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Abstract

This paper describes our efforts in building an Android-based
computer-assisted pronunciation training application for the lo-
cal hearing-impaired (HI) children whose mother tongue is
Cantonese. Since Cantonese HI children represent only a mi-
nority population in the world, the greatest challenge to the un-
dertaking is the lack of their speech data and the difficulty in
collecting sufficient speech data from them for acoustic mod-
eling. We took the approach of building HI children acoustic
model from normal-hearing (NH) adults model by adaptation
using limited amount of adaptation data. Various feature-based
and model-based adaptation methods were investigated. They
include linear input networks (LIN) and its variants, Kullback-
Leibler divergence (KLD) regularization, and learning hid-
den unit contributions (LHUC). We report results on phoneme
recognition error rate (PER) as well as initial consonant recog-
nition error rate (ICER) because the application currently fo-
cuses on the articulation of the initial consonants. The best re-
sults show that a combination of KLD and LIN-Nblock may
reduce PER and ICER by a relative 11% and 16% respectively.

Index Terms: acoustic modeling, adaptation, deep neural net-
work, computer-assisted pronunciation training

1. Introduction

Compared to traditional learning in classrooms, computer-
assisted pronunciation training (CAPT) systems have the ben-
efit of providing immediate feedbacks in a stress-free environ-
ment to the learners. CAPT can also be practiced anywhere and
whenever a learner desires. In fact, many CAPT systems [1, 2]
have been developed over the past decade for native speakers
learning their first languages [3, 4] as well as non-native speak-
ers [2, 5, 6] learning a second language. This paper investigates
acoustic modeling for hearing-impaired (HI) children, whose
mother tongue is Cantonese, for the development of a CAPT
system that runs on Android-based mobile devices, such as a
mobile smartphone or a tablet. Besides overall phoneme recog-
nition accuracy, our CAPT application also focuses more on
the articulation accuracy of initial consonants since it has been
found that HI speakers produce more consonant errors than NH
speakers [7, 8]. Nevertheless, this paper describes mainly our
efforts on acoustic modeling of HI children’s speech and not
on the implementation of the application which is based on the
system described in [9].

The target users of our CAPT application are a minority
group of HI children of Hong Kong, aged between 6 to 12,
and the mother tongue of their parents is Cantonese. It is well
known that it is not easy to collect a large amount of speech
data from young kids; collecting large amount of speech data

from HI children is even harder. Even with the help of a local
society for the deaf, we managed to collect only about one hour
of Cantonese speech from 36 HI children. Hence, a major chal-
lenge we encountered is how to build an acoustic model for HI
children with very limited amount of speech data. On the other
hand, adult Cantonese speech corpora are already available, and
further collection of speech data from NH adults is much eas-
ier. Consequently, our strategy is to first train an acoustic model
using a large amount of NH adults speech data, and then inves-
tigate various adaptation techniques to transform the NH adults
acoustic model to work for HI children using the limited amount
of collected HI children speeches. We refer this as task adap-
tation. Compared with standard speaker adaptation, task adap-
tation does not estimate or store speaker-dependent parameters
for any specific speaker. Instead, it uses the whole set of adap-
tation data to create a task-specific model from a model devel-
oped for another task by minimizing the mismatch between data
from the two tasks. Two metrics are used to gauge the adapta-
tion techniques: phoneme error rate (PER) and recognition error
rate of the initial consonant (ICER) of Cantonese words.

2. DNN-HMM hybrid system

The hybrid deep neural network and hidden Markov model
(DNN-HMM) has shown to give better performance in many
automatic speech recognition (ASR) tasks over Gaussian mix-
ture model (GMM) HMM in recent years. A DNN-HMM takes
an observation x which usually consists of several contextual
frames of acoustic features as input, and performs nonlinear
transformations through L layers of perceptrons. For the Ith
hidden layer with 1 < | < L — 1, we have hl = o(z!) =
o ((wi)T vi4 bﬁ), where b, z!, and h! are the bias, excita-
tion and output of its 5th neuron; v! = h'~! is the input vector
to the Ith hidden layer; w! is the weight vector associated with
the ith neuron; o(z) = 1/ (1 + e~ ") is the sigmoid function.
A softmax layer L is then added to the top and the DNN is
trained to produce the posterior probabilities p(y = s|x) =
p(y = s|v’) of HMM senones s € {1,2,...,5} (where S
is the total number of senones). A DNN is typically trained by
back-propagation by minimizing the following cross entropy,
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where N is the number of training samples and p(y|x¢) is the
target probability for the observation x; at frame ¢. Usually
hard alignment is used to produce the training labels, reducing
D(y|x¢) to 6(y = s¢), where 0 is the Kronecker delta function
and s; is the label of the ¢-th frame.



