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A Robust Algorithm for Word Boundary
Detection in the Presence of Noise

Jean-Claude Junqua, Member, IEEE, Brian Mak, and Ben Reaves, Member, IEEE

Abstract—We address the problem of automatic word bound-
ary detection in quiet and in the presence of noise. Attention
has been given to automatic word boundary detection for both
additive noise and noise-induced changes in the talker’s speech
production (Lombard reflex). After a comparison of several
automatic word boundary detection algorithms in different noisy-
Lombard conditions, we propose a new algorithm that is robust
in the presence of noise. This new algorithm identifies islands of
reliability (essentially the portion of speech contained between
the first and the last vowel) using time and frequency-based
features and then, after a noise classification, applies a noise
adaptive procedure to refine the boundaries. It is shown that
this new algorithm outperforms the commonly used algorithm
developed by Lamel ef al. and several other recently developed
methods. We evaluated the average recognition error rate due to
word boundary detection in an HMM-based recognition system
across several signal-to-noise ratios and noise conditions. The
recognition error rate decreased to about 20% compared to an
average of approximately 50% obtained with a modified version
of the Lamel et al. algorithm.

I. INTRODUCTION

MAJOR CAUSE of errors in isolated-word automatic
speech recognition systems is the inaccurate detection
of the beginning and ending boundaries of test and refer-
ence patterns. It is essential for automatic speech recognition
algorithms that speech segments be reliably separated from
nonspeech. Attempts to relax and adjust inaccurate beginning
and ending boundaries do not always work well, and robust
word boundary detection under noise conditions remains an
unsolved problem. Recently, a real-world evaluation of a
discourse system using an isolated-word recognizer showed
that more than haif of the recognition errors were due to
the word boundary detector [2]. According to Savoji 3], the
required characteristics of an ideal word boundary detector are:
reliability, robustness, accuracy, adaptation, simplicity, real-
time processing and no a priori knowledge of the noise. Among
these characteristics, robustness against noise conditions has
been the most difficult to achieve.
Many applications of speech recognition require identifying
words or short phrases in either speech or noise. Continuous
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speech recognition using background modeling and a finite-
state grammar directly addresses this problem. The combina-
tion of word boundary detection and isolated word recognition
addresses only the problem of speech embedded in noise.
However, it has had more development, and in noise (with
proper boundaries) currently achieves higher recognition rates
than does implicit word boundary detection with background
modeling.

This paper focuses on word boundary detection and its use
in automatic speech recognition. After a brief overview of the
literature on word boundary detection algorithms (Section II),
the performance of three recently developed word boundary
detection algorithms are evaluated and compared (Section
III) with a newly enhanced version of a commonly used
algorithm [1] based on energy levels and durations. Then,
based on the results obtained, we propose a new algorithm
(Section 1V) based on time and frequency features, report on
its evaluation, and show that this new algorithm outperforms
the other methods to which it is compared. Section V presents
an optimization of this algorithm and outlines a hybrid im-
plementation on a digital signal processor (DSP). Finally, the
main conclusions of our work are summarized. Throughout
the paper, the term boundary refers to the beginning or ending
frame of the speech patterns studied.

II. OVERVIEW OF EXISTING WORD
BOUNDARY DETECTION ALGORITHMS

Currently, most word boundary detection algorithms use
one or more of the following parameters: signal energy, zero-
crossings, duration, and linear prediction error energy (e.g.,
[1], [31-[6]). Recently, Hamada et al. used pitch information
to distinguish speech signals from noisy signals [7]. In their
algorithm, pitch information is extracted directly from the
waveform. Generally, word boundary detectors that use only
one parameter are algorithmically more complex in order
to achieve good performance [1], [5]. A different approach
adopted by Wilpon and Rabiner was to determine a set of
speech boundaries based on the output of a Viterbi algorithm
[8]. Hansen and Bria proposed a noise adaptive boundary
detection [9] derived from [1]. An advantage of such an algo-
rithm is that it deals with the variation of duration and intensity
due to the Lombard effect and the additive noise induced by
a noisy environment. However, threshold adaptation depends
often on the type of additive noise used and it is difficult to
rely only on an adaptive procedure to deal with various noise
conditions.
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III. A COMPARATIVE STUDY

