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Abstract—We investigated two methods to improve the per-
formance of high-density discrete hidden Markov model (HD-
DHMM). HDDHMM employs discrete densities with a very
large codebook consisting of thousands to tens of thousands of
vector quantization (VQ) codewords which are constructed as the
product of per-dimension scalar quantization (SQ) codewords.
Although the subsequent HDDHMM is fast in decoding, it is not
accurate enough. In this paper, making use of the fact that, for
a fixed number of bits, VQ is more efficient than SQ, subvector
quantization (SVQ) was investigated to improve the quantization
efficiency while keeping the (time and space) complexity of the
quantizer sufficiently low. Model parameters of the resulting
SVQ-HDDHMM were further re-estimated. For the Wall Street
Journal 5K-vocabulary task, it is found that the proposed SVQ-
HDDHMM could be a better model (both in terms of recognition
time and error rate) than conventional continuous-density HMM
for practical deployment.

I. INTRODUCTION

Continuous-density hidden Markov model (CDHMM) using

Gaussian mixture model (GMM) states is the dominant acous-

tic model employed in most state-of-the-art automatic speech

recognition (ASR) systems. Nevertheless, with the advance in

semiconductor technologies (e.g., large solid-state RAM space

is becoming affordable), one may ponder: “How could we

improve the acoustic models in ASR if we were given very

large amount of memory?” It prompted a re-visit of the use of

discrete density in HMM as in the work of discrete mixture

HMM (DMHMM) [1], [2] and high-density discrete HMM

(HDDHMM) [3].

Compared with CDHMM, the use of discrete density in

HMM has the following attractive properties:

• the state distribution is non-parametric: in theory, it can

model any distribution if there are enough training data.

• it is fast in decoding: to find the state probability is simply

a table lookup.

However, even given sufficient memory storage, traditional

discrete HMM (DHMM) could not afford a large codebook

size. The major reason is the lack of training data, which is

usually not sufficient to train the discrete density of a large

codebook. As a result, usually 256 to 1024 codewords are

used. Such a small codebook will induce larger quantization
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error that is unacceptable for complicated tasks which require

high accuracy.

Unlike traditional DHMM which usually has at most 1024

codewords, HDDHMM has a codebook size in the order of

thousands to tens of thousands. It takes only O(d) time to find

the codeword for a new acoustic vector in HDDHMM, where

d is the dimension of the full-space acoustic vectors. This is

made possible by constructing full-space vector quantization

(VQ) codewords as the product of per-dimension scalar quan-

tization (SQ) codewords. Moreover, the state likelihood com-

putation is reduced to a simple table-lookup in HDDHMM.

Thus, what is equivalent to the evaluation of GMM likelihood

at each CDHMM state almost takes no time in HDDHMM.

However, the computational advantage of HDDHMM is partly

offset by three shortcomings:

1) For the conventional 39-dimensional MFCC acoustic

vector (comprised of the static, delta, and delta delta

MFCCs), even a 1-bit SQ for each dimension will

lead to a full-space VQ codebook size of 239 =
549, 755, 813, 888! Thus, it is necessary to split an

acoustic vector into multiple independent streams for

modeling. The use of multiple independent streams

cannot model correlations among features across streams

and results in poorer recognition performance.

2) As the computer memory is not really infinite in reality,

there is always a limit to the number of quantization bits,

which, in turn, limits the resolution of the HDDHMM

and its performance.

3) Given the huge parameter set of an HDDHMM, it is

our estimate that even an HDDHMM of modest size

may require several thousands of hours of speech for

its training. In the past, we avoided directly training

an HDDHMM and proposed a conversion method to

convert a K-stream CDHMM to a K-stream HDDHMM.

However, our experience [3] on the Wall Street Journal

5K-vocabulary task shows that the conversion of a

4-stream CDHMM system to a 4-stream HDDHMM

system resulted in significant increase of an absolute

2% in the word error rate (WER).

Although we cannot do much with the first shortcoming,

we proposed to tackle the last two shortcomings as follows.

