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Subspace Distribution Clustering
Hidden Markov Model

Enrico Bocchieri and Brian Kan-Wing Mak, Associate Member, IEEE

Abstract—Most contemporary laboratory recognizers require
too much memory to run, and are too slow for mass applications.
One major cause of the problem is the large parameter space of
their acoustic models. In this paper, we propose a new acoustic
modeling methodology which we call subspace distribution
clustering hidden Markov modeling(SDCHMM) with the aim
at achieving much more compact acoustic models. The theory
of SDCHMM is based on tying the parameters of a new unit,
namely the subspace distribution, of continuous density hidden
Markov models (CDHMMs). SDCHMMs can be converted from
CDHMMs by projecting the distributions of the CDHMMs onto
orthogonal subspaces, and then tying similar subspace distribu-
tions over all states andall acoustic models in each subspace.
By exploiting the combinatorial effect of subspace distribution
encoding, all original full-space distributions can be represented
by combinations of a small number of subspace distribution
prototypes. Consequently, there is a great reduction in the number
of model parameters, and thus substantial savings in memory and
computation. This renders SDCHMM very attractive in the prac-
tical implementation of acoustic models. Evaluation on the Airline
Travel Information System (ATIS) task shows that in comparison
to its parent CDHMM system, a converted SDCHMM system
achieves seven- to 18-fold reduction in memory requirement for
acoustic models, and runs 30%–60% faster without any loss of
recognition accuracy.

Index Terms—Distribution clustering, hidden Markov modeling,
subspace distribution.

I. INTRODUCTION

T HE HIGH computational cost of many state-of-the-art au-
tomatic speech recognizers is a major impediment to their

deployment in mass applications. A significant challenge is to
design these recognizers so that they may be run on more afford-
able machines of lower processing power and smaller memory
size without losing accuracy. In the literature, there are tech-
niques to speed up computation alone: for example, by simply
exercising more vigorous pruning schemes, by computing state
likelihoods only from a small subset of the most relevant state
probability density distributions [1]–[8], or by fast-match tech-
niques [9]. Another approach is to reduce the number of parame-
ters in the acoustic models, to achieve the seemingly conflicting
goals of
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• high recognition accuracy;
• faster recognition;
• smaller memory requirement;
• requiring fewer training or adaptation data.

The most common approach to reducing the number of
parameters in acoustic models is parameter tying. Similar
structures are discovered among the acoustic models, and they
are then tied together to share the same value. With the (limited)
amount of training data on hand, parameter tying allows more
complex acoustic models to be estimated reliably while the
number of model parameters will not grow unchecked. In
the past, the technique of parameter tying has been applied
successfully at various granularities. Phones (context-inde-
pendent phones [10], generalized biphones/triphones [11]),
states (tied-state HMM [12], [13]), observation distributions
(tied-mixture/semicontinuous HMM [14]–[17]), and feature
parameters [18] have all been tied.

The technology trend is to tie acoustic models at finer and
finer details so as to maintain good resolution among models
as much as possible. In this paper, we propose to push the tech-
nique to an even finer unit—subspace (stream) distribution—in
the context of hidden Markov modeling. Subspace distributions
are the projections of the full-space distributions of an HMM in
lower dimensional spaces. The hypothesis is that speech sounds
are more alike in some acoustic subspaces than in the full
acoustic space. We call our novel HMM formulationsubspace
distribution clustering hidden Markov modeling(SDCHMM).

SDCHMMs can be derived from already existing continuous
density hidden Markov models (CDHMMs) without requiring
any extra training data nor re-training. The distributions of
CDHMMs are projected onto orthogonal subspaces (or streams1

), and similar stream distributions are then tied into a small
number of distribution prototypes overall states andall acoustic
models in each stream. In this study, clustering (of the CDHMM
Gaussian projections) defines the tied subspace distributions.
In [20] we would show that the parameters of these subspace
distributions can be reestimated from speech data, according to
maximum likelihood, using the expectation-maximization (EM)
algorithm [21]. By exploiting the combinatorial effect of sub-
space distribution encoding, all original full-space distributions
can be closely approximated by some combinations of a small
number of subspace distribution prototypes. Consequently,
there is a great reduction in the number of model parameters,
and thus substantial savings in memory and computation. This
renders SDCHMM very attractive in practical implementation
of acoustic models.