A. Preliminaries

As a first step, we compared the performance of three
recently developed word boundary detection algorithms to an
algorithm [1] based on energy levels and durations, which is
enhanced by automatic threshold setting [10). We report their
performances when integrated with a commonly used speech
recognizer: vector quantization-based hidden Markov model
(VQ-based HMM). The VQ-based recognizer used first and
second order regression features, R; (with a 150 ms window)
and Ry (with a 230 ms window) [11], extracted from the
index weighted cepstral coefficients derived from the twelfth
model order of perceptually based linear prediction analysis
(PLP) [12]. The training was done on clean speech produced
in a normal environment (without background noise) and the
testing on Lombard or noisy-Lombard speech. Accuracy was
Jjudged by recognition rates.

B. Databases

The training database for the recognizer was an American
English ten-digit vocabulary spoken in a quiet environment
by 96 speakers. The test database was the digit vocabulary
produced in noisy conditions (two repetitions) by 30 speakers
(who were different from the training speakers). To simulate
speech production in noisy conditions, white-Gaussian noise
was played through calibrated headphones at 85 dB SPL.
To test different types of noise disturbances the experiments
were run with various additive noises extracted mainly from
the RSG-10 noise database [13]. Several levels of signal-
to-noise ratio (SNR) have been considered, ranging from
clean-Lombard speech (with no additive noise) to 5 dB SNR.

C. Overview of the Word Boundary
Detection Methods Evaluated

1) An Energy-Based Algorithm with Automatic Threshold Ad-
Justment (EPD-ATA): This algorithm from Lamel and Rosen-
berg [1] with some modifications from [10], is a general form
of an intuitive approach based on energy levels and durations
of silence and speech. As the noise thresholds are adapted
dynamically, this algorithm is similar to the one proposed by
Hansen and Bria [9]. A unique feature of this algorithm is that
it yields not only the most likely pair of boundaries, but also
other possibilities in order of their rank of being correct. Five
energy thresholds are adapted automatically according to the
voicing peak and the ambient noise estimated from the first
few frames. These frames are taken from the beginning of a
disk file containing one utterance each.

2) Use of Pitch Information (EPD-PCH): This word
boundary detection algorithm [7] relies on pitch extraction
and energy variations. It was designed for use in a real-time
speech recognizer for controlling home appliances. This
algorithm first attempts pitch detection directly from the
waveform by a straightforward method of finding a peak
whose amplitude is higher than the amplitudes of those
surrounding it. Next, the regions where the pitch appears to
be somewhat stable are declared to be an island of reliability.

Finally, the beginning of the first island of reliability is taken
to be an initial guess for the starting boundary; similarly,
the end of the last island is the initial guess for the ending
point. The initial boundaries are further refined using the
energy curve.

3) A Noise Adaptive Algorithm (EPD-NAA): This algo-
rithm, introduced here for comparative evaluation purposes,
uses the log of the rms signal energy, the Zero-crossing
rate, duration information, and a set of heuristics. The
thresholds used for the energy and the Zero-crossings are
adapted automatically from a few frames provided by the
signal environment. First, the frame of maximum energy
is located from the speech signal. Then, a search for the
word ending boundary candidate begins on the basis of the
logarithm of the rms energy. This candidate is then refined
using zero-crossing rate, energy, and heuristic rules based
on the previously calculated thresholds. The same procedure
is applied to the word beginning boundary candidate. When
the boundary candidates are found, a procedure to refine the
boundaries based on the same parameters is applied. This
procedure gives as output the initial word candidates and the
refined boundaries. This algorithm, which is simple and fast,
relies on the determination of the frame of maximum energy
to start the search. Generally, this frame is easy to locate even
in presence of noise.

4) A Voice Activation Algorithm (EPD-VAA ) This algo-
rithm is based on energy and zero-crossing parameters and a
set of decision rules and threshold settings. Its implementation,
which continuously looks at the input samples and detects
the beginning and ending boundaries without an a priori
knowledge of the maximum duration of the input signal, makes
it suitable for real-time purposes. To detect the beginning
boundary, speech is classified broadly in two categories:
fricative-like speech or vowel-type speech. To each class
is associated a set of conditions based on some functions
(determined empirically) of the energy and Zero-crossing
parameters. The ending point is determined by classifying
the energy in three categories: low, medium, high. To avoid
confusion between a pause and the end of speech and to deal
with transient noises, a history mechanism is implemented. A
decision procedure based on the number of frames classified
as noise and the noise category allows the ending boundary
to be determined. This algorithm is fast and very practical:
the speech signal is acquired at the same time as the word
boundary detection is done.

