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Abstract
Mixup is a learning strategy that constructs additional virtual
training samples from existing training samples by linearly in-
terpolating random pairs of them. It has been shown that mixup
can help avoid data memorization and thus improve model gen-
eralization. This paper investigates the mixup learning strategy
in training speaker-discriminative deep neural network (DNN)
for better text-independent speaker verification.

In recent speaker verification systems, a DNN is usually
trained to classify speakers in the training set. The DNN, at the
same time, learns a low-dimensional embedding of speakers so
that speaker embeddings can be generated for any speakers dur-
ing evaluation. We adapted the mixup strategy to the speaker-
discriminative DNN training procedure, and studied different
mixup schemes, such as performing mixup on MFCC features
or raw audio samples. The mixup learning strategy was evalu-
ated on NIST SRE 2010, 2016 and SITW evaluation sets. Ex-
perimental results show consistent performance improvements
both in terms of EER and DCF of up to 13% relative. We fur-
ther find that mixup training also improves the DNN’s speaker
classification accuracy consistently without requiring any addi-
tional data sources.
Index Terms: speaker recognition, deep neural networks,
mixup, x-vectors

1. Introduction
Speaker verification (SV) is the task of accepting or rejecting
the identity claim of a speaker based on some given speech.
Over the past decade, i-vector [1] based systems have been
the dominant approach in speaker verification. A standard i-
vector system consists of a universal background model (UBM),
a large projection matrix T and a probabilistic linear discrimi-
nant analysis (PLDA) classifier [2]. I-vectors are extracted by
projecting the statistics from a UBM to low-dimensional repre-
sentations using the projection matrix. The PLDA classifier is
used to compare pairs of i-vectors and make the decision.

In recent years, more powerful SV systems are built using
deep learning. These SV systems usually consists of two com-
ponents: a speaker-discriminative DNN [3, 4, 5, 6] to produce
speaker embeddings, and a separately trained PLDA classifier
to compare pairs of embeddings. The speaker-discriminative
DNN is trained to classify speakers in the training set with a
softmax output layer. After training, speaker embeddings of
any speakers are extracted from an intermediate layer before the
softmax layer. Since the speakers in the evaluation stage have
never been seen during training, and these test speakers may ut-
ter under very different acoustic environments, how to enhance
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the generalization ability of the speaker-discriminative DNN is
an important issue in order to improve the performance of an
SV system.

Various techniques have been developed to improve the
generalization ability of neural networks. One way is to in-
troduce regularizers during the network training procedure. For
example, batch normalization [7] normalizes outputs of hidden
layers to address the internal covariate shift problem. Dropout
[8] randomly drops units and their connections from a neural
network during training to avoid over-fitting. Another choice
is data augmentation. It constructs additional training samples
using expert knowledge and extra data sources. Data augmen-
tation can enrich the training data distribution and constantly
improve the generalization ability [9] of the DNN. In [5], addi-
tive noises and reverberation [10] are employed to increase the
diversity of training data, and lead to significant improvement
of x-vector-based DNN systems.

Mixup [11] is a learning strategy that is recently proposed
to improve the generalization of neural networks. It constructs
additional virtual training samples by linearly interpolating ran-
dom pairs of samples from the original training data and their
labels. The interpolation weights follow some distribution, and
beta distribution is commonly used. It is shown in [11] that
mixup reduces the generalization error on a variety of machine
learning tasks, such as image classification [12, 13], recognition
of simple spoken commands [14], and tabular data classification
[15]. In [16], mixup is also found to be effective in large-scale
automatic speech recognition, especially when there is a mis-
match between test data and training data.

In this paper, we investigate the mixup learning strategy in
text-independent speaker verification tasks. We adapt the mixup
strategy to the speaker-discriminative DNN training procedure
of an x-vector system. Various mixup schemes and their effec-
tiveness are studied.