1In thispaper, the two terms, “subspace”and“stream”areused interchangeably
to mean a feature space of dimension smaller than that of the full feature space.
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From the perspective of quantization, one may consider SD-
CHMM as an approximation to the highly accurate CDHMM,
achieving great data compression by subspace distribution
quantization. From the perspective of hidden Markov mod-
eling, SDCHMM unifies the theory of CDHMM which
employs full-space state probability density distributions and
the feature-parameter-tying HMM [22], [18] which is gen-
erated by scalar quantization of the distributions. SDCHMM
combines the accuracy of CDHMM with the compactness of
feature-parameter-tying HMM. In this aspect, it is interesting to
compare this work with a similar approach called “split vector
quantization” [23], [24] that has been successfully applied to
high-quality, low-bit-rate speech coding for years. In speech
coding, it is known that (full) vector quantization (VQ) results
in smaller quantization distortion than scalar quantization at
any given bit rate [25]. However, to attain the required high
quality in practical telecommunication, full VQ suffers from
training, memory, and computation problems much like those
of our current complex speech recognizers. Split VQ overcomes
the complexity problem of full VQ by splitting the speech
vectors into sub-vectors of lower dimensions and quantizing
the sub-vectors in their subspaces. Subvector quantization for
efficient speech recognition has recently been studied [26].

The above references and also this paper study tying of HMM
parameters at different levels (i.e., tying of HMM states, Gaus-
sians, etc.), however the actual number of model parameters is
typically chosen by experiment or by other heuristics. Other re-
cent studies have used model selection criteria from the statistics
literature to determine the number of Gaussian components in
acoustic models [27]–[29], for a given amount of training data.

The organization of this paper is as follows. In Section II, we
present the concept of SDCHMM. Section III describes an im-
plementation method in which SDCHMMs are converted from
CDHMMs through Gaussian clustering algorithms. An algo-
rithm for the definition of the streams based on feature corre-
lation is also proposed. The SDCHMMs are evaluated in Sec-
tion IV on the ATIS task. The effect of different numbers of
streams and different amounts of tying will be studied and evalu-
ated on three metrics: accuracy, computation time, and memory
requirement. In Section V, we compare the SDCHMM with two
similar HMM methodologies. Finally, we draw our conclusions
in Section VI.

II. SUBSPACEDISTRIBUTION CLUSTERING HIDDEN MARKOV

MODEL

A. Theory of SDCHMM

The theory of SDCHMM is derived from that of the con-
tinuous density hidden Markov model (CDHMM). Let us
first consider a set of CDHMMs (possibly with tied states)
in which state-observation distributions are estimated as
mixture Gaussian densities with components and diagonal
covariances. Using the following notations (where, as usual,
bold-faced quantities represent vectors):

observation vector of dimension;
state output probability given ;
weight of the th mixture component for theth
state;

mean vector of the th mixture component for the
th state;

variance vector of the th component for the th
state;
Gaussian pdf.

The observation probability density of stateis given by

(1)
The key observation is that a Gaussian with diagonal covari-

ance can be expressed as a product of subspace Gaussians where
the subspaces (or streams) are orthogonal and together span the
original full feature vector space. Formally, let us denote the full
vector space of dimension by with an orthonormal basis,
which are composed of the column vectors of the identity
matrix. is decomposed into orthogonal subspaces of
dimension , , with the following conditions.

Condition 1:

(2)

Condition 2:

(3)

Condition 3: The basis of each subspace is composed of a
subset of the basis vectors of the full vector space.

Each of the original full-space Gaussians is projected onto
each of the streams to obtain subspace Gaussians of di-
mension , , with diagonal covariances. That is,
(1) can be rewritten as

(4)

where , , and are the projection of the observation
, and mean and variance vectors of theth mixture compo-

nent of the th state onto theth stream, respectively.
For each stream, we treat its Gaussians as the basic mod-

eling unit, and tie them acrossall states ofall CDHMM acoustic
models. Hence, the state observation probability in (4) is modi-
fied as

(5)

The ensuing HMM will be called thesubspace distribution clus-
tering hidden Markov model(SDCHMM). Fig. 1 shows an ex-
tension of various HMM tying schemes to include SDCHMMs.
There are four streams in the example.