D. Results

The evaluation has been done on two repetitions of Lom-
bard speech produced by 30 speakers (600 utterances). To
compare the evaluated algorithms to a reference, we ran the
particular method described in [1] with thresholds determined
empirically rather than automatically. This we call EPD-REF.
Empirically set thresholds are likely to give better performance
than automatically adjusted thresholds. This algorithm [1] is
not well adapted to noisy environments—for this reason one
of the proposed methods (EPD-ATA) is a modification of
this algorithm to automatically adapt the thresholds to the
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TABLE 1
RECOGNITION ACCURACY OBTAINED WITH AN HMM VQ-BASED RECOGNIZER;
THE BOUNDARIES WERE DETERMINED MANUALLY AND WITH THE
DIEFERENT WORD BOUNDARY DETECTION ALGORITHMS EVALUATED

Word Boundary Detection Method HMM Recognition Accuracy

Manual endpoints 90.5%
EPD-REF 84.3%
EPD-ATA 74.0%
EPD-PCH 61.5%
EPD-NAA 90.2%
EPD-VAA 85.2%
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Fig. 1. Recognition accuracy obtained with an HMM VQ-based recognizer
for the different word boundary detection algorithms and manual labeling.
The results are presented at various SNR for the test words and different
types of noise.

background noise level. The reference algorithm and the other
word boundary detection algorithms were evaluated for clean-
Lombard speech (no additive noise). The results obtained are
presented in Table L.

For clean-Lombard speech the EPD-REF and EPD-NAA
algorithms give the best results. The noise adaptive algorithm
(EPD-NAA) gives recognition accuracy about as good as that
obtained with hand labels. To see if boundaries could be
manually optimized for a particular type of recognizer, we
ran extensive experiments where hand-labeled beginning and
ending boundaries varied by fixed amounts up to 150 ms, in
steps of 10 ms. These experiments showed that there is a strong
interaction between the boundary values and the recognition
algorithm used. The optimum boundaries reduced the error rate
by over 70% compared to the error rate obtained with hand-
labels. When the boundary values vary, the errors made by
the recognizers change. However, we could observe that long
words (e.g., “zero”) are less sensitive to word boundary values
and generally better recognized than short words (e.g., “two”).

To evaluate these different word boundary detection algo-
rithms on noisy-Lombard speech, additive noise was used
to simulate different noise conditions. The results obtained
are presented in Fig. 1 for car, white-Gaussian, pink and
multitalker babble noise.

Each word boundary detection algorithm is very sensitive
to the noise spectrum. The EPD-NAA algorithm generally
performs well at high SNR, while EPD-ATA, when compared
to the other word boundary detection algorithms, gives its best
recognition performance at low SNR values. Babble noise
was not properly handled by the EPD-PCH algorithm. This
is probably because, in this case, pitch information is difficult
to extract.

E. Discussion

For clean Lombard speech, the EPD-NAA algorithm gives
recognition scores as good as those obtained with manually
determined word boundaries. However, for noisy-Lombard
speech there is a degradation in recognition accuracy ranging
from 1% (car noise SNR = 20 dB) to 43% (pink noise SNR =
5 dB) compared to manually determined word boundaries. The
degradation in recognition accuracy for noisy environments is
essentially due to the word boundary detection algerithm.

Looking closely at the boundary locations given by the
various methods, it was found that, in the case of clean-
Lombard speech, the EPD-ATA and the EPD-PCH algorithms
tend to misclassify the beginning and ending portion of the
words (the beginning and ending boundaries tend to be inside
the words studied), while the EPD-VAA tends to misclassify
the ending portion of the words (the ending boundary tends to
cut the end of the words). With the EPD-NAA algorithm, the
speech signal is generally contained between the boundaries
detected.

