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Abstract

Multi-task learning (MTL) can be an effective way to improve
the generalization performance of singly learning tasks if the
tasks are related, especially when the amount of training data
is small. Our previous work applied MTL to the joint train-
ing of triphone and trigrapheme acoustic models using deep
neural networks (DNNs) for low-resource speech recognition.
Significant recognition improvement over the performance of
their DNNss trained by single-task learning (STL) was obtained.
In that work, both STL-DNNs and MTL-DNNs were trained
by minimizing the total frame-wise cross entropies. Since
phoneme and grapheme recognition are inherently sequence
classification tasks, here we study the effect of sequence-
discriminative training on their joint estimation using MTL-
DNNs. Experimental evaluation on TIMIT phoneme recogni-
tion shows that joint sequence training outperforms frame-wise
training of phone and grapheme MTL-DNN:Ss significantly.

Index Terms: sequence training, phone modeling, grapheme
modeling, multi-task learning, deep neural networks

1. Introduction

To address the problem of limited speech and language re-
sources in low-resource automatic speech recognition (ASR),
a multi-task learning (MTL) approach was taken in our previ-
ous work [1]. Unlike other popular approaches that make use
of cross-lingual [2, 3] or multi-lingual [4] information to im-
prove acoustic modeling of a low-resource language, our MTL
approach does not require resources from languages other than
the target language, nor a good mapping between its phonemes
and phonemes from other languages which is sometimes not
easy to find. In [1], we make use of the fact that phone mod-
eling and grapheme modeling are highly related learning tasks,
and estimate triphone acoustic models and trigrapheme acoustic
models of the same language together using a single deep neu-
ral network (DNN) [5]; we call the resulting DNN, MTL-DNN.
During MTL estimation of the phoneme and grapheme mod-
els, only the orthographic transcriptions of the training speech
and a phonetic dictionary of the target language (which phonetic
acoustic modeling already uses) are required. The MTL-DNN
is trained by minimizing the total frame-wise cross entropy. Ex-
perimental evaluation of our MTL-DNN approach on three low-
resource South African languages shows that their MTL-DNN
outperforms both of their triphone DNN and trigrapheme DNN
that are singly learned — STL-DNN, and even the ROVER
combination of the two STL-DNNs.

In [1], the MTL-DNNSs are trained by minimizing the
total frame-wise cross entropy criterion. However, speech
recognition is essentially a sequential labeling problem. The
frame-wise criterion does not capture the long term correla-
tion among the target classes in an utterance. On the other
hand, sequence-discriminative training has been an indispens-
able step in building state-of-the-art ASR systems that are based
on hidden Markov models (HMMs) with state output prob-
ability distributions estimated using Gaussian mixture model
(GMMs). Recently, sequence-discriminative training has been
extended to DNN training using different training criteria,
such as minimum Bayes risk (MBR) [6], minimum phone er-
ror (MPE) [7], maximum mutual information (MMI) [8] and
boosted MMI (BMMI) [9]. Consistent improvements are re-
ported on both phoneme recognition [10] and large-vocabulary
ASR [11, 12, 13]. In this paper, we further explore joint
sequence-discriminative training of both phone and grapheme
acoustic models under the MTL-DNN framework. That is,
for each training utterance, we have to produce both a phone
lattice as well as a grapheme lattice, compute the sequence-
discriminative training error from each of them, and propagate
these error signals back to the MTL-DNN to its weights under
the MTL framework.

The rest of this paper is organized as follows. In the next
section, the concepts of multi-task learning deep neural network
and joint phone and grapheme acoustic modeling are reviewed.
Then in Section 3, we describe the proposed joint sequence
training of phone and grapheme acoustic models using a DNN
in the MTL framework. Experimental evaluation are presented
in Section 4, followed by concluding remarks in Section 5.