2. Mixup training of speaker verification
systems

2.1. Mixup training

Mixup [11] is a training strategy that aims at avoiding data
memorization and improving the generalization ability of large
neural networks without the need for additional training data.
In supervised learning, we want to find a function f that maps
input feature x to its output label y by minimizing the average
of the loss function l over the joint data distribution P (x, y):

R(f) =

∫
l(f(x), y)dP (x, y) . (1)



This is known as expected risk. Since the data distribution P
is usually unknown in practice, it is often empirically approxi-
mated from the training data set D = {(xi, yi)}ni=1 as follows:

Pδ(x, y) =
1

n

n∑
i=1

δ(x = xi, y = yi) , (2)

where δ(x = xi, y = yi) is a Dirac mass centered at (xi, yi).
Another alternative is to use the following vicinal distribution:

Pv(x̃, ỹ) =
1

n

n∑
i=1

v(x̃, ỹ|xi, yi) , (3)

where v is a vicinity function that measures the probability of
finding the virtual training sample (x̃, ỹ) in the vicinity of the
real training sample (xi, yi).

[11] proposes a generic vicinal distribution called mixup:

µ(x̃, ỹ|xi, yi) =
1

n

n∑
j

Eλ[δ(x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj)] ,

(4)

where λ ∼ Beta(α, α), for α > 0.
In brief, sampling from the mixup distribution of Eq. (4)

generates new samples (and labels) which are the result of in-
terpolation between a pair of original training samples and their
labels, respectively:

x̃ = λxi + (1− λ)xj

ỹ = λ yi + (1− λ) yj
where xi, xj are input samples, and yi, yj are their one-hot

label encodings.
On the one hand, mixup can be considered as a form of data

augmentation that constructs virtual training samples through
interpolation of randomly sampled data. On the other hand,
mixup is also a regularization method that renders a neural net-
work favoring simple linear interpolation behavior in-between
training examples, and thus reduces data memorization.

2.2. The x-vector system with mixup

We employ the mixup training strategy on Kaldi’s x-vector sys-
tem [17]. The x-vector system consists of two modules. The
frond-end is a deep neural network trained to classify speakers
in the training set. The DNN training also produces an inter-
mediate hidden layer from which speaker embeddings can be
extracted. The back-end is a PLDA classifier [2] trained to com-
pare pairs of speaker embeddings for SV.

We investigate two mixup schemes for training the speaker-
discriminative neural network: raw audio sample mixup and
feature mixup. In the raw audio sample mixup scheme, each
virtual training sample is a linear combination of a pair of audio
samples from the original training data. In the feature mixup
scheme, the combination is conducted on MFCC features.

3. Experimental setup
3.1. Model configuration

The DNN used in the x-vector SV system is the baseline model
defined in Kaldi’s sre16/v2 recipe. The first five layers, l1 to
l5, are constructed with a time-delay architecture that works at
the frame level. Suppose t is the current time step; frames from

(t−2) to (t+2) are spliced together in the input layer. The next
two layers splice the output of the preceding layer at time steps
{t−2, t, t+2} and {t−3, t, t+3}, respectively. No temporal
contexts are added to the fourth and the fifth layers. Thus, the
total temporal context after the third layer is 15 frames. A statis-
tics pooling layer aggregates over frame-level output vectors of
the DNN, and computes their mean and standard deviation. The
mean and standard deviation are concatenated together and for-
warded to two additional hidden layers, l6 and l7, and finally to
a softmax output layer. The DNN is trained to classify speakers
in the training set.

After training, the softmax output layer and the last hidden
layer are discarded, and speaker embeddings are extracted from
the affine component of layer l6.

The PLDA back-end is used for comparing pairs of speaker
embeddings. The speaker embeddings are centered and then
projected using LDA, which reduces their dimension from 512
to 150. After dimensionality reduction, the representations are
length-normalized and modeled by PLDA. The PLDA scores
are further normalized using adaptive s-norm [18].

The input acoustic features are 23-dimensional MFCCs ex-
tracted every 10ms from a window of 25ms, and are mean-
normalized over a sliding window of up to 3 seconds. An
energy-based VAD is employed to filter out non-speech frames
from the utterances.

3.2. Training data

There are two sets of training data. The set of 8kHz training
data from NIST evaluation consists of primarily English tele-
phone speech (with a smaller amount of non-English and micro-
phone speech) taken from Switchboard data sets and past NIST
speaker recognition evaluations (SREs). The Switchboard por-
tion consists of Switchboard 2 Phase 1/2/3 and Switchboard
Cellular, and it contains about 28k recordings from 2.6k speak-
ers. The SRE portion consists of NIST SRE data from 2004 to
2008 for a total of about 35k recordings from 3.8k speakers. The
set of 16kHz training data for the Speaker In The Wild (SITW)
[19] evaluation set consists of Voxceleb1 (excluding speakers
that overlap with SITW data set) [20] and Voxceleb2 [21] with
a total of 1,236,567 segments from 7,185 speakers.

