
A FULLY AUTOMATED DERIVATION OF STATE-BASED EIGENTRIPHONES FOR
TRIPHONE MODELING WITH NO TIED STATES USING REGULARIZATION

Tom Ko and Brian Mak

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

Clear Water Bay, Hong Kong
{tomko, mak}@cse.ust.hk

ABSTRACT

Recently we proposed an alternative method called eigentriphone
to solve the data insufficiency problem in triphone acoustic model-
ing without the need of state tying. The idea is to treat the acous-
tic modeling problem of infrequent triphones (“poor triphones”) as
an adaptation problem from the more frequent triphones (“rich tri-
phones”): firstly, an eigenbasis is developed over the rich triphones
that have sufficient training data and the eigenvectors are called
eigentriphones; then the poor triphones are adapted in a fashion sim-
ilar to eigenvoice adaptation. Since, in general, no states are tied
in our method, all triphones (states) are distinct so that they can be
more discriminative than tied-state triphones.

In our previous work, the number of eigentriphones was deter-
mined in advance with a set of development data. In this paper, we
investigate simply using all of them with the help of regularization
to naturally penalize the less important ones. In addition, the model-
based eigenbasis is replaced by three state-based eigenbases. Ex-
perimental evaluation on the WSJ 5K task shows that triphone mod-
els trained using our new eigentriphone approach without state tying
perform at least as well as the common tied-state triphone models.
Index Terms: Eigenvoice, adaptation, eigentriphone, regularization.

1. INTRODUCTION

In (context-dependent) triphone hidden Markov modeling (HMM),
parameter sharing is generally applied to ensure that there are suffi-
cient training data for the robust estimation of the shared parameters.
In particular, state tying using a phonetic tree [2] is a commonplace,
and good recognition performance is always reported. Nevertheless,
one plausible problem with state tying is that the tied-state triphones
may become less discriminative because a state of one triphone may
be identical to a state of another triphone, causing confusion between
the two triphones during recognition.

Recently, Chang and Glass proposed a back-off discriminative
acoustic modeling method based on broad phonetic classes [3]. In
their work, the acoustic score of a triphone is computed from an
interpolation between the native triphone model that is based on
single-phone contexts and triphone models that are based on broad-
phonetic-class contexts. Although it can guarantee that every tri-
phone has a distinct acoustic score, acoustic-phonetic knowledge is
required to derive the broad phonetic classes. How to get the “opti-
mal” (if there is one) broad phonetic classes for any modeling units
(triphones, syllables, etc.) requires further investigation.

Last year, we proposed an alternative approach to context-
dependent acoustic modeling called eigentriphone [5]: an eigenba-
sis is computed from the frequent triphones of each base phone, and

acoustic modeling of infrequent triphones is treated as an adaptation
problem using the established eigenbases. Our method is similar
to [3] in that, since states are generally not tied in our eigentriphone
method, all triphones in our method are distinct from each other.
On the other hand, our method has the advantage that no phonetic
knowledge is required, and the whole method is data-driven and can
be fully automated from the derivation of the eigenbases to the de-
termination of the number of eigentriphones and the parameter esti-
mation of the final triphone models.

Our method is motivated by the eigenvoice adaptation
method [4]. Our eigentriphones are analogous to the eigenvoices
in the eigenvoice adaptation method, but whereas there is only one
eigenbasis in eigenvoice adaptation, we have 39 eigenbases — one
eigentriphone basis for each of the 39 base phones. Furthermore, the
selected number of eigentriphones represents the dimension of the
eigentriphone-space, which can be determined using a set of devel-
opment data. In our previous work [5], all triphones of the same base
phone i use the same number of eigentriphonesKi (though the value
of Ki varies with different base phones) for computational simplic-
ity. Presumably, the value ofKi should vary with different triphones
of the same base phone depending on their amount of training sam-
ples. In this paper, we would like to avoid making a hard decision
on the number of eigentriphones. Instead, we investigate the use
of regularization to make a soft decision on the number of eigentri-
phones; the regularization term will naturally penalize the less im-
portant eigentriphones. In addition, besides other minor changes,
the previous model-based eigentriphones are replaced by state-based
eigentriphones since parameter sharing at the state level is usually
more effective than parameter sharing at the model level [2].

This paper is organized as follows. In Section 2, we will first
review our original model-based eigentriphone acoustic modeling
approach, and then describe how the procedure is modified using
regularization so that it is now fully automated. That is followed by
experimental evaluation in Section 3 and conclusions in Section 4.

2. STATE-BASED EIGENTRIPHONES

We will first review the derivation procedure of model-based eigen-
triphones, and then describe the proposed improvements.