2. Joint phone and grapheme acoustic
modeling using MTL-DNN

2.1. Multi-task learning deep neural network (MTL-DNN)

Multi-task learning (MTL) [14] or learning to learn [15] aims at
improving the generalization performance of a learning task by
jointly learning multiple related tasks. The multiple tasks share
some internal representation, so that their learned knowledge
can be transfered among each other. In fact, multi-task learning
is effectively a regularization method that may alleviate overfit-
ting, and is more effective when the amount of training data is
small. MTL can be readily implemented by artificial neural net-
works (ANN) in which the weights are used as the common rep-
resentation of learned knowledge shared across multiple tasks.
In fact, MTL has been applied successfully to the training of
ANNSs in many learning tasks in fields of speech, language, and
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Figure 1: An MTL-DNN system for the joint training of phone
and grapheme acoustic models.

image/vision. For example, in ASR, MTL is used to improve
ASR robustness using recurrent neural networks in [16]. In
language applications, [17] applies MTL on a single convolu-
tional neural network to produce state-of-the-art performance
for several language processing predictions; [18] improves in-
tent classification in goal-oriented human-machine spoken dia-
log systems especially when the amount of labeled training data
is limited. In [19], the MTL approach is used to perform multi-
label learning in an image annotation application.

MTL has been extended to training the popular deep neu-
ral networks (DNNs) to further improve learning performance.
Related works in the area of ASR include the use of MTL-DNN
for TIMIT phoneme recognition [20] which learns posteriors of
monophone states together with a secondary task that can be
learning phone labels, state contexts, or phone contexts. MTL-
DNN is also used in multi-lingual ASR to transfer cross-lingual
knowledge [21, 22].

2.2. Joint phone and grapheme acoustic modeling

Fig.1 shows an overview of the MTL-DNN system for joint
training of phone and grapheme acoustic models in our previ-
ous work [1]. Essentially two single-task learning DNNs (STL-
DNNs), one for training the posterior probabilities of phone
states and the other for training the posterior probabilities of
grapheme states are merged so that their input and hidden lay-
ers are shared, while each of them keeps its own output layer.
Although the DNN architecture looks similar to the one used
in multi-lingual speech recognition works [21, 22] mentioned
above, there is a subtle difference between our MTL procedure
and theirs. In these works, each of the multiple languages has
its own output layer (for its own tied states); when the training
samples of language, say, L are presented to the DNN, only the
output layer of language L is trained but not the output layers
of the other co-training languages. On the other hand, in our
work, for each input training sample, it is propagated through
all the hidden layers to the output layers of both phone states
and grapheme states. More specifically, given an input vector x,
the posterior probability of the phone output layer’s ith phone
state s;;, 1s computed using the softmax function as follows:

exp(Yip)

P(siplx) = ——— ——
Zi/il exp(Yirp)

, Vi=1,...,N,,

where y;,, is the activation of the state, and N, is the total
number of phone states. A similar formula may be derived for
the posterior probabilities P(s;4|x) of the N, grapheme states
at the grapheme output layer. Finally, the whole MTL-DNN is
trained by minimizing the sum of cross-entropies from the two
tasks over all frames:

Np Ng

Fce = Z Zdw log P(sip|x) —|—Z dig log P(sig|x) ,

x \i=1 i=1

where d;;, and d;4 are the target values of the ith phone state
and the ith grapheme state respectively.

Before the joint training of phone and grapheme acoustic
models, one first trains the conventional GMM-HMMs for the
phones and graphemes. The phone and grapheme states in the
output layers of the MTL-DNN are obtained from their cor-
responding GMM-HMM systems. The phone and grapheme
GMM-HMMs are also utilized to obtain the initial frame la-
bels of the training speech by forced alignment. During MTL-
DNN training, the target values of exactly one phone state in
the phone output layer and one grapheme state in the grapheme
output layer will be set to 1.0, while the target values of all
the remaining output units will be zero. During recognition,
the MTL-DNN posterior probabilities of the phone states or
grapheme states are fed into their respective decoders and after-
ward, Viterbi decoding is performed on their respective MTL-
DNN-HMMs. In addition, one may combine the recognition re-
sults from the phone-based decoder and the grapheme-based de-
coder using, e.g., ROVER [23], to obtain a better performance.