This comparison shows that the relative performance of all
four algorithms evaluated is strongly dependent on the noise
condition. The reliability of the parameters used by different
algorithms depends on the noise characteristics. Apparently,
the energy and zero-crossing parameters are not sufficient to
consistently determine reliable boundaries, even when using
a complex decision strategy. No improvement was abtained
using pitch information because it can be difficult to extract
this parameter for certain noise conditions. There is a need
to consistently detect what can be called islands of reliability,
or in other words to base the word boundary computation
on a rough speech detection, robust against noise conditions,
followed by a refinement procedure. The EPD-NAA algorithm,
which reliably identifies the frame of maximum energy before
starting the search, is a very basic positive first step towards
solving this problem. However, the results obtained are not
yet satisfactory. In the following sections we present: 1) a new
algorithm that addresses this need, 2) a comparative evaluation
of this new algorithm and the best of the word boundary
detection methods presented above, and 3) an optimization
of this new method by introducing a noise classification
procedure.

IV. A NEW ALGORITHM ROBUST AGAINST NOISE
A. Description of the Algorithm

To consistently extract islands of reliability, even in very
noisy conditions, we used a parameter (hereafter called the
time-frequency (TF) parameter) based on the energy in the
frequency band 250-3500 Hz and the logarithm of the rms
energy computed on the entire frequency band of the speech
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Fig. 2. Block diagram of the computation of the time-frequency parameter
used in the EPD-TFF algorithm.

signal. Such a feature was successfully used in the identifica-
tion of broad phonetic classes in the APHODEX system [14].
We selected the energy in the frequency band 250-3500 Hz
because of its usefulness for detecting high energy regions (in
the incoming signal) that correspond essentially to the vowel
portions of the speech signal. This frequency-band helps the
algorithm to make the distinction between speech and noise.
By determining the portion of speech contained between the
first and the last vowel of the speech signal, broad boundaries
can be detected. This bandlimited energy is first normalized
and smoothed by a median average algorithm. Then, the
logarithm of the nombandlimited rms energy is computed,
normalized, and smoothed. The final parameter used (TF) is
the result obtained after smoothing the sum of the two energy
curves. Then, a noise adaptive threshold is computed from
the first few frames of the speech signal to determine the
beginning of the first vowel and the end of the last vowel
(initial broad boundaries). Fig. 2 illustrates the computation
of the time-frequency parameter and Fig. 3 the detection of
the islands of reliability using this parameter and the adaptive
threshold. Finally, a refinement procedure is applied from
the initial boundaries found to an earliest and latest possible
boundary limit obtained by padding a fixed 100 ms to the

SPEECH SIGNAL

Compute the logarithm
of the rms energy on the
incoming signal

'

Find the maximum energy "Emax"
(on all the incoming signal) and the
average "avrof the logarithm of the|
rms energy (on a relative silence
portion of typically 10 frames)

Compute a threshold

th 1=(Emax-avr)*avp
(A is a constant)

'

Apply the adaptive threshold on
the TF parameter to compute the
islands of reliability boundaries

»A

TF parameter ————»

ISLANDS OF RELIABILITY BOUNDARIES

Fig. 3. Block diagram of the computation of the islands of reliability in the
EPD-TFF algorithm.

beginning of the first vowel, and 150 ms to the end of the last
vowel. The refinement procedure is presented in Fig. 4. If the
algorithm used to detect the islands of reliability is robust, this
new method should reliably yield boundaries that are close
to the manual boundaries regardless of the type of additive
noise. Fig. 5 shows a spectrogram of the word “one” with
white-Gaussian noise added to the speech signal to obtain an
SNR of 15 dB. On this figure the time-frequency parameter
used to detect the islands of reliability has been plotted.
As can be seen, the application of an adaptive threshold on
the TF parameter gives a rough approximation of the word
boundaries. In the following sections, we will refer to the
complete algorithm with the name EPD-TFF.

B. Experimental Evaluation

We evaluated the EPD-TFF algorithm for clean-Lombard
and noisy-Lombard speech. The databases used are the same
as described above. Performance was assessed by recognition
rates. The results obtained are presented in Fig. 6.

