV) and eigen-
MLLR (EMLLR), using kernel principal component analysis
(KPCA). They differ mainly in their representation of speaker
supervectors. In EV/eKEV, each speaker supervector consists
of all the Gaussian mean vectors in his hidden Markov mod-
els; in EMLLR/KEMLLR, a speaker-dependent model is cre-
ated by MLLR adaptation from a speaker-independent model,
and his speaker supervector is created by stacking up all his
MLLR transforms. The major challenge in the generalization
of EV/IEMLLR to eKEV/KEMLLR is to formulate the acoustic
likelihoods in terms of the kernel values during decoding as well
as maximume-likelihood estimation of the eigenvoice weights.

We had not run comparison experiments with the linear
counterparts of eKEV and KEMLLR, namely EV and EMLLR.
The reason is that in our past investigation on speaker adapta-
tion [2, 3, 5, 6], eKEV and KEMLLR always perform better
than EV and EMLLR respectively.

2.3.2. Adaptation Details

Among the five adaptation methods under investigation, MAP
and MLLR were performed using the HTK toolkit [16]. The
remaining three adaptation methods were implemented by us.
Their system parameters were tuned to give the best perfor-
mance in the Resource Management task, and were then simply
adopted without any change for Aurora4 evaluation.

The settings of various system parameters are described be-
low.

MAP : Scaling factors between 1 and 20 were tried, and the
result from the best value was reported.

MLLR : Due to the short duration of adaptation utterances
(with an average duration of 7.31s), it was found that a
single global MLLR transformation with full covariance

gave the best overall restilt

RSW : All 83 training speakers were used as reference speak-
ers.

eKEV : Due to the use of nonlinear kernel function in
eKEV adaptation, there is no analytical solution for
the maximum-likelihood estimation of its eigenvoice
weights. Instead, they were found by the quasi-Newton
BFGS numerical algorithm.

e Number of eigenvoices to use = 10.

e Number of maximum-likelihood reference speak-
ers=5.

e Gaussian composite kernels of the fat(u, v) =
exp(—p|lu—v||*) were adopted; and = 0.005.

KEMLLR : Again the eigenvoice weights were estimated us-
ing the same numerical method as in eKEV.

e The number of eigenvoices to use equals to the
number of speakers, which is 83 in Aurora4.

e Again Gaussian composite kernels were adopted,
ands = 0.001.

Finally, all speech decoding were carried out using the HTK
software.

2.4. Results and Discussions

Performance of each adaptation method on the 14 evaluation
data sets is detailed in Table 1. The results in the table are also
plotted in two figures: Fig. 1 compares the various adaptation
methods on the evaluation data sets 1-7 which were recorded
by the same microphone that was used to record the training
data, whereas Fig. 2 shows the comparison on evaluation data
sets 8—14 which were recorded by a different microphone. (The
results of MAP are not plotted in Fig. 1 and 2 because they are
too close to SI's.)

To simplify our discussion, results for data sets 2—7 and 9—
14 are separately averaged and summarized in Table 2, and the
corresponding reduction in word error rate (WER) are tabulated
in Table 3.

From Table 1-3 and Fig. 1-2, we have the following obser-
vations:

IMLLR with a regression class tree of 32 nodes had been tried with
different threshold counts in order to automatically select the right num-
ber of transforms for utterances of various durations. Although some
utterances might benefit from using more than one transform, on the
whole, we did not find a threshold count that could give a better result
than simply using a single global transform.



Table 1: Recognition performance (in word error rate %) of

various adaptation algorithms on each test subset of Aurora4.  Table 3: Summary of % word error rate reduction of various
[Set | ST | MAP | MLLR | eKEV | RSW [ KEMLLR | adaptation algorithms on various groups of Aurora4 test sub-

12.45 | 12.27 | 12.12 | 10.72 | 10.28 10.39
25.05| 25.08 | 23.79 | 21.36 | 21.73 21.33
2792 | 27.92 | 27.07 | 23.68 | 21.95 22.28

sets. (Data set 1 is the clean reference; set 2—7 contain different
additive noises; set 8 is clean but with convoluted noise; set 9—
14 contain different additive noises plus convoluted noise.)

