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This paper proposes a new hidden Makov model (HMM)
which we callspeaker-ensemble HMM(SE-HMM). An SE-
HMM is a multi-path HMM in which each path is an HMM
constructed from the training data of a different speaker. SE-
HMM may be considered a form of template-based acous-
tic model where speaker-specific acoustic templates are com-
pressed statistically into speaker-specific HMMs. However,
one has the flexibility of building SE-HMM at various level
of compression: SE-HMM may be built for a triphone state,
a triphone, a whole utterance, or other convenient phonetic
units. As a result, SE-HMM contains more details than con-
ventional HMM, but is much smaller than common template-
based acoustic models. Furthermore, the construction of SE-
HMM is simple, and since it is still an HMM, its construction
and computation is well supported by common HMM toolk-
its such as HTK. The proposed SE-HMM was evaluated on
Resource Management and Wall Street Journal tasks, and it
consistently gives better word recognition results than con-
ventional HMM.

Index Terms— detailed acoustic modeling, template-
based automatic speech recognition, speaker-ensemble acous-
tic model

1. INTRODUCTION

The success in automatic speech recognition (ASR) is partly
attributed to the development of context-dependent acous-
tic modeling. One common technique in context-dependent
acoustic modeling isparameter tying, which enables acous-
tic models to be trained robustly for a given (perhaps lim-
ited) amount of training data, and yet the models are compact
and decode at reasonable speed. Different model parameters
have been tied, resulting in generalized triphone models [1],
semi-continuous hidden Markov model (HMM) [2], tied-state
HMM [3], subspace distribution clustering HMM [4], and so
forth.

In recent years, with the availability of large amount of
training data and the advance of computer technology (e.g.,
large but cheap memory, faster CPU), there are researches

in the opposite direction to build more detailed acoustic
model. In theory, more detailed acoustic model could model
the acoustic-phonetic characteristics more accurately. One
representative example is the template-based acoustic model
(TBAM) [5, 6], which shows very competitive results when
compared with traditional HMMs. To build a template-based
triphone acoustic model, a set of speech templates of the tri-
phone are first collected from the training data. In the most
common case, each template is simply a sequence of fea-
ture vectors that represents an actual occurrence of the tri-
phone in the corpus. As the number of templates for a tri-
phone could be quite large, clustering or selection technique
is usually used to reduce the large number of triphone tem-
plates into a manageable number of template representatives,
which are supposed to store the fine phonetic details of the
triphone. This is different from an HMM-based ASR sys-
tem, where each triphone is usually represented by a highly
abstract HMM with a set of (parametric or non-parametric)
probability distributions.

Despite the ability to characterize the phonetic details,
template-based acoustic modeling has its own problems.
Firstly, its model size is much larger than HMM as it needs to
store a lot of template representatives. Secondly, many of the
useful techniques developed for HMM, e.g., speaker adap-
tation, discriminative training, may not be easily applied to
TBAM. Thirdly, for beginners, it is not easy to build TBAMs
by themselves as there are not many well-established tools to
support it, while for HMM-based acoustic modeling, many
well developed toolkits such as HTK [7] and Kaldi [8] are
freely available.

In this paper, we propose a new acoustic modeling method
called speaker-ensemble HMM(SE-HMM) with the aim to
combine the advantages of traditional hidden Markov mod-
eling and template-based acoustic modeling. When our new
method is applied at the phone level to create SE triphone
HMMs, each triphone is represented by a mixture of tradi-
tional 3-state strictly left-to-right HMMs, with each HMM
“component” describing a particular speaker’s realizations of
the triphone. The number of HMM components in an SE tri-



phone HMM is equal to the number of speakers in the train-
ing corpus. From the perspective of template-based acoustic
modeling, each HMM component could be viewed as a sta-
tistical template representative of the triphone from a specific
speaker. Compared with traditional HMM, SE-HMM stores
more acoustic-phonetic details as in common TBAMs. On
the other hand, SE-HMM has the following advantages over
common TBAM:

• The association of each training speaker with an HMM
may be seen as a natural way to cluster acoustic tem-
plates from each speaker in the TBAM approach.