1) To generalize the quantization scheme in the genera-



tion of HDDHMM from SQ to subvector quantization

(SVQ). It is well-known that for a fixed number of bits,

VQ is more efficient than SQ (in the sense that it results

in smaller quantization error) but at the price of higher

time and space complexities. SVQ may be used to strike

a balance between efficiency and complexity, and has

been used successfully in the work of LPC coding [4],

SDCHMM [5], and DMHMM [2].

To emphasize the difference in the quantization scheme,

HDDHMM that employs SVQ will be called SVQ-

HDDHMM and our previous HDDHMM [3] which

employs SQ will be renamed as SQ-HDDHMM.

2) To investigate an indirect training method for SVQ-

HDDHMM via an intermediate SVQ-DMHMM1.

II. SUBVECTOR-QUANTIZED HIGH-DENSITY HMM

(SVQ-HDDHMM)

Before the construction of an SVQ-HDDHMM, each d-

dimensional acoustic vector xt is partitioned into L subvectors,

xt = [x1t,x2t, . . . ,xLt]. Subvectors of each partition are

vector-quantized to create an SVQ codebook for the partition.

Full-space VQ codewords can then be constructed as the

products of SVQ codewords, one from each of the L partitions.

Let’s denote the relation as

V Q(xt) ≡ SV Q1(x1t) : SV Q2(x2t) : · · · : SV QL(xLt),

where V Q(·) and SV Qi(·) represent the VQ codeword given

the full-space acoustic vector and the SVQ codeword in the

ith partition given the acoustic subvector in that partition

respectively. While an SVQ codeword (or bin) represents a

multi-dimensional Voronoi cell in the space of one of the L

partitions, a VQ codeword (or bin) constructed above is a d-

dimensional convex polytope. Suppose the SVQ codebook of

the ith partition consists of ni SVQ codewords, and nmax is

the maximum codebook size among the L SVQ codebooks.

Then there will be
∏L

i=1 ni VQ bins in the full acoustic

space. For instance, if each acoustic vector is partitioned into 3

subvectors (i.e., L = 3) and each partition is vector-quantized

using 4 bits, then there will be (24)3 = 4, 096 VQ bins in the

full-space.

Although SVQ is employed, it is only used to efficiently

index a VQ codeword in the original d-dimensional acoustic

space through the combinatorial effect of per-partition SVQ

codewords. Finally, each stream of an SVQ-HDDHMM state

is a single discrete density function indexed by the products

of SVQ codewords in the way described above.

A. Finding a VQ Codeword

Given a new acoustic vector, it will first be split into L

subvectors. The subvector in the ith partition is then com-

pared with the corresponding SVQ codebook to find its SVQ

codeword in O(ni) time. Thus, for the same cookbook size,

SVQ-HDDHMM takes
∑L

i=1 ni comparisons to find a VQ

1The development of DMHMM started with the use of SQ [1] and was
later improved with the use of SVQ [2]. We will also call the two kinds of
DMHMM as SQ-DMHMM and SVQ-DMHMM respectively.
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Fig. 1. Two indirect methods for the parameter estimation of SVQ-
HDDHMM

codeword, which is significantly smaller than the
∏L

i=1 ni

comparisons in conventional DHMM.

B. Parameter Estimation of SVQ-HDDHMM

Since SVQ-HDDHMM may have thousands to tens of

thousands of full-space VQ codewords per state, it is a great

challenge to directly estimate its parameters. Fig.1 provides a

schematic view of two methods for the indirect estimation of

SVQ-HDDHMM parameters.

1) Method I: Conversion from a GMM: The simple conver-

sion algorithm used in the construction of SQ-HDDHMM [3]

is modified to construct SVQ-HDDHMM in three steps as

shown on the upper path in Fig.1.

STEP 1: A conventional 1-stream CDHMM with diagonal-

covariance GMM states is first trained.