3. Joint sequence training of phone and
grapheme acoustic model

The joint training of phone and grapheme acoustic models us-
ing an MTL-DNN described in the last Section is found effec-
tive [1]. Nevertheless, the optimization criterion of minimizing
the total frame-wise cross-entropies does not take into account
the correlation between neighboring frames. Since sequence-
discriminative training has been applied successfully to STL-
DNN [10, 11], we would like to further investigate the effec-
tiveness of joint sequence-discriminative training of both phone
and grapheme acoustic models using an MTL-DNN. Moreover,
since it has been shown in [11] that the various discriminative
training criteria give similar performance, we simply choose
the minimum phone error (MPE) criterion for the phone-based
decoder, and the minimum grapheme error (MGE) criterion
for the grapheme-based decoder. Hence, the joint sequence-
discriminative training criterion of our MTL-DNN is to mini-
mize the sum of phone errors and grapheme errors as follows:

Fmpge = LI'mpe + Fmge
D PO W)™ P(W,) AWy, W)
- Sy PO |Wy)se P(Wy)
P
S, PO |Wi™)rs P(Wy) A(W,, W)
Sw, PO [Wg)~s P(Wg)

where W,S“) and Wéu) are the true phonetic and graphemic

transcriptions of the utterance u; O™ = {ogu) , oéu), s 0<T1;)}

is its acoustic observation sequence; A(Wp, W,S“)) is the pho-
netic transcription accuracy of the utterance defined as the num-
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Figure 2: Joint sequence training of phone and grapheme MTL-
DNN:E.

ber of correct phone labels in W;” minus the number of er-
rors in the hypothesis Wp; P(W)) is the probability of W,
given by the lattice. The graphemic transcription accuracy
AWy, Wé“)) is defined in a similar way. x, and k4 are the
likelihood scales used in MPE and MGE training respectively.

Taking the derivative of Fy,,pge W.r.t. log p(0¢|s), we obtain,
for the phone state s in phone a,

a—Fv’mpge den(u) 1 (uw) A(w)
—————— = KpY, S A s(t) € Sa — A *
Sy = = 6 (A 610 €50~ 4

where S, is the set of states of phone a; A;“)(*) is the av-
erage accuracy of all the paths in the lattice of utterance w;
fll(,u) (s(t) € Sa) is the average accuracy of those paths going
through phone a at time ¢ in the phone lattice; *ygft"(u) (s) is the
posterior probability that at time ¢ the utterance u reaches state
s, and is calculated by the extended Baum-Welch algorithm us-
ing the phone denominator lattice. Similarly,

8F‘m;uge _ den(u) (A(u) _ A(u) % )
Blog P(Ogu)|8) RgYg,t (S) g (S(t) € Sb) g ( )
for grapheme state s in grapheme b. Note that the phone lattice
and grapheme lattice of the same utterance are disjoint.

An overview of the sequence training procedure is shown in
Fig. 2. Firstly, an MTL-DNN is trained by minimizing the total
frame-wise cross-entropies. Then the well-trained MTL-DNN
is used to produce both the phone and the grapheme state poste-
riors of each training utterance. The phone posteriors are used
by the phone-based decoder to generate the phone denomina-
tor and numerator lattices for the utterance, while the grapheme
state posteriors are used by the grapheme-based decoder to gen-
erate the grapheme denominator and numerator lattices sepa-
rately. Finally, the following procedure is repeated for each ut-
terance w in the data set:

STEP 1 : Acoustic features of the whole utterance are again fed
into the MTL-DNN to produce the posteriors of the phone
and grapheme states.

STEP 2 : The two phone-based and grapheme-based decoders
take in the corresponding state posteriors and compute the
respective MPE and MGE statistics and the required gradi-
ents using the extended Baum-Welch algorithm.

STEP 3 : The weights of the MTL-DNN are updated by back-
propagating the combined MPE and MGE errors from the
two decoders through the hidden layers to the bottom layer.