The clean data, together with the virtual data generated by
the mixup learning strategy are used to train the DNN system
and speaker embeddings, but the PLDA classifier is trained only
on the clean data.

3.3. Evaluation

System performance is assessed on NIST 2010, 2016 speaker
recognition evaluations [22, 23] and SITW, which will be de-
noted as SRE10, SRE16 and SITW, respectively in the rest
of this paper. SRE10 consists of English telephone speech
and our evaluation is based on the extended core condition 5.
SRE16 consists of Cantonese and Tagalog telephone speech.
The length of enrollment segments is about 60 seconds, and
the length of test segments varies from 10 to 60 seconds. SITW
consists of unconstrained audio of English speakers from videos
with naturally occurring noises, reverberation, as well as device
and codec variations.

The performance is reported in terms of equal error rate
(EER) in percentage as well as the official evaluation met-
ric. For SRE10, the metric is the minimum of the normal-
ized detection cost function (DCF) with PTarget = 0.001 [22].
For SRE16 [23], it is computed from a normalized DCF av-
eraged over two operation points with PTarget = 0.01 and



PTarget = 0.005, respectively. For SITW, it is the minimum of
the normalized DCF at PTarget = 0.01 and PTarget = 0.001.

3.4. Mixup details

The whole SV system is built using Kaldi. In its neural net-
work training framework using multiple machines, stochastic
gradient decent is separately applied with different randomized
subsets of the training data. Neural network parameters are
averaged across all the jobs periodically, and the averaged pa-
rameters are redistributed to the machines for further training.
The data subset used in a single job is referred to as a training
archive, which contains a certain number of samples for all the
speakers in the training set.

3.4.1. MFCC feature mixup

In the MFCC feature mixup scheme, the samples are MFCCs
with their corresponding speaker labels, and the mixup is con-
ducted within each training archive. We randomly choose two
training samples with different speaker labels to generate a new
virtual training sample.

3.4.2. Raw audio sample mixup

In the raw audio sample mixup scheme, we randomly choose a
pair of audio samples from different speakers to generate a new
audio. To deal with the audio pairs with different lengths, we
repeat the speech of the shorter one to match the length of the
longer one. Mixup is then performed on the two length-aligned
audios to generate the additional virtual audio for training.

4. Results

Table 1: Results of MFCC feature mixup on SRE10

System EER DCF10
Baseline 2.50 0.465

Uniform (α = 1) 2.34 0.460
Beta (α = 0.5) 2.27 0.491
Beta (α = 0.2) 2.33 0.455
Beta (α = 0.1) 2.44 0.454

Table 2: Results of MFCC feature mixup on SRE16

Cantonese Tagalog

EER DCF16 EER DCF16
Baseline 6.06 0.518 15.30 0.785

Uniform (α = 1) 5.69 0.498 14.32 0.784
Beta (α = 0.5) 5.94 0.519 14.25 0.782
Beta (α = 0.2) 5.92 0.515 14.71 0.778
Beta (α = 0.1) 6.12 0.508 14.75 0.785

4.1. Mixup on MFCC feature

We investigate mixup training with MFCC features on SRE10
and SRE16. Experimental results are summarized in Table 1
and Table 2. The baseline system is trained with data described
in Section 3.2 without any data augmentation techniques. We
try beta distribution with different α values. When α = 1,

we have the special case that the beta distribution becomes the
uniform distribution.

On SRE10, when α increases from 0.1 to 0.5, EER drops
while DCF10 increases. When the mixup weights are sam-
pled from the uniform distribution, EER improves by 6%. For
SRE16, the system performance is similar for beta distribution
with different α values, except that EER on Tagalog improves
4-7% compared to the baseline. With uniform distribution, the
system is 6% better in EER and 3% better in DCF16 on both
Cantonese and Tagalog. In general, mixup training helps little
when it is performed on MFCC features.