STEP 2: It is converted to a K-stream CDHMM simply by

splitting the diagonal-covariance Gaussians according to

the stream definition. The K-stream CDHMM is then re-

estimated using the Baum-Welch algorithm. The probability

density function (pdf) of the kth stream of state j is given

by

b
(k)
j (x

(k)
t ) =

M
∑

m=1

c
(k)
jmN(x

(k)
t ;µ

(k)
jm, σ2(k)

jm ) ,

where x
(k)
t is the acoustic vector of the kth stream; µ

(k)
jm,

σ2(k)

jm , and c
(k)
jm are the mean vector, variance vector, and

mixture weight of the mth Gaussian component in the kth

stream of state j; M is the number of mixture components

in that state.

STEP 3: Each GMM pdf is converted to a probability mass

function (pmf) of the corresponding SVQ-HDDHMM by

finding the probability of each VQ bin. The computation

boils down to integrating a GMM pdf over the convex

polytope representing each VQ codeword. Suppose the VQ

codeword of x
(k)
t in the kth stream is h(k), which is con-

structed from L(k) SVQ codewords h
(k)
i , i = 1, 2, . . . , L(k),

then we have h(k) ≡ h
(k)
1 : h

(k)
2 : · · · : h

(k)

L(k) . Let’s also

denote the convex polytope of h(k) by Ω(V Qh(k)) and

the convex polytope of h
(k)
i by Ω(SV Q

h
(k)
i

). Hence, the



probability of the VQ codeword of xt in state j is given by

Pj(xt ∈ Ω(V Q(xt)))

=

K
∏

k=1

P
(k)
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=
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P
(k)
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, (1)

where x
(k)
it , µ

(k)
jmi, and σ2(k)

jmi are the subvector of x
(k)
t µ

(k)
jm,

and σ2(k)

jm in the ith partition of the kth stream, and

P
(k)
jmi(x

(k)
it ) =

∫

Ω(SV Q
h
(k)
i

)

N (x
(k)
it ;µ

(k)
jmi, σ

2(k)

jmi) . (2)

There is no closed-form solution for the integrals in Eqn.(2).

We developed our own numerical integration program to

evaluate the integrals using the single integration routines,

quad and quadgk, provided by Matlab.

2) Method II: Re-estimation via a DMHMM: (A) SVQ-

DMHMM as an SVQ-HDDHMM

Eqn.(1) shows that a K-stream SVQ-DMHMM can be

treated as a K-stream SVQ-HDDHMM2, and can always be

converted to the latter by simple arithmetic. SVQ-HDDHMM

is more efficient in state likelihood computation while

SVQ-DMHMM has fewer model parameters. To see that,

for a stream with L subvector partitions, if each partition

is vector-quantized to ni bins, the number of parameters in

an SVQ-HDDHMM state is
∏L

i=1 ni; the similar figure for

an SVQ-DMHMM state is M × (1 +
∑L

i=1 ni). Thus, the

number of model parameters in an SVQ-DMHMM is greatly

reduced, which makes the training of SVQ-DMHMM feasible.

(B) Model training

Following the lower training path in Fig.1, the training proce-

dure of a K-stream SVQ-HDDHMM via a K-stream SVQ-

DMHMM is described as follows.

STEP 1 and 2: Same as those in the conversion method in

Section 2.2.1.

STEP 3: Convert the K-stream CDHMM to an initial K-

stream SVQ-DMHMM using methods discussed in (C).

STEP 4: Re-estimate the model parameters of the K-stream

SVQ-DMHMM as described in [2].

STEP 5: Convert the re-estimated K-stream SVQ-DMHMM

to an equivalent K-stream SVQ-HDDHMM using Eqn.(1).

(C) Initialization of SVQ-DMHMM

We investigated two ways to compute the quantity, P
(k)
jmi(x

(k)
it )

of Eqn.(2), for the initial K-stream SVQ-DMHMM:

• by integration as shown in Eqn.(2).

2In general, the converse is not true: a K-stream SVQ-HDDHMM may not
be converted to an equivalent K-stream SVQ-DMHMM.