4. Experimental evaluation
4.1. The TIMIT speech corpus

The standard NIST training set which consists of 3,696 utter-
ances from 462 speakers was used to train the various models,
whereas the standard core test set which consists of 192 utter-
ances spoken by 24 speakers was used for evaluation. The de-
velopment set is part of the complete test set, consisting of 192
utterances spoken by 24 speakers. Speakers in the training, de-
velopment, and test sets do not overlap.

We followed the standard experimentation on TIMIT, and
collapsed the original 61 phonetic labels in the corpus into a
set of 48 phones for acoustic modeling; the latter were further
collapsed into the standard set of 39 phones for error reporting.
Moreover, the glottal stop [q] was ignored. At the end, there are
altogether 15,546 cross-word triphone HMMs based on 48 base
phones. Phone recognition was performed using Viterbi decod-
ing with a phone bigram language model (LM) that was trained
from the TIMIT training transcriptions using the SRILM lan-
guage modeling toolkit. The phone bigram LM has a perplexity
of 16.44 on the core test set.

A grapheme recognition task is designed as the secondary
task. The 26 English alphabets are used as labels and word
transcriptions in the data set are expanded to their grapheme se-
quences. We estimated a grapheme bigram LM again from the
transcriptions of the training data; it has a perplexity of 22.79
on the core test set.

4.2. Feature extraction and system configurations
4.2.1. GMM-HMM baselines

39-dimensional acoustic feature vectors consisting of the first
13 MFCC coefficients, including c0, and their first and second
order derivatives were extracted at every 10ms over a window
of 25ms from each utterance. Then, conventional strictly left-
to-right 3-state continuous-density hidden Markov models were
trained by maximum-likelihood estimation. State output proba-
bility densities were modeled by Gaussian mixture models with
at most 16 components.

4.2.2. STL-DNN training by minimizing frame-wise cross-
entropy

Deep neural network (DNN) systems were built using 40-
dimensional log filter-bank features and the energy coefficient
as well as their first- and second-order derivatives. Single-task
learning (STL) DNNs were trained to classify the central frame
of each 15-frame acoustic context window. Feature vectors in
the window were concatenated and then normalized to have
zero mean and unit variance over the whole training set. All
DNNs in our experiments had 4 hidden layers with 2048 nodes
per layer. During pre-training, the mini-batch size was kept at
128, and a momentum of 0.5 was employed at the beginning
which was then grown to 0.9 after 5 iterations. For Gaussian-
Bernoulli restricted Boltzmann machines (RBMs), training kept
going for 220 epochs with a learning rate of 0.002, while
Bernoulli-Bernoulli RBMs were trained for 100 iterations with
a learning rate of 0.02. After pre-training, a softmax layer was
added on top of the deep belief network (DBN). The targets
were derived from the tied states of the respective GMM-HMM
baseline models. The whole network was fine-tuned by mini-
mizing the frame-wise cross-entropy with a learning rate start-
ing at 0.02 which was subsequently halved when performance
gain on the validation set was less than 0.5%. Training contin-



Table 1: Recognition performance of various phone- and
grapheme-based ASR systems in terms of phone error rate
(PER) and grapheme error rate (GER).

[ MODEL [ PER (%) | GER (%) |
GMM 28.20 12.64
STL-DNNs (CE) 2222 38.42
STL-DNNs (MPE /MGE) | 21.68 37.79
MTL-DNN (CE) 21.59 36.93
MTL-DNN (MPGE) 21.01 36.52

ued for at least 10 iterations and was stopped when the classifi-
cation error rate on the development set started to increase.

4.2.3. MTL-DNN training by minimizing frame-wise cross-
entropy

An MTL-DNN was initialized by the same DBN used to ini-
tialize the training of STL-DNNs. However, the single softmax
output layer in STL-DNNs was now replaced by two separate
softmax layers, one for the primary phoneme recognition task,
and the other one for the grapheme recognition secondary task.
During training, two targets, one for each of the two tasks, were
activated at the same time. We used the same global learning
rate for the output layer, but since there were two tasks now, the
learning rate for the hidden layers were halved. Otherwise, the
training procedure of MTL-DNN is the same as that of STL-
DNN.