2.1. Derivation of Model-based Eigentriphones

Fig. 1 shows an overview of the model-based eigentriphone ap-
proach that we previously proposed in [5] for the estimation of the
infrequent or “poor” triphones. The derivation procedure of eigentri-
phones is similar to that of eigenvoices in the eigenvoice adaptation
method [4] except that (a) speaker-dependent models in eigenvoice



Fig. 1. The model-based eigentriphone adaptation approach.

are replaced by triphone models, and (b) whereas eigenvoice adap-
tation creates only one single set of eigenvoices for any speakers, a
set of eigentriphones is created for each base phone (or monophone).
Thus, since there are 39 base phones in our systems, 39 sets of eigen-
triphones have to be derived.

The following procedure is repeated for each base phone i using
its triphones that appear in the training corpus.

STEP 1: Monophone hidden Markov model (HMM) of base phone
i is first estimated from the training data. Each monophone is a
3-state strictly left-to-right HMM, and each state is represented
by an M -component Gaussian mixture model (GMM).

STEP 2: The monophone HMM of base phone i is then cloned to
initialize all its triphones. No state tying is performed for the
triphones.

STEP 3: Categorize each of the triphones q of base phone i into
one of the following two (possibly overlapping) sets based on its
training sample counts niq and two thresholds θRm and θPm:

• the rich triphone set ΩR
i if niq ≥ θRm, or

• the poor triphone set ΩP
i if niq < θPm.

STEP 4: Only Gaussian means of triphones in the rich set are re-
estimated, Thus, all triphones of the same base phone will share
the same set of Gaussian covariances, mixture weights, and tran-
sition probabilities which are copied from the base phone HMM.

STEP 5: For each rich triphone r ∈ ΩR
i , create a triphone supervec-

tor vir by stacking up all Gaussian mean vectors from its three
states as below.

vir =
[µir11, µir12, · · · , µir1M ,
µir21, µir22, · · · , µir2M ,
µir31, µir32, · · · , µir3M ]

. (1)

where µirjm, j = 1, 2, 3, and m = 1, 2, . . . ,M is the mean
vector of themth Gaussian component at the jth state of triphone
r. Similarly, a monophone supervector mi is created from the
monophone model of the base phone i.

STEP 6: Collect all rich triphone supervectors vi1, vi2, . . ., vi|ΩR
i |

as well as the monophone supervector mi of base phone i to-
gether, and derive an eigenbasis from their correlation matrix us-
ing principal component analysis (PCA).

STEP 7: Arrange the eigenvectors {eik, k = 1, 2, . . . , |ΩR
i |} in de-

scending order of their eigenvalues λik, and select the top Ki

eigenvectors so that they cover φv of the total variations. These
Ki eigenvectors are called eigentriphones of phone i. In general,
different base phones have a different number of eigentriphones.

STEP 8: Now the supervector vip of any poor triphone p ∈ ΩP
i

is assumed to lie in the eigenbasis spanned by the Ki eigentri-
phones. Thus, we have

vip = mi +

Ki∑
k=1

wipkeik (2)

where wip = [wip1, wip2, . . . , wipKi ] is the eigentriphone coef-
ficients vector of triphone p in the “triphone space” of base phone
i. Notice that the monophone supervector mi is used instead
of the mean of supervectors in Eqn.(2) so that the poor triphone
model may fall back to the monophone HMM in the worst case.

STEP 9: Estimate the eigentriphone coefficient vector wip of the
poor triphone p by maximizing the likelihood of its training data.
Finally, the Gaussian mean of the mth mixture at the jth state of
triphone p can be obtained from vip as

µipjm = mijm +

Ki∑
k=1

wipkeikjm . (3)

2.2. Investigation Issue #1: Soft Decision on the Number of
Eigentriphones using Regularization

In our previous paper [5], the number of eigentriphones Ki is deter-
mined in advance using a separate development set. There are two
drawbacks with the old scheme:

• In general, the value of Ki should also depend on the amount
of available training data of each poor triphone p of base
phone i. For triphones with more training data, a larger Ki

will give them a better model.

• It is not clear how to set the threshold φv which determines
the value of Ki. In [5], it is determined empirically using
development data and the procedure is time-consuming.

Here, we attempt to make a soft decision on the value of Ki

by using all eigentriphones with the help of regularization so that
the less important eigentriphones are automatically de-emphasized.
We define a new penalized log likelihood function Q(wip) for the
estimation of eigentriphone coefficient vector wip as follows:

Q(wip) = L(wip)− βR(wip) (4)

where β controls the relative importance of the regularization term
R(·) compared with the likelihood term L(·). The log likelihood of
the training data, is given by

L(wip) = constant−
∑

j,m,t

γipjm(t)(xt−µipjm(wip))
′
C
−1
ipjm(xt−µipjm(wip))

where Cipjm and γipjm(t) are the covariance and occupation prob-
ability of themth Gaussian at the jth state of poor triphone p of base
phone i given observation xt .