• by centroid approximation as used in [2]:

P
(k)
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(k)
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(k)
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2(k)

jmi)
∑

c
(k)
i
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(k)
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(k)
jmi, σ

2(k)
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(3)

where c
(k)
i is any codeword in the ith subvector partition

of the kth stream.

In general, model initialization by integration can be quite

accurate but is computationally very expensive especially

when the subvector dimension is high. On the contrary,

initializing the model by the centroid approximation method

is very fast though the resulting model is not accurate. Insofar

as the initialization is followed by re-estimation iterations, the

second method may be used when the subvector dimension

is high.

(D) Model smoothing

Even though SVQ-DMHMM already has many fewer model

parameters than its SVQ-HDDHMM counterpart, its number

of model parameters is usually still much larger than the

conventional CDHMM. Consequently, its model parameters

may not be robustly trained. Here, the simple smoothing

technique in [2] was adopted which interpolates the newly

estimated value of a parameter with its old value in the

last iteration. That is, if P
(k)
jmi,old(·) and P

(k)
jmi,new(·) are the

discrete density of the ith subvector partition of the mth

mixture in state j of the kth stream in the previous and

current re-estimation iterations respectively, then the smoothed

density, P
(k)
jmi(·), is computed as

P
(k)
jmi(·) = αP

(k)
jmi,new(·) + (1 − α)P

(k)
jmi,old(·) ,

where α ∈ [0.0, 1.0] is a smoothing coefficient determined

empirically using some development data.

III. EXPERIMENTAL EVALUATION

The proposed SVQ-HDDHMM was evaluated on the Wall

Street Journal 5K-vocabulary task (WSJ0). All experiments

were run on a Linux machine that runs on the Intel CPU,

Core 2 Duo E8400@3.00GHz with 4GB RAM.

The conventional 39-dimensional MFCC vectors were ex-

tracted at every 10 ms over a window of 25 ms. The parent

CDHMM system consisted of 15,449 cross-word triphones

and 3,130 tied states (plus 2 untied state). Evaluation was

performed on the standard nov’92 5K non-verbalized test set

which consists of 330 utterances from 8 speakers. A trigram

language model with a perplexity of 57 was used in decoding.

A subset of the development data set of WSJ0 was used to tune

the decoding parameters and the optimal smoothing coefficient

α, as well as to decide when to stop HMM training. Finally,

the HTK software was modified for HDDHMM training and

decoding.

A. Stream Definition, Bit Allocation Schemes, and Subvector

Partitions

4-stream SVQ-DMHMMs and 4-stream SVQ-HDDHMMs

were constructed according to the stream definition depicted



TABLE I
DEFINITION OF THE 4 STREAMS AND BIT ALLOCATION SCHEMES.

Bit Stream 1: Stream 2: Stream 3: Stream 4:
Alloc 12 MFCCs 12 ∆MFCCs 12 ∆∆MFCCs 3 energies

b1 222211111111 222211111111 222211111111 555

b2 222121111111 222121111111 222121111111 555

b3 221122111111 221122111111 221122111111 555

b4 221121112111 221121112111 221121112111 555

TABLE II
BASELINE CDHMM PERFORMANCE ON WSJ0

Model WER on Test Data

CDHMM-1stream 4.46

CDHMM-4stream 5.23

in Table I. The table also shows four different schemes of bit

allocation per dimension investigated in this paper; all of them

have the same total numbers of bits for each stream, which

are 16, 16, 16, and 15 respectively. Basically, we tried to put

more bits to the MFCCs of lower indices, which makes use

of the fact that MFCCs of lower indices are more important

for recognition task. In addition, the following two subvector

partitions (or dimensions w ) were attempted:

• w = 3: {3333, 3333, 3333, 111}.

• w = 4: {444, 444, 444, 111}.

For example, in the case of w = 3, each of the first three

streams was split into four 3-dimensional partitions, while the

last stream was split into three 1-dimensional partitions.