The SDCHMM formulation can be generalized to any mix-
ture density if the component pdf can be expressed as a product
of subspace pdfs of the same functional form, provided that the
three above conditions are satisfied. An obvious generalization
is the mixture of Gaussians with block-diagonal covariances.
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Fig. 1. Subspace distribution clustering hidden Markov models with four streams.

However we investigate only SDCHMMs based on CDHMMs
with mixture Gaussian densities and diagonal covariances.

B. Distribution Clustering

In practice, the proposed SDCHMM as in (5) can be ob-
tained by clustering or quantizing the subspace Gaussians of
CDHMMs in each stream. That is, to derive-stream SD-
CHMMs from a set of CDHMMs in which there are originally
a total of full-space Gaussian distributions, the subspace
Gaussians in each stream are clustered into a small set of
prototypes

where . Each original subspace Gaussian is then “ap-
proximated” by its nearest subspace Gaussian prototype

with being given by

(6)

where measures the distance between two Gaussian dis-
tributions.

In this respect, SDCHMMs can be considered as an approxi-
mation to the conventional CDHMMs.

C. Why Are SDCHMMs Good?

If the subspace distributions are properly clustered, all orig-
inal full-space distributions can be represented by some combi-
nations of a small number of subspace distribution prototypes
with small quantization errors. The combinatorial effect of sub-
space distribution encoding can be very powerful: For instance,

a 20-stream SDCHMM system with as few as two subspace dis-
tribution prototypes per stream can represent
different full-space distributions. Of course, in reality, more pro-
totypes are required to ensure small quantization errors. This can
be achieved with more streams or more prototypes per stream.

SDCHMMs are also computationally efficient because if a
small number of the subspace Gaussians are shared by a large
number of full-space Gaussian components, all these subspace
Gaussian log likelihoods can be precomputed once and only
once at the beginning of every frame, and their values are stored
in lookup tables. During Viterbi decoding [31] of a-stream
SDCHMM system, the log likelihood of a Gaussian component
of a state can be computed as the summation ofprecomputed
subspace Gaussian log likelihoods and the log mixture weight.

III. M ODEL CONVERSION FROMCONTINUOUSDENSITY HMMS

The formulation of the subspace distribution clustering
hidden Markov model as of (5) of Section II suggests that
SDCHMMs may be implemented in the following two steps as
shown in Fig. 2:

1) train continuous density hidden Markov models for all
the phonetic units (possibly with tied states), wherein
state observation distributions are estimated as mixture
Gaussian densities with diagonal covariances;

2) convert the CDHMMs to SDCHMMs by tying the sub-
space (or stream) Gaussians in each stream.

Since the training of CDHMMs is well covered in the litera-
ture [32], [33], we will not repeat it here. Instead, we assume that
a set of (well-trained) CDHMMs is given, and we focus only on
the conversion of the CDHMMs to SDCHMMs [34], [35].

Tying of subspace Gaussians consists of splitting the
full speech feature vector space into disjoint subspaces (or
streams), projecting mixture Gaussians of CDHMMs onto
these subspaces, and then clustering the subspace Gaussians
into a small number of Gaussian prototypes in each subspace.
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Fig. 2. Conversion of CDHMMs to SDCHMMs.

In the following, we describe various stream definitions and
distribution clustering algorithms to tie subspace Gaussians.
They will be evaluated in the next section.

A. Issue I—Stream Definition

To derive -stream SDCHMMs, we first have to partition the
feature set with features into disjoint feature subsets

with features, . Formally, let be such a
partition, then

and (7)

where .
The partition is optimal if subsequent tying of subspace

Gaussians in the feature subspaces of the partition results in
minimal total quantization error for a predetermined number of
prototypes and clustering algorithm. In general, the clustering
problem cannot be solved analytically, and is tackled numeri-
cally using iterative procedures. Since the total number of pos-
sible partitions is usually very large, it is not feasible to deter-
mine the optimal partition by numerically computing the quanti-
zation errors due to all possible candidates. Thus some heuristic
approach has to be used to obtain a reasonable partition.