• The model size is smaller. As will be seen in the next
section, only the speaker-independent (SI) HMM pa-
rameters and speaker-dependent (SD) transformation
matrices need to be stored.

• Since a mixture of HMM components is still an HMM,
the final SE-HMM is an HMM. Thus, all HMM op-
erations such as speaker adaptation and discriminative
training techniques that work for conventional HMM
may be applied to SE-HMM.

• Common HMM tools such as HTK and Kaldi can be
readily employed for the construction of SE-HMM.

Multi-path HMM has been tried in the past. In [9],
senone-dependent speaker-clustered HMMs are built by clus-
tering speaker data at the senone (tied state) level into at
most 8 clusters per senone. In [10], syllable-length acous-
tic trajectories are clustered to construct multi-path HMMs
for the 94 most frequent syllables, which are then mixed with
traditional triphone HMMs in a large-vocabulary continuous
speech recognition (LVCSR) task in Dutch. Similarly, Kork-
mazskiy proposed the generalized mixture of HMMs [11] for
a continuous digit recognition task. Unlike all these works
which require some kind of clustering of speech sequences,
we simply keep all speaker acoustic characteristics in our SE-
HMM in a succinct manner using their HMMs in the spirit of
template-based acoustic modeling. Furthermore, our model-
ing approach is very flexible and can be applied to construct
SE-HMM states, SE triphone HMMs, SE syllable HMMs,
and so forth. As will be seen in Section 3, our experiments
in LVCSR show that SE triphone HMMs perform better than
SE-HMM states or SE utterance HMMs.

2. SPEAKER-ENSEMBLE HMM (SE-HMM)

Speaker-ensemble hidden Markov modeling is very flexible.
In this paper, we will investigate its construction at the sub-
phonetic level (state), phone level, and utterance level. With-
out loss of generality, we will describe the construction of
speaker-ensemble triphone HMM below; speaker-ensemble
HMM state and speaker-ensemble utterance HMM can be
constructed in a similar procedure.

Fig. 1. A multi-path HMM representing the SE-HMM for the
triphone “k-b+r”, whereN is the number of training speakers,
and nodesSandE are the non-emitting entry and exit nodes.

2.1. Construction of Speaker-ensemble Triphone HMM

The procedure to construct SE triphone HMM is described as
follows.

STEP 1: Train a baseline speaker-independent (SI) triphone
HMM system.

STEP 2: Build speaker-dependent (SD) models for each
speaker in the training data by adapting the SI models with
MLLR [12].

STEP 3: For each triphonep, collect all its SD-HMMs,
λ

(SD)
p,k from each of the training speakersk = 1, . . . , N .

STEP 4: To construct the SE-HMMλ(SE)
p for triphonep, a

multi-path triphone HMM is then composed from the set
of SD triphone HMMs,{λ(SD)

p,k , k = 1, . . . , N} with one
SD triphone HMM per path. The transition probabilities
from the non-emitting entry node to the multiple paths are
set proportionally to the amount of training data for the
training speakers. Figure 1 gives an example of a multi-
path SE-HMM that may represent the triphone “k-b+r”.

In practice, the number of training speakersN is usually
not small. For example, there are 109 and 83 speakers in the
Resource Management and Wall Street Journal corpora re-
spectively. If we store all the SD-HMM parameters as shown
in Figure 1, the size of the resulting SE-HMM could be very
large. To save space, one may store only the SI models and all
the SD MLLR transformation matrices. During decoding, the
SD-HMM parameters can be generated on-the-fly using their



SI counterparts together with the appropriate MLLR transfor-
mation matrices.

2.2. Augmented SE-HMM

We also investigate a variation of the SE-HMM which we call
augmented SE-HMM. An augmented SE-HMM hasN + 1
paths: besides theN SD-HMMs mentioned above, an addi-
tional path that represents its SI model is added. The tran-
sition probability from the entry node to the SI-HMM path
is set to 0.5, while the transition probabilities of the otherN
SD-HMM paths are rescaled so that they sum to 0.5.