We found that 1) in the case of clean-Lombard speech, the
recognition scores obtained with the boundaries produced by
the new algorithm (EPD-TFF) are similar to those obtained
with manually determined boundaries; 2) in the case of ad-
ditive noise, EPD-TFF outperforms the other word boundary
detection algorithms, especially at low SNR. Only for car noise
is EPD-TFF outperformed slightly by EPD-NAA, but both
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ONE

Fig. 5. Spectrogram of the word “one” (produced in noise by a male speaker)
with additive white-Gaussian noise (SNR=15 dB). The time-frequency pa-
rameter, the islands of reliability boundaries, and the final boundaries are
displayed.

algorithms give good performance; and 3) the degradation in
recognition accuracy by EPD-TFF due only to automatic word
boundary detection is quite consistent across the various noise
conditions. This was not the case for the other word boundary
detection algorithms.

Compared to the other word boundary detection algorithms,
the EPD-TFF algorithm gives the most accurate word ending
boundary. Generally, there is less than 100 ms difference
between the computed ending boundary and the manually
determined ending boundary (for all the noise and SNR
conditions). For the beginning boundary, good performance is
obtained at low and high SNR by the EPD-TFF algorithm.
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Fig. 6. Recognition accuracy obtained with an HMM recognizer for the
different word boundary detection algorithms studied and manual labeling.
The results are presented at various SNR for the test words and different
types of noise.

However, at medium SNR the EPD-VAA algorithm gives
generally the most accurate beginning boundary.

In the following we will refer to the recognition errors
obtained when using hand-labels by Eyp and to the recognition
errors obtained when using automatic word boundary detection
by Ear. For each word boundary detection algorithm, we
evaluated the percentage of recognition errors attributable to
word boundary detection errors relative to the total number
of errors (recognition accuracy with hand-labeled boundaries
was used as a reference). This percentage was obtained by
evaluating the ratio EAI;E——HL Fig. 7 presents the results
obtained as a function of the SNR. Compared to the EPD-ATA
algorithm, which yields an average across the SNR values of
approximately 50% error rate due to word boundary detection,
the EPD-TFF algorithm shows a major improvement, espe-
cially at low SNR. This is essentially due to the additional
TF parameter (based on time and frequency features) used
to determine islands of reliability. It is interesting to notice
that the ratio of the recognition errors due to the EPD-TFF
algorithm to the total number of recognition errors is greatest
at medium SNR (15 to 20 dB). In this case, the EPD-TFF
algorithm still gives the best absolute recognition performance
compared to the other word boundary detection algorithms.
However, at medium SNR (it is also true at high SNR),
as the noise does not influence too much the recognition
accuracy, the word boundary detection precision becomes
important and causes a large portion of the errors made by
the recognizer. At high SNR, the EPD-TFF algorithm provides
very good boundaries due to the precision of the refinement
procedure. However, at medium SNR this procedure needs
to be improved. At low SNR the refinement procedure is
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Fig. 7. Percentage of recognition errors (averaged across the noise condi-
tions) due to automatic word boundary detection as a function of the SNR.
It is important to note that this figure shows the ratio of the recognition
errors due to word boundary detection (taking recognition scores obtained
with hand-labels as a reference) to the total number of recognition errors
obtained with these algorithms; it is not the absolute recognition performance
obtained when using the different word boundary detection algorithms.

less important because of the important influence of the noise
on the recognizer performance. In this case, even accurate
word boundaries do not prevent the recognizer from making
mistakes. To improve the performance of our new algorithm,
we propose, in the next section, a noise classification procedure
that improves performance at medium SNR without degrading
word boundary results at other SNR values.

V. OPTIMIZATION FOR REAL-TIME

By using 10 frames of “relative” silence at the beginning of
the recording and computing an average of the logarithm of
the rms energy and the zero-crossing rate on these frames,
we determine the noise level (high, medium, or low) and
the noise category (high or low zero-crossing rate). A set of
threshold values, empirically determined, are used to perform
this classification. If the noise level is low the same refinement
procedure as the one used in the EPD-NAA algorithm is
applied. However, if the noise level is classified as medium or
high, a linear adjustment procedure depending on the noise rms
energy is applied to adjust the islands of reliability boundaries.
A single adjustment value or adjustment factor is subtracted
from the approximate word beginning boundary and added to
the approximated ending boundary.