3. DNN adaptation techniques

ASR often faces the problem that the test speech may not
match well with what the speech recognizer was trained on.
To alleviate such mismatch, various adaptation techniques have
been developed for DNNs. They can be classified into feature-
based methods [10, 11, 12, 13], addition of auxiliary features
[14, 15, 16], and model-based adaptation [17, 18, 19].

3.1. KL divergence regularization

Kullback-Leibler divergence (KLD) regularization proposed by
[17] adapts the model conservatively by requiring the state dis-
tribution estimated by the adapted model to be close to the dis-
tribution of the speaker-independent (SI) model. The constraint
is realized by adding a KLD regularization term to the original
cross-entropy optimization criterion in Eq. (1). Hence, we have
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where p®! (y|x:) and p(y|x:) are the posterior probabilities es-
timated by the SI model and the adapted model respectively,
and p is the regularization parameter. If we define p(y|z) as
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then Eq. (2) may be rewritten as
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Eq. (4) implies that KLD adaptation is equivalent to chang-
ing the target distribution from p(y|x:) to p(y|x¢), which is a
linear interpolation between the probabilities derived from the
empirical distribution of the adaptation data and the distribution
estimated from the SI model. As a result, KLD adaptation can
be performed on DNNs using the conventional BP algorithm
after modifying the target distribution from p(-) to p(-). The
interpolation weight p has to be determined empirically using a
separate development data set. When p = 0, KLD adaptation
simply uses the SI model as the initial model and re-trains the
model with the adaptation data. On the other hand, when p = 1,
the method is reduced to unsupervised adaptation.

3.2. Linear input network

Linear transformation is a common approach to DNN adap-
tation. Methods based on linear transformation differ in the
parameters that are being transformed. For example, the lin-
ear transformation can be applied to the input acoustic features
(LIN), the outputs of hidden layers (LHN), or the inputs to the
softmax layer (LON). Among them, LIN has been shown to give
better performance [11, 13] and is investigated in this paper.

3.2.1. LIN

The linear input network (LIN) adaptation method assumes that
the mismatch between training and testing conditions could be
captured in the feature space, and the speaker-dependent (SD)
features can be linearly transformed to match the SI features.
Specifically, the LIN method augments an SI DNN with a lin-
ear layer to transform the input features. The augmented layer
has the same dimension as the SI DNN’s original input layer,
and takes the identity activation function. In DNN-HMM, the

input usually consists of several adjacent frames for a total of,
say, N frames. Thus, if the dimension of the acoustic vector
of each speech frame is D, then the LIN (including the biases)
will have a dimension of ND x (ND + 1). During adapta-
tion, the LIN is first initialized to an identity matrix with zero
biases, and standard BP algorithm is employed to update only
the LIN parameters by minimizing the cross-entropy criterion
while keeping the SI DNN parameters intact.

3.2.2. LIN-Nblock

Since one major challenge in our current task adaptation prob-
lem is the limited amount of adaptation data from local HI
children, robust estimation of the large number of parameters
in LIN is a concern. Thus, we also investigate a LIN vari-
ant, the LIN-Nblock (which is referred to as LINblk(I) in [11])
which reduces the number of parameters by applying a struc-
tural constraint to the network. Whereas LIN tries to capture
both inter-frame and intra-frame relationship among the fea-
tures, LIN-Nblock only captures intra-frame feature relation-
ship: LIN-Nblock applies a different transformation to the fea-
tures in each input frame. As a result, the number of network
parameters is reduced by a factor of N to ND(D + 1).

The adaptation process of LIN-Nblock is exactly the same
as that of LIN except that the LIN-Nblock is comprised of /N
smaller matrices of dimension D x (D+1). The N matrices are
initialized to identity matrices with zero biases before training.

3.3. Learning hidden-unit contributions (LHUC)

LHUC [18, 19] is a model-based adaptation technique which
learns speaker-specific scaling factors for each hidden unit.
LHUC can be considered as a special case of the LHN method
in which the linear transformation of the outputs from a hid-
den layer is a diagonal matrix. Specifically, for a test speaker,
LHUC modifies the output of the ith unit in the /th hidden layer
in an SI DNN by a SD scaling factor a! as follows:

hl=al- O'(Zi) . ©)

When the scaling factor a! is set to 1.0, the SD model is
equivalent to the SI model. The scaling factors given by Eq. (5)
are unbounded and their training can be unstable. In [19], these
scaling factors are trained incrementally in a procedure similar
to DNN pre-training. In [18], the scaling factor is bounded by
computing it from a sigmoid function with an amplitude of 2.0:

hi =o' (r}) - o(zi) (6)

where ¢'(r}) = 2/(1 4+ ¢ Ti). Since the number of hidden
nodes in a DNN is much smaller than the number of weights
in a layer, the number of parameters to be estimated in LHUC
is much smaller than that in LIN, and is also slightly smaller
to that in LIN-Nblock. Hence, LHUC may be preferred if the
amount of adaptation data is relatively small.