The idea of introducing the additional SI path in the aug-
mented SE-HMM is that in case the phonetic realization of
a triphone in the testing data matches poorly with any of the
SD-HMM paths, it may match better with the SI path. In
other words, when the acoustic data from a testing speaker se-
riously mismatch with any of the training speakers, it is better
to back-off to the baseline SI model.

2.3. Decoding of SE-HMM

Since an SE-HMM is just another HMM, it can be used di-
rectly in speech decoding by common recognition tools such
as HTK. However, as the models are much more complex —
N times larger — than the SI models, it will be very time
consuming to decode with them directly. In practice, 2-pass
decoding is adopted: in the first pass, a lattice is generated by
the SI models; in the second pass, the SE-HMMs are used to
rescore the lattice to get the final recognition outputs.

3. EXPERIMENTAL EVALUATION

The proposed SE-HMM was evaluated on the Resource Man-
agement (RM) and Wall Street Journal (WSJ) tasks. In
both tasks, the conventional 39-dimensional MFCC vectors
(with energy, delta, and delta-delta) were extracted at every
10ms over a window of 25ms. Cross-word triphone models
were then constructed using the HTK toolkit. The baseline
speaker-independent (SI) models are strictly left-to-right 3-
state continuous-density HMMs (CDHMM) with a Gaussian
mixture density at each state. In addition, there are a 1-state
short pause model and a 3-state silence model.

All system parameters such as the decoding parameters,
state-tying tree, and the number of regression classes for
MLLR adaptation were optimized using their respective de-
velopment data set. All recognition results are reported in
word error rate (WER).

3.1. Resource Management Task

3.1.1. Speech Corpus

The RM system was built from the standard SI-109 train-
ing data which consist of 3,990 utterances from 109 speak-

ers, and was evaluated on the four standard test sets: Feb’89,
Oct’89, Feb’91 and Sep’92 test sets using the standard word-
pair grammar. The speaker-dependent development set con-
sisting of 1,200 utterances was used to tune the various sys-
tem parameters such as the state-tying tree and the decoding
parameters.

3.1.2. Experimental Setup

The baseline SI system consists of 6,817 cross-word triphone
HMMs. Each triphone state has a Gaussian mixture density
of at most 6 components. There are totally 1,589 tied states
which were derived from a phonetic decision tree.

109 sets of SD triphone models were adapted from the set
of SI models by MLLR, one per training speaker. A binary
regression tree of 16 classes was used in the MLLR adapta-
tion. SE triphone HMMs and augmented SE triphone HMMs
were constructed from the corresponding SD triphone HMMs
and SI triphone HMM by following the procedure described
in Section 2.

3.2. Wall Street Journal Task

3.2.1. Speech Corpus

The standard SI-84 Wall Street Journal (WSJ0) training set
was used for training the speaker-independent models. It
consists of 7,138 utterances from 83 speakers for a total of
about 15 hours of read speech. All the training data were end-
pointed. The standard Nov’92 5K non-verbalized test set was
used for evaluation using the standard 5K-vocabulary bigram
that comes along with the WSJ corpus. The development set
si dt 05, containing 409 sentences, was used to tune the sys-
tem parameters.

3.2.2. Experimental Setup

The baseline SI system consists of 12,581 cross-word tri-
phones. Each triphone state has a Gaussian mixture density
of at most 16 components. There are totally 2,796 tied states
which were derived from a phonetic decision tree.

Eight-three sets of SD models were adapted from the SI
models again by MLLR, one per training speaker. Sixteen re-
gression classes were used in the MLLR adaptation. The SD
models were then used to build the SE-HMMs and augmented
SE-HMMs as in the RM task.