We evaluated the final EPD-TFF algorithm for the four
noise conditions at different SNR. The results are presented in
Table II, where recognition rates of the improved and previous
EPD-TFF algorithm are shown at medium SNR (15 and 20
dB), and in Fig. 8 where, as in Fig. 7, the percentage of
errors due to the improved EPD-TFF word boundary detection
method, the previous EPD-TFF algorithm and EPD-NAA
(used in this figure as a reference), is presented. As can be
seen in Fig. 8, the noise classification procedure results in a
large improvement at medium SNR, leading to a substantial
decrease, across different noise types, of the recognition error
rate due to word boundary detection. At low or high SNR (5 dB
and clean-Lombard speech) the noise classification procedure
did not change the recognition accuracy.

The EPD-TFF algorithm requires the computation of three
parameters (the logarithm of the rms energy, the Zero-crossing
rate, and the TF parameter) on the entire speech signal before
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Fig. 8.  Comparison of the percentage of recognition errors (averaged across
the noise conditions) due to automatic word boundary detection between
the improved EPD-TFF algorithm and the same algorithm without the noise
classification procedure. The results obtained with the EPD-NAA algorithm
are also shown in the figure.

TABLE I
RECOGNITION ACCURACY OBTAINED WITH THE IMPROVED EPD-TFF
ALGORITHM AND AN HMM RECOGNIZER AT 15 dB AND 20 dB SNR
FOR FOUR DIFFERENT KINDS OF ADDITIVE NOISE; THE RESULTS
OBTAINED WiTH THE EPD-TFF ALGORITHM WITHOUT THE NoISE
CLASSIFICATION PROCEDURE ARE INDICATED BETWEEN PARENTHESES

Recognition Accuracy
of Improved EPD-TFF

Recognition Accuracy
of Improved EPD-TFF

and EPD-TFF at and EPD-TFF at
Type of Noise SNR = 15 dB SNR = 20 dB
Car 87.0% (86.3%) 92.2% (88.7%)
White-Gaussian 80.3% (79.2%) 84.7% (80.7%)
Pink 83.5% (83.0%) 86.7% (83.3%)

Multitalker babble 71.3% (71.3%) 74.2% (74.0%)

being able to determine the speech boundaries. It is possible
to compute these parameters during the acquisition of the
speech signal. Using the voice activation capabilities of the
EPD-VAA algorithm, we first determine, in real-time, a rough
estimate of the beginning sample of the speech signal in the
continuous stream of input data. Then, the three parameters
are continuously computed. Finally, after a rough estimation of
the ending boundary of the speech signal, the final boundaries
are determined. As the parameters necessary to find the final
boundaries are already computed, the decision procedure is
very quick. The role of the EPD-VAA algorithm is to compute
some rough boundaries that contain the speech signal before
applying the EPD-TFF algorithm. This hybrid algorithm has
been implemented on a DSP board based on the TMS320C30
digital signal processing chip.

VI. CONCLUSION

Based on the results of a comparative study of several
word boundary detection algorithms, we have proposed a new
algorithm (EPD-TFF) that uses a parameter derived from time
and frequency features. For clean-Lombard speech, EPD-TFF
provides as good recognition accuracy as that obtained with
manually determined boundaries. In the presence of additive
noise, the EPD-TFF algorithm outperforms the other word
boundary detection algorithms studied. The use of a reliable
parameter that is robust against noise conditions is found to
be very beneficial, especially at low SNR. At high SNR, such
a parameter maintains the high performance already obtained
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with the EPD-NAA algorithm. A noise classification procedure
allows the algorithm to improve the performance at medium
SNR. It is shown that the EPD-TFF algorithm reduces greatly
the recognition error rate due to word boundary detection when
dealing with noisy-Lombard speech. We evaluated the average
recognition error rate due to word boundary detection in an
HMM-based recognition system across several signal-to-noise
ratios and noise conditions (without taking into account clean
speech, for which very good results can be obtained). The
recognition error rate decreased to about 20%, compared to
an average of approximately 50% obtained with EPD-ATA,
a modified version of the Lamel et al. algorithm. By taking
into account in the algorithm possible pauses between words,
which are mainly a problem in practical implementations
where a speech signal is acquired continuously, it should be
straightforward to apply the EPD-TFF algorithm to continuous
speech.
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