4. Our CAPT system

Cantonese is the major Chinese dialect spoken in Hong Kong.
It is also the most popular dialect among the group of *Yue’
dialects spoken in the Southern region of China. Each Chinese
character is a syllable, and each syllable consists of an Initial
and a Final. In Cantonese, there are 19 initial consonants if
the Initial is not null, and 53 Finals. The Final is comprised
of a vowel and an optional ending consonant, and there are 18
vowels and 6 ending consonants.



The current CAPT system was developed for the Hong
Kong Society for the Deaf (HKSOD), which is a non-
governmental organization. There are listening and speaking
exercises of ~400 Cantonese words. Special attention is given
to the pronunciation of the 19 initial consonants. In the example
below (Figure 1), a subject is required to tell the difference (in
both listening or speaking exercises) between two very similar
words that differ only in their initial consonants. Therefore, we

/tou/ > [kou]
T(bean) i(dog)
Figure 1: A minimal-pair exercise example.

employ two metrics in reporting the system performance: over-
all phoneme error rate (PER) and initial consonant error rate
(ICER). Moreover, in the speaking exercise, we treat the pro-
nunciation assessment as a phoneme verification problem using
the PLASER technology described in [9] and report the CAPT
assessment performance in terms of the equal error rate (EER).

Table 1: Partitioning of NH adults and HI children data.

about 1 hour of speech from 11 HI girls and 25 HI boys aged
between 6 and 12.

5.2. Acoustic modeling

For acoustic modeling, we used a DNN with 4 hidden layers of
2048 sigmoid units per layer. A softmax layer of 132 output
units was stacked onto the DNN and classified an input frame
to one of the 132 monophone HMM states. We chose to model
monophones instead of other context-dependent units such as
triphones, because the testing materials consist of only ~ 400
isolated Cantonese words with limited triphone contexts. If tri-
phones were modeled, many triphone states will have no adap-
tation data, resulting in poor performance. We had verified the
decision by training a triphone system which indeed gave poor
phoneme recognition performance on the HI children test data.

The DNN inputs are the standard 39-dimensional MFCC
vectors with a context of 11 frames centered at the current
frame. Phoneme recognition was done with a unigram phoneme
language model. All experiments were conducted using the
open-source Kaldi toolkit [21].

Corpus ]22:3 #Speakers ((};/F/(ij):r #Utterances %I;Zu(itrg)f
— - Table 2: Performance of the DNN-HMM baseline system
train 127 67/60 37,252 304 trained on NH adults data only.
NH dev 22 10/12 4,320 2.4
adults test 17 9/8 3,985 2 Test Set Overall Consonant| Vowel ICER
Total 166 86/30 45,557 35 PER (%) | PER (%) | PER (%) | (%)
adapt 18 13/5 963 051 NH adults 31.1 335 27.6 21.6
HI dev 9 6/3 412 022 HI children 73.0 65.6 83.7 58.4
. test 9 6/3 505 0.27
children
Total 36 25/11 1,880 1.00

5. Experimental evaluations

The various adaptation methods were investigated to build
acoustic models for hearing-impaired (HI) children from
normal-hearing (NH) adults models for the CAPT system.

5.1. Speech corpora

Three Cantonese corpora were used for experiments: two cor-
pora were collected from NH adults and one corpus from HI
children in Hong Kong whose native language is Cantonese. Ta-
ble 1 summarizes how the NH adults and HI children data were
partitioned for training the baseline adults model and adapting
to the children model.

5.1.1. Normal-hearing adults corpora

Two NH adults corpora were used. One was the CUSENT cor-
pus [20]. It consists of 20 hours of speeches from 34 male and
34 female speakers, who read texts from 5100 different sen-
tences extracted from several Hong Kong newspapers. It was
collected inside a quiet recording room using a head-mounted
microphone. The second corpus was collected by HKSOD from
52 female and 46 male speakers for a total of 13 hours of speech
data. The corpus consists of Cantonese words spoken over the
built-in microphone of a mobile phone or tablet. In summary,
the two NH adults corpora together provide a total of ~35 hours
of speech from 166 speakers (86 females and 80 males).

5.1.2. Hearing impaired children corpus

The HI children corpus was also collected by HKSOD in the
same way as the NH adults corpus. The corpus consists of only

Table 3: Adaptation performance on HI children test set.