3.3. Performance of Various Acoustic Models

The performance of different models on both RM and WSJ0
tasks is shown in Table 1. For each model, we tried our best
effort to figure out its optimal setting. For the RM task, the
reported WER is an average over the four test sets.

From Table 1, it can be seen that SE-HMM performs
consistently better than the baseline SI-HMM with a relative



Table 1. Recognition performance (WER) of various models.

Model RM WSJ

Baseline SI-HMM 3.83% 6.54%
SE-HMM 3.60% 6.20%

Augmented SE-HMM 3.57% 6.28%

Table 2. Recognition performance (WER) of SE-HMM at
different level of speaker consistency.

Consistency Level RM WSJ

state 3.80% 6.59%
phone 3.60% 6.20%

utterance 3.89% 6.84%

WER reduction of 6% and 5% on the RM and WSJ tasks re-
spectively. Moreover, the augmented SE-HMM does not per-
form better than SE-HMM. We suspected that the SI-HMM
path in the augmented SE-HMMs was seldom taken in the
Viterbi search. To verify that, we analyzed the recognized
state sequences from the augmented SE-HMMs on the WSJ
task and found that the SI paths were only chosen for 4% of
the time. The small usage of the SI paths probably would not
affect the system performance that much.

3.4. Different Levels of Speaker Consistency

From the template-based acoustic modeling’s point of view,
SE triphone HMM stores speaker-specific template represen-
tatives (SD-HMMs) at the phone (or triphone) level. As a re-
sult, the decoded path for a testing utterance consists of a se-
quence of triphones with the following “phone-level speaker
consistency” property: on a decoded path, different triphones
may come from different speakers but the states within a tri-
phone must come from the same speaker. In the following, we
would like to investigate the importance of this property by
building SE-HMMs at the state level and the utterance level.

3.4.1. Utterance-level Speaker Consistency

In utterance-level speaker consistency, any speech segment in
the whole decoded path of a testing utterance must come from
the same speaker. This requirement can be easily achieved
by decoding each testing utteranceN times, each time with
one of theN MLLR-adapted SD models. The SD model
which gives the highest recognition score is chosen as the fi-
nal model to decode the utterance.

3.4.2. State-level Speaker Consistency

In state-level speaker consistency, each state in the decoded
path is allowed to come from a different speaker. The con-

struction of SE-HMM triphone states to fulfill this property
is similar as the construction of SE triphone HMMs, except
that the parallel paths are combined at the state level instead
of phone level.

3.4.3. Comparison Results

Table 2 compares the performance of requiring speaker con-
sistency at various modeling levels. It is observed that the
requirement of speaker consistency at both the state and ut-
terance levels results in poorer performance than that at the
phone level. In fact, their performances are not even better
than the baseline SI model.

The results seem to suggest that the requirement of
speaker consistency over a whole utterance is too restrictive.
Given the limited number of training speakers, it is unlikely
that a test speaker will match one of the training speakers per-
fectly over all triphones. On the other hand, the requirement
of speaker consistency at the state level seems too flexible,
and suffers from the trajectory folding problem [10] of al-
lowing switching between speakers among the three triphone
states. The requirement of speaker consistency over a tri-
phone thus strikes a good balance between flexibility and con-
sistency.

4. CONCLUSION AND FUTURE WORK

In this paper, a novel acoustic model called speaker-ensemble
HMM (SE-HMM) is proposed to combine the advantages of
traditional HMM and template-based acoustic model. SE-
HMM contains more speaker acoustic details than traditional
HMM. It can also be considered as a compressed version
of the template-based acoustic model in which the acoustic
templates from each training speaker are compressed into an
HMM. Since SE-HMM is an HMM, it can be readily imple-
mented and manipulated using current HMM tools.

Recognition experiments on the RM and WSJ0 tasks
show that SE-HMMs perform better than traditional HMMs
on both tasks if it is implemented to maintain speaker consis-
tency at the phone level (instead of state or utterance level).

Future works include comparing SE-HMM with other
template-based acoustic models and speaker-clustered mod-
els.
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