1) Common Streams:Our speech input comprises 39
features: 12 MFCCs, normalized power, and their first- and
second-order time derivatives. By putting conceptually similar
features together in a stream like the commonly used streams
in discrete HMM and semicontinuous HMM, the following
“common” definitions of streams are explored.

1-Stream Definition:

MFCC MFCC MFCC

4-Stream Definition:

MFCC

MFCC

MFCC

13-Stream Definition:

MFCC MFCC MFCC

39-Stream Definition: each one-dimensional (1-D) fea-
ture is put into one stream.

Note that 1-stream SDCHMMs are identical with the original
CDHMMs and 39-stream SDCHMMs are the same as feature-
parameter-tying HMMs.

2) Correlated-Feature Streams:We adopt the heuristic that
correlated features, by definition, should tend to cluster in a sim-
ilar manner, and require each stream to have the most correlated
features. Intuitively this criterion should result in smaller distor-
tions for the clustered subspace Gaussians. This definition has
the additional benefit of providing a single coherent definition
for anyarbitrary number of streams ofanydimension. Note that,
although the features are assumed uncorrelated locally within
each Gaussian distribution (with diagonal covariance), during
clustering of the subspace Gaussians, it is the global feature cor-
relation that matters.

a) Multiple correlation measure:The correlation be-
tween two variables is commonly measured by Pearson’s mo-
ment product correlation coefficient

(8)

where and are the standard deviations of theth and th
variables respectively, and is the square root of their covari-
ance. Nevertheless, multiple correlation measures among three
or more variables are less studied. In the statistics literature,
multiple correlation is usually reduced to a binary correlation
[36]. However, this is inappropriate in our context where a mul-
tiple correlation measure that emphasizes mutual correlations
among all variables at the same time is more desirable. In this
paper, we propose a new definition of a multiple correlation co-
efficient defined as

determinant of correlation

matrix of the variables.

That is, the multiple correlation coefficient among vari-
ables is

...
...

...
.. .

...

(9)
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In the case when there are only two variables,equals the
square of the moment product correlation coefficient.

It can also easily be shown thathas the following desirable
properties of a correlation measure:

• ;
• when all variables are correlated, i.e.,

;
• when all variables are uncorrelated, i.e.,

.
b) Derivation of streams:Practically, we apply a greedy

algorithm [37] to obtain streams in which the features are most
correlated, as depicted in Algorithm 1. It is simple to modify
the algorithm in cases when the number of featuresis not
a multiple of the number of streams. Since the streams are
restricted to have the same dimension, the computation of mul-
tiple correlation coefficients involves only determinants of any

matrices obtained by deleting any rows and the
corresponding columns from the feature correlation ma-
trix—which needs to be computed once. As a result, the algo-
rithm is efficient.

Table I shows the definition of 20 correlated-feature streams
generated by Algorithm 1 using 1000 utterances from the ATIS
training corpus. From the definition, MFCC and MFCC are
found mostly correlated.

Algorithm 1: Selection of the Most Correlated-Feature Streams
(of the Same Dimension)
Goal: Given features, define -dimensional streams with

.
Step 1)Compute the multiple correlation coefficient amongany

set of features according to (9). [There are totally
coefficients.]

Step 2)Sort the multiple correlation coefficients in descending
order, each tagged by an-feature tuple indicating the fea-
tures it computes from.

Step 3)Starting from the top, an-feature tuple is moved from
the sorted list to the “solution list” ifnoneof its features al-
ready appear in any feature tuples of the solution list.

Step 4)Repeat Step 3 until all features appear in the solution
list.

Step 5)The feature tuples in the “solution list” are the-stream
definition.

B. Issue II—Subspace Gaussian Clustering

Two very different clustering schemes are investigated:
A bottom-up agglomerative clustering algorithm [19] and a
top-down modified -means (MKM) clustering algorithm.

1) Agglomerative Gaussian Clustering Algorithm:Theen-
semble merging algorithmfor state tying described in [38] can
be applied without modification to cluster subspace Gaussians
in each stream instead of HMM states. It is a bottom-up agglom-
erative clustering scheme in which two subspace Gaussians are
merged if they result in minimum increase in distortion (scatter).
To avoid an otherwise complexity, the algorithm intro-
duces the heuristic that at each iteration, the Gaussian corre-
sponding to the smallest training ensemble must be merged. As
a result, the algorithm has a complexity of .