B. Baseline CDHMM Performance

There are two baseline results in Table II: one from the

1-stream CDHMM system and the other from the 4-stream

CDHMM system. As expected, there is a small but significant

degradation in the recognition performance with the use of

multiple independent streams, probably due to the fact that the

multi-stream CDHMM cannot model the correlation among

features from different streams.

C. Comparison of Different Quantization Methods

From Table III, we observe that

• For a fixed number of bits, the construction of HDDHMM

using SVQ is more effective than if SQ is used.

• The conversion of a 4-stream CDHMM to a 4-stream

SVQ-HDDHMM using numerical integration is effective.

The converted 4-stream SVQ-HDDHMM has very sim-

ilar WER as its parent 4-stream CDHMM (5.64% vs.

5.23%).

• The proposed re-estimation method via an intermediate

SVQ-DMHMM works well and further improves the

model’s WER from 5.64% to 5.45%, which is now

very close to the WER of 4-stream CDHMM baseline

performance 5.23%.

• If possible, it is better to initialize an SVQ-DMHMM

by integration instead of using centroid approximation.

Fortunately, after model re-estimation, SVQ-HDDHMM

initialized by the centroid approximation method will

TABLE III
COMPARISON BETWEEN SQ AND SVQ USING BIT ALLOCATION SCHEME

B1 AND SUBVECTOR DIMENSION w = 3.

SQ / SVQ Initialization WER (Re-estimation?)
no yes

SQ integration 6.26 6.26

SVQ integration 5.64 5.45

SVQ centroid approx. 6.67 6.11

TABLE IV
COMPARISON OF DIFFERENT BIT ALLOCATION WITH SUBVECTOR

DIMENSION w = 4.

Bit Allocation WER on Dev WER on Test

b1 8.37 6.31

b2 7.97 6.00

b3 8.25 6.54

b4 8.37 6.16

improve. This can be useful if we larger subvector

dimensions are used.

D. Effect of Bit Allocations and Subvector Dimension

The subvector dimension was increased to 4, and different

bit allocations given in Table I were tried with no re-estimation

after model conversion. Their effects are recorded in Table IV.

In this case, since the subvector dimension is too large for

numerical integration of the convex polytopes, models were

initialized by the centroid approximation method. It is found

that the bit allocation scheme, b2, gives the best performance.

E. Best Model

Based on the results of Table IV, the 4-stream SVQ-

DMHMM constructed using the bit allocation scheme b2 and

subvector dimension of w = 4 was re-estimated and then

converted to a 4-stream SVQ-HDDHMM. The final model

gives the best WAC performance of 5.31% which compares

favorably with the 4-stream CDHMM baseline’s WER of

5.23%.

F. Operating Characteristics

The operating characteristics of the following five models

are compared in Fig. 2.

• 1-stream CDHMM baseline (model size: 15MB)

• 4-stream CDHMM baseline (model size: 16MB)

• conventional 4-stream DHMM with 512 codewords for

each MFCC stream and 256 codewords for the energy

stream (model size: 11MB)

• 4-stream SQ-HDDHMM using bit allocation scheme b1

(model size: 1370MB)

• 4-stream SVQ-HDDHMM using bit allocation scheme b2

and subvector dimension w = 4 (model size: 1370MB)

The results show that the best 4-stream SVQ-HDDHMM

performs better than its parent 4-stream CDHMM, conven-

tional discrete HMM and the best 4-stream SQ-HDDHMM.

Even compared with the 1-stream CDHMM baseline, it pro-

vides better performance in operating conditions when com-

putation time is of the greatest concern.
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IV. CONCLUSIONS

Two methods are proposed to improve HDDHMM: (1)

the use of subvector quantization (SVQ), and (2) parameter

re-estimation via a discrete-mixture HMM. Evaluation on

WSJ0 shows the effectiveness of both methods. Although the

asymptotic accuracy of the new 4-stream SVQ-HDDHMM is

still not as good as that of its parent 1-stream CDHMM, the

performance gap is small. Furthermore, from the operating

characteristics of the two models, SVQ-HDDHMM has better

recognition performance under stringent computation time

requirement.
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