We investigate the following regularization term

R(wip) =

|ΩR
i |∑

k=1

w2
ipk

λik
(5)

with the following considerations:



• The likelihood term should be more dominant when there
are more training data. In particular, when a large amount
of training data is available, the “adapted” triphone model
should converge to its context-dependent estimate.

• Because of Eqn.(2), the adapted triphone model will converge
to the monophone model for small amount of training data.

• Each eigentriphone coefficient, wipk, is scaled by the inverse
of its corresponding eigenvalue so that a less informative
eigentriphone will have less influence on the adapted model.

Differentiating the optimization function Q(wip) of Eqn.(4)
w.r.t. each eigentriphone coefficient, and setting each derivative to
zero, we have,

|ΩR
i |∑

n=1

Aipknwipn + β
wipk

λik
= Bipk ∀k = 1, 2, · · · |ΩR

i | (6)

where

Aipkn =
∑
j,m

e′ikjmC
−1
ipjmeinjm

(∑
t

γipjm(t)

)

Bipk =
∑
j,m

e′ikjmC
−1
ipjm

(∑
t

γipjm(t)(xt −mijm)

)
.

The eigentriphone coefficients may be easily found by solving
the system of |ΩR

i | linear equations represented by Eqn.(6), and the
Gaussian means of the new model may be computed using Eqn.(3).
The training data may be re-aligned using the new model, obtaining
a new set of occupation probabilities γipjm(t) so that the eigentri-
phone coefficients may be re-estimated. The procedure is repeated
until the coefficients converge.

2.3. Investigation Issue #2: State-based Eigentriphones

The eigentriphone adaptation framework described so far uses the
whole triphone model to construct a supervector, and we will call the
resulting eigenvectors as model-based eigentriphones. Actually the
construction unit can be very flexible. In this paper, we would like to
investigate the performance of state-based eigentriphones which are
obtained by creating three separate eigenbases, one from each state.
Compared with model-based eigentriphones, state-based eigentri-
phones have 3 times more eigenbases, but the dimension of each
state-based eigentriphone is 1/3 of a model-based eigentriphone.

2.4. Other Improvements

Re-estimation thresholds θRv , θRw , and θRt are further defined to con-
trol the re-estimation of triphone covariances, mixture weights, and
transition probabilities respectively based on its sample count. That
is, the quantity will only be re-estimated if the sample count of the
triphone exceeds the respective threshold, otherwise, its value is sim-
ply copied from its monophone model.

Table 1. Information of various WSJ data sets.

Data Set #Speakers #Utterances Vocab Size OOV
SI284 283 37,413 13,646 —

si dt 05.odd 10 248 1,260 0
Nov’92 8 330 1,270 0
Nov’93 10 215 1,004 0.29%

3. EXPERIMENTAL EVALUATION

3.1. Speech Corpora and Experimental Setup

The standard SI-284 Wall Street Journal (WSJ) training set was used
for training the speaker-independent models. It consists of 7,138
WSJ0 utterances from 83 speakers, and 30,275 WSJ1 utterances
from 200 speakers. Thus, there are a total of about 70 hours of
read speech in 37,413 training utterances from 283 speakers. All
the training data were endpointed. Both of the standard Nov’92 and
Nov’93 5K non-verbalized test sets were used for evaluation using
the standard 5K-vocabulary bigram and trigram that came along with
the WSJ corpus. The data set, si dt 05.odd, was used for tuning all
system parameters. It contains alternate sentences from the 1993
WSJ 5K Hub development data set but sentences with OOV words
were removed. These data sets are summarized in Table 1.

There were altogether 18,777 cross-word triphones based on 39
base phonemes. Each triphone model was a strictly left-to-right 3-
state continuous-density hidden Markov model (CDHMM), with a
Gaussian mixture density of at most M = 16 components per state.
In addition, there were a 1-state short pause model and a 3-state si-
lence model. The traditional 39-dimensional MFCC vectors were
extracted at every 10ms over a window of 25ms.

The sample count thresholds for categorizing poor and rich tri-
phones, namely, θRm and θPm, were set to 30 and 200 respectively.
As a result, the two sets overlapped; there were 8,896 triphones in
the rich set and 15,884 triphones in the poor set. The sample count
thresholds for the re-estimation of the covariances, mixture weights,
and transition probabilities were set to 200, 30, 200 respectively. The
regularization parameter β was set to 15. These values were all de-
termined empirically from maximizing the recognition accuracy on
the development data set.

3.2. Baseline Systems

Three baseline systems were trained for comparison.