TABLE I
ARTIS: 20 CORRELATED-FEATURE STREAMS

2) Modified -Means Gaussian Clustering Algo-
rithm: Algorithm 2 shows a novel modified -means
clustering algorithm which derives subspace Gaussian
prototypes from Gaussians, in iterations without using
any heuristics. With for large acoustic models, the
linearity in implies improved efficiency (over the ensemble
merging algorithm).

To compute the distance between two Gaussians during
distribution clustering, we adopt the classification-based
Bhattacharyya distance, which is defined as

(10)

Algorithm 2: Modified -Means Gaussians Clustering
Algorithm
Goal: to derive -stream SDCHMMs with subspace

Gaussian prototypes per stream.
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TABLE II
ATIS: 20 TESTING CONDITIONS AND PERFORMANCE OF THEBASELINE CI/CD SYSTEMS

Step 1) Initialization: First train a one-stream Gaussian mixture
model with components. Project each of theGaussian
components onto the Subspaces according to the given

-stream specification. The resultant subspace Gaus-
sians will be used as initial subspace Gaussian prototypes;

Step 2)Similarly project each Gaussian pdf in the original
CDHMMs onto the subspaces;

Step 3)For each stream, repeat Steps 4 and 5 until some conver-
gence criterion is met;

Step 4) Membership: Associate each subspace Gaussian of
CDHMMs with it nearest prototype as determined by their
Bhattacharyya distance;

Step 5) Update: Merge all subspace Gaussians which share the
same nearest prototype to become the new subspace Gaussian
prototypes.

where and , , are the means and covariances of
the two Gaussians [39]. The Bhattacharyya distance has been
used in several speech-related tasks [40]–[42], leading to good
results. The Bhattacharyya distance captures both the first- and
the second-order statistics, and is expected to give better clus-
tering results than the Euclidean distortion measure employed in
the agglomerative Gaussian clustering algorithm, which makes
use of only the first-order statistics.

To initiate the iterative -means clustering procedure for the
conversion of CDHMMs to -stream SDCHMMs with sub-
space Gaussian prototypes per stream, we first train a Gaussian
mixture model with components using 1000 ATIS training ut-

terances. The Gaussians are split into subspace Gaussians
for each stream, which are then used as seeds for clustering. If
no training data are available, one may, for example, randomly
pick subspace Gaussians from the CDHMMs to start the clus-
tering procedure.

IV. EVALUATION OF SDCHMM

A. ATIS Task

The Air Travel Information System (ATIS) [43] is a medium-
vocabulary, spontaneous, and goal-directed speech recognition
task. An ATIS system allows users to speak naturally to inquire
about air travel information stored as a relational database which
is derived from the American Official Airline Guide. To date,
the ATIS corpora contain nearly 25 000 utterances with a vo-
cabulary size of 1536 words. The query database includes in-
formation on 23 457 air flights for 46 cities and 52 airports in
the United States and Canada. A set of 981 utterances were set
aside for the 1994 ARPA–ATIS evaluation.

B. Baseline CDHMM Recognizer

Our baseline system consists of AT&T’s ATIS recognizer
used in the 1994 ARPA–ATIS evaluation [44], [45]. The con-
figurations, testing conditions, and performance of both the con-
text-independent (CI) and context-dependent (CD) baseline sys-
tems are described in Table II.

The recognizer front-end is based on mel-frequency cepstral
analysis of input speech sampled at 16 kHz. At every 10 ms, 31
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(a) (b)

Fig. 3. ATIS: Recognition accuracy of 13-stream SDCHMMs with various stream definitions and clustering schemes. (a) Context-independent models and (b)
context-dependent models.

mel-frequency energy components are computed from a filter
bank by performing an FFT on aframe of 20 ms of speech.
The energies are converted to 12 mel-frequency cepstral coeffi-
cients (MFCCs) by cosine transform.Cepstral mean subtraction
is then performed using the average MFCCs per utterance. Fi-
nally a speech feature vector for one frame is composed from 39
components: 12 MFCCs and normalized power, and their first-
and second-order time derivatives computed as follows:

normalized MFCC or power

C. Evaluation

All components of the baseline recognizers are kept intact,
except that their acoustic models are converted from CDHMMs
to SDCHMMs. The testing conditions are exactly the same as
those described in Table II. All subspace (stream) Gaussian log-
likelihoods are precomputed at the beginning of each frame, and
their values are stored in tables in contiguous memory.2 In addi-
tion, for implementation and system simplicity, all streams are
tied to the same number of subspace Gaussian prototypes in all
our SDCHMMs.