Adaptation Overall Consonant Vowel ICER
P PER (%) PER (%) PER (%)

[ Baseline [ 73.0 [ 65.6 [ 83.7 [ 58.4
[ KLD (p = 0.5) [ 65.8 [ 57.7 [ 77.4 [ 49.5
LIN-Nblock 68.0 60.9 78.3 533

LIN 67.8 60.9 77.7 52.9

LIN + bias 67.5 60.3 77.8 52.5
LIN-Nblock + bias 66.4 60.1 75.4 52.5

[ LHUC [ 66.7 [ 60.9 [ 75.1 [ 52.8
KLD+LHUC 65.4 58.9 74.8 51.1
KLD+LIN-Nblock+bias 65.1 57.5 76.0 49.5
KLD+LIN-Nblock 65.0 57.3 76.1 49.1

5.3. Phoneme recognition results

The baseline system was trained using only NH adults data, and
its performances on both NH adults and HI children test data are
shown in Table 2 in terms of both (overall) phoneme error rate
(PER) and initial consonant error rate (ICER). It can be seen
that the performance of the baseline model drops dramatically
when testing on the mismatched HI children data set. It is also
interesting to find that while the baseline NH adults model rec-
ognizes vowels better than consonants on NH test data, its per-
formance is opposite on the HI children data. Moreover, among
the consonants, initial consonants are better recognized.

The performance of the various adaptation methods is sum-
marized in Table 3, which is further discussed below.

5.3.1. Adaptation results of KLD regularization

Figure 2 illustrates the KLD adaptation performance on the test
data while the regularization parameter p was varied from 0.0
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Figure 2: Adaptation performance of KLD regularization

to 1.0; the behavior is the same on the development data. Sig-
nificant improvements are obtained regardless of the value of
p. The finding is different from that in [17], which reported
worse performance from KLD adaptation with small amount of
adaptation data (5 or 10 utterances per speaker) and small p.
The reason is that compared to speaker adaptation in [17], we
are doing task adaptation with relatively sufficient adaptation
data. This is also confirmed by the improvement obtained with
p = 0.0 when even no regularization was applied. The best per-
formance is obtained with p = 0.5, and PER (ICER) is reduced
by an absolute 7.25% (8.90%).

5.3.2. LIN adaptation results

As shown in Table 3, LIN and its variants also significantly im-
prove the performance of the baseline NH adults model on the
HI children test data. The results show that it is important to
adapt the biases as well: while LIN and LIN-Nblock have sim-
ilar improvement of ~5% absolute, the best result is obtained
by LIN-Nblock+bias which reduces the PER (ICER) by an ab-
solute 6.5% (5.9%).
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Figure 3: LHUC with different number of hidden layers.

5.3.3. LHUC adaptation results

From Table 3, the LHUC adaptation performance is very similar
to that of LIN-Nblock+bias, and is just slightly worse than the
latter. We further investigated the effect of LHUC adaptation
with different number of hidden layers and the results are plot-
ted in Figure 3. It is observed that the overall PER reduces al-

most linearly with the number of adapted hidden layers, starting
from the bottom layer. On the other hand, most improvement
in ICER reduction is obtained from adapting the bottom layer
alone. Thus, it seems the bottom layer output is more relevant
to the discrimination of the initial consonants.

5.3.4. System combinations

Finally we checked if the various adaptation methods are com-
plementary by combining them through joint adaptation. From
Table 3, we see that joint adaptation of KLLD with LIN or LHUC
may give slightly better results. The best results are obtained
by combining KLD regularization and LIN-Nblock adaptation
which reduces PER (ICER) by an absolute 8% (9.3%).
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Figure 4: CAPT performance: baseline vs. adapted system.

5.4. CAPT of initial consonants

Our CAPT system focuses on learning the articulation of ini-
tial consonants, and gives a binary correct/incorrect response
on their pronunciation produced by an HI child. From the DET
curves in Figure 4, the EER is reduced by KLD+LIN-Nblock
adaptation from 27% to 22%.

6. Conclusions

We investigated various speaker adaptation techniques for task
adaptation: adapting an NH adults acoustic model to work for
HI children in a mobile CAPT application. The major chal-
lenges are (1) the acoustic characteristics of HI children speech
are very different from those of NH speakers in the original
model; (2) the amount of adaptation data is very limited. We
present adaptation results from KLD regularization, LHUC,
LIN, and their combinations. Among the three methods, if they
were applied alone, KLD regularization gave the best perfor-
mance. Further improvement could be achieved from the joint
adaptation of KLD and LIN-Nblock, reducing PER and ICER
by a relative 11% and 16% respectively. The EER for the as-
sessment of initial consonants was reduced by a relative 18.5%.
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