1. Baseline1: A conventional tied-state triphone system. A total
of 6,481 tied states were derived using a phonetic decision
tree. The number of tied states was selected to maximize the
recognition accuracy on the development set.

2. Baseline2: A triphone system with no tied states. Monophone
HMMs were first trained and then cloned to initialize the cor-
responding triphones. Then the Gaussian means and covari-
ances, mixture weights, and transition probabilities of a tri-
phone were only re-estimated if its sample count exceeds the
corresponding thresholds, θRm, θRv , θRw , and θRt respectively.

3. Baseline3: Similar to Baseline2 except that after monophones
cloning, only Gaussian means of those triphones with sam-
ple count greater than the threshold θRm were estimated; the
remaining HMM parameters (covariances, mixture weights,
and transition probabilities) still keep their corresponding
monophone values. Thus, all triphones of the same base
phone differ only in their Gaussian means.

3.3. The Eigentriphone Model

The state-based eigentriphone adaptation was carried using the Base-
line3 models according to the procedure described in Section 2. The
dimension of each triphone state supervector is 16 (mixtures) ×39
(MFCCs) = 624. Afterwards, the remaining HMM parameters of
each triphone: Gaussian covariances, mixture weights, and transi-
tion probabilities were further re-estimated if its sample count ex-
ceeds the respective re-estimation thresholds.



Table 2. Recognition word accuracy (%) of various systems on the
WSJ 5K task using bigram language model. (The figure with an ∗ is
statistically and significantly better than its baseline result.)

Model Description Nov’92 Nov’93
Baseline1 tied-state triphones 94.56 91.40
Baseline2 no state tying; rich triphones are re-

estimated; poor triphones are clones
of monophones

93.98 91.79

Baseline3 no state tying; only Gaussian means
of rich triphones are re-estimated

93.50 90.83

+ state-based eigentriphone “adapta-
tion” of means for poor triphones

93.78 91.37

+ re-estimation of Gaussian vari-
ances, mixture weights, and transi-
tion probabilities when the respective
re-estimation thresholds are met

94.53 92.44∗

Table 3. Recognition word accuracy (%) of various systems on the
WSJ 5K task using trigram language model.

System Nov’92 Nov’93
tied-state triphone system 96.45 93.89
state-based eigentriphone system 96.41 94.47
model-based eigentriphone system 96.47 94.44

3.4. Results and Discussions

The recognition performance of the various systems using bigram
and trigram language models are shown in Table 2 and Table 3 re-
spectively. It is observed that

• the proposed state-based eigentriphone adaptation approach
for the estimation of Gaussian means of the poor triphones
with subsequent re-estimation of their remaining HMM pa-
rameters is effective. Each step gives incremental improve-
ment over the Baseline3 system.

• Triphones without state-tying but trained using our proposed
state-based eigentriphone approach outperform tied-state tri-
phones on the Nov’93 test set, and perform slightly worse on
the Nov’92 test set. However, most of the differences in their
recognition accuracies are not statistically significant.

• Table 3 also compares the performance of state-based and
model-based eigentriphones; they performed equally well.
Since model-based eigentriphones result in fewer weights,
they are preferred over the state-based eigentriphones.

3.5. Effect of Regularization for the Soft Decision on the Num-
ber of Eigentriphones

The performance of the proposed regularization method that makes
a soft decision on the number of eigentriphones is compared with
that of using a hard decision so that a fixed percentage, φv , of the
total variations are covered. The comparison result on the Nov’93
test set is shown in Fig 2. It can be seen that when a fixed number of
eigentriphones are to be used, the number should not be too large or
too small: when it is too large, the triphones with small amount of
training data cannot be robustly estimated; when it is too small, the
triphones with large amount of training data will be under-trained.
The proposed regularization term helps avoid making the hard deci-
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Fig. 2. Effect of soft/hard decision on the number of eigentriphones.

sion, and the resulting system performs at least as well as a system
that uses the best hard number of eigentriphones.

4. CONCLUSIONS AND FUTURE WORK

We successfully avoid making a hard decision on the number of
eigentriphones to use in the eigentriphone adaptation framework for
distinctive acoustic modeling with no state-tying. This is achieved
by adding an appropriate regularization term in the objective estima-
tion function of the eigentriphone coefficients so that eigentriphones
with smaller eigenvalues are de-emphasized. The resulting recogni-
tion systems perform at least as well as tied-state triphone systems.

In the current work, only Gaussian means of the poor triphones
were “adapted”. We would like to investigate the adaptation of other
HMM parameters, such as Gaussian variance and mixture weights in
the future. We will also look at discriminative training of triphones
trained using eigentriphone method. This can be done at two levels:
(a) discriminative eigentriphones may be derived using discrimina-
tive component analysis methods such as LDA; (b) discriminative
training methods such as MCE or MMI training.
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