1) Stream Definitions and Clustering Algorithms:With the
two types of stream definitions of Section III-A and the two clus-
tering algorithms of Section III-B, four different combinations
of stream definitions and clustering algorithms are tested using
13 streams:

• common stream definition ensemble merging;
• common stream definition modified -means Gaussian

clustering;
• correlated-feature stream definitionensemble merging;

2We have also tried to compute the subspace Gaussian log-likelihoods on the
fly during decoding, but unless when there are more than 512 prototypes per
stream, precomputation of the log-likelihoods always entails faster recognition.

• correlated-feature stream definitionmodified -means
Gaussian clustering.

Thirteen streams are chosen because both the common stream
definition and the correlated-feature stream definition readily
apply. Each stream consists of exactly three features, and is tied
to an identical number of subspace Gaussian prototypes, ranging
from eight to 256 in different experiments. Each of the ensuing
13-stream SDCHMM systems is then tested on the 1994 ATIS
evaluation dataset.

Fig. 3(a) and (b) show incremental improvements in recog-
nition performance when correlated-feature streams and/or
the modified -means Gaussian clustering algorithm are used.
The incremental improvement due to either correlated-feature
streams or the modified-means Gaussian clustering algorithm
alone is similar in the case of CI models. In the case of CD
models, most of the gain in accuracy comes from the modified

-means Gaussian clustering algorithm. Nonetheless, the
improvements are observed with both CI and CD models at
almost all levels of quantization—various numbers of subspace
Gaussian prototypes. This shows that by bringing more knowl-
edge into play—correlation in the correlated-feature stream
definition and second-order statistics in the modified-means
Gaussian clustering algorithm, better subspace Gaussian tying
is achieved.

Henceforth, all experiments are run with SDCHMMs derived
using the modified -means Gaussian clustering algorithm
with correlated-feature streams except for the four-stream
SDCHMMs which are derived with the common four-stream
definition.

2) Recognition Accuracy:The baseline CI (CD) CDHMMs
are converted to CI (CD) SDCHMMs with 8–256 (2–256) sub-
space Gaussian prototypes per stream. One, four, 13, 20, and 39
streams are tried. Fig. 4 shows their recognition accuracies in
terms of word error rate (WER).

In general, WER decreases with more streams and more pro-
totypes as expected, since more streams of smaller dimensions
should result in smaller distortions when the subspace Gaus-
sians are quantized, and more prototypes should give smaller
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(a) (b)

Fig. 4. ATIS: Effect of number of streams and subspace Gaussian prototypes on SDCHMM recognition accuracy (the best systems of Table III are marked with
squares). (a) Context-independent models and (b) context-dependent models.

(a) (b)

Fig. 5. ATIS: Effect of number of streams and subspace Gaussian prototypes on SDCHMM recognition speed (the best systems of Table III are marked with
squares). (a) Context-independent models and (b) context-dependent models.

quantization errors. For example, 39-stream CD SDCHMMs
obtain the best WER of 5.0% with 16 subspace Gaussian proto-
types, while 20-stream CD SDCHMMs require 64 prototypes,
and 13-stream CD SDCHMMs reach their best WER of 5.2%
with at least 128 prototypes. The best CI SDCHMMs (with 20
streams and 128 prototypes, or 39 streams and 32 prototypes)
compare well with the baseline CI CDHMMs (9.5% versus
9.4%), and the best CD SDCHMMs (with 20 streams and
64 prototypes, or 39 streams and 16 prototypes) actually
outperform the baseline CD CDHMMs (5.0% versus 5.2%).
This suggests that some of the original CD CDHMMs may not
be well trained, and subspace Gaussian tying may help improve
these poor models by interpolating them with the better-trained
models, or by pooling together more training data for them.