4.2.4. Sequence-discriminative training of DNNs

STL-DNN or MTL-DNN trained by minimizing the total
frame-wise cross-entropies was employed to generate the nu-
merator and denominator lattices for its own sequence train-
ing. The denominator lattice were obtained by performing 30-
best recognition using the HTK toolkit. Afterwards, sequence
training was performed on top of the well-trained STL-DNN or
MTL-DNN by following the procedure described in Section 3.
It was empirically found that sequence training of STL-DNN
might well be started with a small global learning rate of le-5,
but sequence training of MTL-DNN required a larger learning
rate of le-4 to start. This may indicate that the parameter up-
date of joint sequence training of MTL-DNN is more stable so
that a larger learning rate may be used. Training continued for
at least 5 iterations with learning rate halving, and stopped if no
further improvement was observed. In joint sequence training,
the likelihood scales and insertion penalties of both tasks were
tuned to obtain the least phone error rate on the development
set.

During decoding, the insertion penalty was fixed to 0 and
the grammar factor was fixed to 1 for all DNN systems.

4.3. Experimental results

The recognition performance of various acoustic models on
TIMIT phonemes and graphemes are listed in Table 1. We have
the following observations:

e Compared to English phoneme recognition, English
grapheme recognition is much more difficult. Although
in the English grapheme recognition task, there are only
26 graphemes/letters to distinguish, the grapheme bi-
gram LM has a higher perplexity of 22.79! As a result,

all the grapheme-based recognition systems have high
GERs of around 40%. This is expected as there is a very
complicated relationship between English pronunciation
and its written form.

e The hybrid DNN-HMM systems greatly reduce the PER
or GER of their GMM-HMM counterparts. For exam-
ple, the phone STL-DNN trained by minimizing the to-
tal frame-wise cross-entropies reduces the PER by 21%
relative, while a similarly trained grapheme STL-DNN
reduces the GER by 10% relative.

e Both STL-DNNs are further improved by sequence-
discriminative training. MPE training reduces the PER
by 0.54% absolute, which is close to the results of MMI
training in [10].

e The STL-DNNSs can also be improved by multi-task
learning. Regardless of the use of frame-wise cross-
entropy criterion or sequence-discriminative training cri-
terion, MTL-DNNs can reduce the PER of their STL-
DNN counterparts by about 0.6% absolute, which is even
greater than the PER reduction obtained by sequence
training of STL-DNNSs.

e Although MTL-DNN training was stopped according to
its phoneme recognition performance on a separate de-
velopment set, one can see that multi-task learning not
only benefits the phone models, but also the grapheme
models. The evidence comes from the improved GER of
the MTL-DNNSs over the corresponding STL-DNNs.

e Joint sequence-discriminative training of MTL-DNN
gives the best phoneme recognition performance. The
absolute gain is 1.21% (or relatively 5.5%) when com-
pared to the STL-DNN baseline, and 0.58% (or relatively
2.6%) when compared to the MTL-DNN trained on min-
imizing the frame-wise cross-entropy.

5. Conclusions

Although graphemic acoustic models do not give good recog-
nition performance in English due to the highly complicated
relationship between English pronunciation and its writing, we
show that they still can be utilized to improve the estimation of
phonetic acoustic models in the multi-task learning framework.
We further study the effect of joint sequence-discriminative
training on MTL-DNN. The MTL-DNN is trained with error
signals from multiple sequential labeling tasks. Experiment re-
sults show that sequence-discriminative training is able to fur-
ther improve frame-wise cross-entropy training of MTL-DNNss.
We will analyze how the auxiliary grapheme knowledge alle-
viates the confusion among phonemes and how the phoneme
knowledge is able to resolve some of the complicated mappings
from acoustic features to graphemes.
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