3252 | 3252 | 31.34 | 29.76 | 26.04 26.52 l

28.25| 28.25| 26.89 | 23.65 | 22.21 22.62

32.04 | 32.04 | 31.31 | 27.85 | 26.00 24.68

30.87 | 30.98 | 26.47 | 27.29 | 24.68 22.87

1
2
3
7
5 30.76 | 30.76 | 30.02 | 27.30 | 24.97 26.56
6
7
8
9

40.52 | 40.41| 36.91 | 34.88 | 32.89 32.67

10 | 43.43 | 43.35| 40.70 | 39.96 | 36.76 34.51

11 | 45.23 | 45.19 | 44.20 | 41.62 | 38.53 37.16

Set | MAP | MLLR | eKEV | RSW | KEMLLR |
1 1.45 2.65 13.9 17.43 16.55
2-7 0.02 3.47 12.99 | 19.06 18.44
8 -0.36 | 14.25 | 11.60 | 20.02 25.92
9-14 0.09 5.26 9.14 15.76 19.04
[overall] 0.06 | 511 [ 10.82 [ 17.27] 19.19 |

12 | 46.37 | 46.37 | 43.65 | 41.69 | 38.56 37.61
13 | 4435| 4435 | 42.10 | 40.99 | 37.68 35.65
14 | 4549 | 45.49 | 43.87 | 41.99 | 39.15 37.27

Table 2: Summary of average recognition performance (in word
error rate %) of various adaptation algorithms on various groups
of Aurora4 test subsets. (Data set 1 is the clean reference; set
2-7 contain different additive noises; set 8 is clean but with
convoluted noise; set 9—14 contain different additive noises plus
convoluted noise.)

[ Set | SI | MAP | MLLR | eKEV | RSW | KEMLLR |

Word Error Rate (%)

35

25

20

1 12.45 | 12.27 | 12.12 | 10.72 | 10.28 10.39
2—7 29.42 | 29.43 | 28.40 | 25.60 | 23.82 24.00
8 30.87 | 30.98 | 26.47 | 27.29 | 24.68 22.87
9-14 | 4423 | 4419 | 41.91 | 40.19 | 37.26 35.81

/ I

15 MLLR ——
eKEV —B—
b RSW

_KEMLLR —&—

[Coverall | 34.66 | 34.64 | 32.80 | 30.91 | 28.67 | 28.01 |

Compared with the Sl baselines (on set 1 and 8), all
adaptation methods except MAP, continue to help in
combating noises.

MAP is not effective for such small amount of adaptation
data.

The WER more than doubles when there is a mis-match
in the channel in the absence of additive noises.

e When there is no channel mis-match between the train-
ing data and the test data, the presence of noises does
not change the relative performance of the 5 adaptation
methods under investigation that has been observed in
the past (when they were tested using TIDIGITS, RM,
or WSJ0). That is, the order of adaptation performance
is:

Sl~ MAP < MLLR < eKEV < RSW~ KEMLLR.

Word Error Rate (%)
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Evaluation Data Set (same microphone)

6

Figure 1: Recognition performance of various adaptation algo-
rithms on test subsets 1-7 of Aurora4 which were recorded with
the same microphone that recorded the training set.

— |

e When there is a channel mis-match, the relative order of
the performance is similar except that now KEMLLR is
obviously better than RSW. This can be explained by the

35
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fact that RSW is still using the reference speaker models
that were trained only with clean speech recorded by the
Sennheiser microphone, and the adapted model must be

Evaluation Data Set (different microphones)

on the span of the Sennheiser acoustic space. On the Figure 2: Recognition performance of various adaptation algo-
other hand, the adapted model produced by KEMLLR rithms on test subsets 8-14 of Aurora4 which were recorded

does not have such limitation.

e That eKEV is outperformed by the simpler RSW can be  iNg Set.

explained by the fact that the pre-imaging algorithm used

with a microphone different from that used to record the train-



in eKEV to project the adapted model from the kernel-
induced high-dimensional feature space back to the in-

put space also makes use of some reference speakers. As [7] J.L. Gauvain and C. H. Lee

a result, it is similar to RSW but with a smaller solu-
tion space that is constrained by the image in the feature
space.

The performance difference between MLLR and eKEV
also shrinks when there is a channel mis-match.

3. Conclusions

In this paper, we compare the performance of five adaptation
methods on noisy LVCSR. The five methods are MAP, MLLR,
RSW, eKEV, and KEMLLR. The first three are linear methods
while the last two make use of kernel methods. The presence of
additive noises does not change the relative order of the perfor-
mance of the five adaptation methods that we have observed in
the past when we worked on clean speech; the order shows that
KEMLLR and RSW have comparable performance and they
significantly outperform the others. When there is convoluted
noise (channel mis-match), it is obvious that KEMLLR has bet-
ter adaptation performance than RSW and other methods.

Since fast adaptation is the focus of this research, we did

not show any performance comparison between our new kernel-
based adaptation methods with the conventional ones when [12]
there are more than 10s of adaptation speech. On the other
hand, there is no reason to suggest that they will perform worse.
In the worst case, they may simply switch to using linear kernel
(instead of the current Gaussian kernels) for longer adaptation [13]
data, and the kernel-based adaptation methods will be reduced
to their linear counterparts and match the proven performance
of the latter.
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