3) Recognition Speed:The corresponding total recognition
times of the SDCHMM systems of Fig. 4 are presented in Fig. 5
relative to real-time performance. The relationships between
recognition speed and the number of prototypes are generally

parabolas that curve upwards. The longer recognition time at
the two ends of the parabolic curves are due to two very dif-
ferent effects:

• more prototypes simply require more computation for the
subspace Gaussian log-likelihoods;

• fewer prototypes lead to poorer SDCHMMs (due to larger
quantization errors) with less discriminating power and
more active states during a Viterbi search (using the same
beam-width), and, thus, more computation.

The CD SDCHMM system is quite insensitive to the first ef-
fect when compared with the CI SDCHMM system. It is because
there are about 10 times more active states during decoding in
the CD system. With the large number of active states in the
CD system, the pre-computation of subspace Gaussian log-like-
lihoods represents a small proportion of the total computation
time.

The impact of the number of streams on recognition speed
is complicated by the above two effects, but in general, more
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TABLE III
ATIS: SUMMARY OF THE BEST RESULTS

streams means more additions in the computation of state log-
likelihoods (5) and more (software) function calls, hence longer
recognition time.

4) Summary of Best Results:From the discussion above,
there is a trade-off between recognition accuracy and recog-
nition speed by adjusting the number of streams and the
number of prototypes. By overlaying Fig. 5 onto Fig. 4, the
best SDCHMM recognition systems with various numbers of
streams are determined and summarized in Table III.

The CD SDCHMMs perform better than the CI SDCHMMs
when compared with their respective baseline systems. The CD
SDCHMMs require fewer prototypes but give relatively better
accuracies, higher computation efficiency, greater memory
savings and larger reduction in model parameters. The most
plausible explanation is that the CI models are less complex
and robustly trained due to the large amount of available
training data. Further tying of CI model parameters renders
over-smoothing of the parameters. As a result, more prototypes
are required to maintain acceptable quantization errors. On
the contrary, the CD SDCHMMs are highly complex, and
modeling the rare triphones has always been a problem.
Obviously, results of Table III suggest that some triphones are
still not well trained, and further tying at the (finer than state)
unit of subspace Gaussians can effectively reduce the model

parameter space to obtain more robust models. Nevertheless, it
is still amazing to see that the 76 154 Gaussians of the baseline
context-dependent CDHMMs can be represented by 32–128
subspace Gaussians per stream.

Thirteen, 20, or 39 streams all work well in both CD or CI
systems, but their impacts on savings in computation, memory,
model parameters and accuracy are quite different. For the CI
systems, 13- to 39-stream SDCHMMs all give similar perfor-
mance in terms of accuracy, speed and memory requirement.
The only difference lies in their number of model parameters:
39-stream SDCHMMs (with 1-D scalar streams) have the
fewest model parameters if one does not count the subspace
Gaussian encoding parameters, thanks to the efficiency of scalar
quantization which requires fewer prototypes. However, once
we include the encoding parameters, 39-stream SDCHMMs
require more model parameters than SDCHMMs with fewer
streams because they consume one encoding parameter per
stream for each subspace Gaussian. On the other hand, since
there are many more distributions and HMM state evaluations
in CD systems than in CI systems, the greater sharing of
Gaussian parameters in CD SDCHMMs entails greater savings
in computation, memory, and model parameters.

Various statistical significance tests from National Institute of
Standards and Technology (NIST) are run on the performance
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Fig. 6. ATIS: Operating curves of SDCHMMs (the best systems of Table III are marked with squares).

differences among the recognition systems of Table III. Most of
the tests indicate no significant difference among the various CI
(CD) systems. The only test that indicates a difference actually
finds the SDCHMM systems more accurate.

5) Operating Curves:The previous discussion that is based
on Viterbi decoding using one particular beam-width can be bi-
ased. Fig. 6 studies the effect of beam-width on various SD-
CHMM systems of Table III with their operating curves.

The asymptotic performances of CI SDCHMMs are basi-
cally the same as those of their parent CI CDHMMs, while
CD SDCHMMs outperform CD CDHMMs asymptotically. In
addition, the SDCHMM curves always lie to the left of the
CDHMM curve on each graph; thus, SDCHMM systems are
always faster. Similarly, operating curves of SDCHMMs with
fewer streams also lie to the left of SDCHMMs with more
streams though they may saturate sooner with poorer accuracies
(for example, compare the operating curves of 20-stream and
39-stream CI SDCHMMs, or those of 13-stream and 20-stream
CD SDCHMMs). The best compromise seems to come from
20-stream SDCHMM systems.