Table 3: Results of raw audio mixup on SRE10

System EER DCF10
Baseline 2.50 0.465

Uniform (α = 1) 2.18 0.418

Table 4: Results of raw audio mixup on SRE16

Cantonese Tagalog

EER DCF16 EER DCF16
Baseline 6.06 0.518 15.30 0.785

Uniform (α = 1) 5.45 0.491 14.30 0.764

Table 5: Results of raw audio mixup on SITW

Dev Eval

EER DCF2 DCF3 EER DCF2 DCF3
Baseline 3.93 0.372 0.551 4.265 0.397 0.604

Uniform (α = 1) 3.73 0.358 0.546 4.073 0.383 0.591

4.2. Mixup on raw audio data

We investigate mixup training with raw audio data on SRE10,
SRE16 and SITW data sets. The results are summarized in
Table 3, 4 and 5. Only results from using uniform distribu-
tion for sampling the interpolation weights are shown as we
find from preliminary results on SRE10 that it usually gives
better performance than using other beta distribution. More-
over, the use of uniform distribution also has the advantage that
no hyper-parameters tuning is required, and the system perfor-
mance seems to be more stable.

In general, mixup training with raw audio data consistently
outperforms the baseline on all test sets. On SRE10, compared
with the baseline, it is 13% better in EER and 10% better in
DCF10. For SRE16, it outperforms the baseline by 10% in EER
and 5% in DCF16 on Cantonese, and 7% better in EER and
3% better in DCF16 on Tagalog. The improvement on SITW
is mainly on EER and DCF2. On both the development and
evaluation sets, audio mixup training achieves 5% improvement
in EER anf 4% improvement in DCF2.

Figure 1 and 2 report the DET curves for systems evaluated
on SRE10 and SRE16, respectively.
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Figure 1: DET curve for SRE10 results

Table 6: Speaker DNN classification accuracy on training and
validation sets

Data System Training Set Validation Set

8kHz Baseline 89.8% 78.5%
Uniform (α = 1) 94.2% 85.9%

16kHz Baseline 94.9% 96.8%
Uniform (α = 1) 96.4% 97.8%

4.3. Classification accuracy of the speaker DNN

Mixup training is employed in training the speaker-
discriminative DNN, and it is supposed to improve the
generalization of the DNN as well. To verify the effectiveness
of mixup training, we further check the DNN performance
on classifying the speakers in the training and validation sets.
The results are shown in Table 6, where audio sample mixup
training is employed.

We can see that mixup training with weights sampled from
the uniform distribution can consistently improve the classifi-
cation accuracy on both training and validation speakers. For
the DNN trained on 8kHz data, mixup training improves the ac-
curacy by 5% absolute on the training set and 7% absolute on
the validation set. In other words, it reduces the error rate by
43% and 34% relative, respectively. Moreover, it reduces the
performance gap between the training and validation sets from
11.3% to 8.3% absolute. For the DNN trained on 16kHz data,
we can see that the baseline already achieves high accuracy on
both data sets. Nevertheless, mixup training can still reduce the
classification errors by about 30% relative on both training and
validation data sets. The results are consistent with speaker ver-
ification results presented in Section 4.2 when mixup training is
performed on raw audio data.

5. Conclusion
We investigate the mixup learning strategy in training a speaker-
discriminative DNN for text-independent speaker verification.
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Figure 2: DET curve for SRE16 when results are pooled across
Cantonese and Tagalog.

Mixup training is employed in training two systems with data
sampled at 8kHz and 16kHz, respectively. The 8kHz speaker
verification system is evaluated on SRE10 and SRE16, and the
performance of the 16kHz system is reported on the SITW eval-
uation set.

We find that mixup training on MFCC features does not
bring consistent and significant improvement, especially on
DCF, while mixup training with raw audio data can greatly
improve the SV performance on both EER and DCF. Besides
speaker verification, we also investigate the DNN performance
in terms of speaker classification accuracy. The classification
results are consistent with the findings in verification tasks:
mixup training with raw audio data can help improve the classi-
fication accuracy and reduce the performance gap between the
training set and validation set. We also find the relative error
reductions are comparable in both 8kHz system and 16kHz sys-
tem, though the reduction in the latter is a bit smaller. That is
reasonable since the 16kHz DNN already has very high speaker
classification accuracy as the data (sampled at a higher sampling
rate) contain richer speaker information.

The computational cost of creating additional virtual mixup
training samples from raw audio training data is low when com-
pared to the computational cost of the whole system. Yet it
brings significant improvement without using any extra data
sources. It can also be used together with other existing data
augmentation techniques to further improve the robustness and
generalization ability of the large DNN. In the future, we plan
to further explore other mixup schemes as well as other inter-
polation weight distributions.
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