V. COMPARISON WITH OTHER HMMS

We compare our SDCHMM to two other hidden Markov
modeling methodologies: semi-continuous HMM (SCHMM)
[14], [15], and feature-parameter-tying HMM (FPTHMM)
[18], [22].

A. With Semi-Continuous HMM

At first glance, SDCHMM may appear similar to SCHMM:
Both methods divide the feature space into streams, and tie sub-
space (or stream) distributions across all states of all HMMs.
However, close scrutiny shows that-stream SCHMMs com-
pute the state likelihood differently as

(11)

where is the weight in the th state of the th mixture
component in theth stream satisfying the stochastic constraint

.
Comparing (11) with (5), one finds two differences:

• there is a switch between the product operator () and
summation operator ( ) in the two equations;

• in an SCHMM state, each of the subspace Gaussians is
associated with its own mixture weight , whereas one
mixture weight is shared among all the subspace
Gaussians of a SDCHMM state.

Both differences arise from the fact that SCHMMs assume
stream independence in the state probability density function
definition, while SDCHMMs do not. That is, for each state,
SCHMMs estimate one mixture Gaussian density from each
of the streamsindependently, and then combine the subspace
Gaussian likelihoods by assuming again independent streams.
However, the assumption of feature independence between
the streams commonly used in speech recognition is hardly
justified. SDCHMMs therefore start with CDHMMs using
the full feature speech vectors without assuming any feature
independence. The correlation between features at each state is
well modeled by a mixture Gaussian density. An implication of
the difference in the scope of the assumptions is the number of
streams required: The SCHMM favors fewer streams of higher
dimensions, so that correlation among more features can be
modeled and there will be fewer mixture weights. Conversly,
SDCHMM favors more streams of lower dimensions so that
quantization of the subspace Gaussians of CDHMMs will give
smaller quantization errors and more accurate models.

B. With Feature-Parameter-Tying HMM

The feature-parameter-tying HMM turns out to be a special
case of our SDCHMM when the number of streams,, is set to
the size of the feature vector,. In a sense, the FPTHMM is the
scalar quantization (SQ) version of our SDCHMM. However,
we note that

1) main storage cost of SDCHMMs is incurred by the sub-
space Gaussian encoding indices which grow in propor-
tion with the number of streams;
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2) computational cost of the state log-likelihood (5) is di-
rectly proportional to the number of streams once all sub-
space Gaussian likelihoods are precomputed.

Thus, although SQ of the subspace Gaussians in FPTHMMs
has the advantage of simplicity and generally gives the highest
compression of subspace Gaussians, it needs more storage space
and more computation time than SDCHMMs with . The
difference is more conspicuous for large systems.

The evaluation results of Section IV, for example, Fig. 6, have
confirmed this.

C. With Gaussian Selection

SDCHMM and Gaussian selection [1]–[7] achieve computa-
tion savings through two different principles. SDCHMM can be
thought as an approximation of the CDHMM Gaussians, which
achieves likelihood computation by tying parameters across
subspace Gaussians. Gaussian selection is a pruning scheme
that limits the likelihood computation to the most relevant
Gaussians of the CDHMM. By applying Gaussian selection to
the SDCHMMapproximationsof the full-space Gaussians, we
have found that the computation savings of the two techniques
are to some extent cumulative. The recognition times in Fig. 5
are with SDCHMM only. An additional 10% to 15% total com-
putation time reduction was obtained together with Gaussian
selection [2], and further savings should be obtained with more
recent development of the Gaussian selection technique.

VI. SUMMARY AND CONCLUSION

Continuous-density hidden Markov modeling has been a
milestone in the advancement of automatic speech recognition.
However, its accuracy is achieved at the expense of high
computational cost. In this paper, we show that subspace (or
stream) distribution clustering hidden Markov modeling can
produce acoustic models that are as accurate as the CDHMMs,
and yet they are much more compact. For example, on the ATIS
task, compared with the baseline CDHMM system, the best
context-dependent (context-independent) SDCHMM system
saves the total computation time by 50% (30%) and obtains a
13-fold (8-fold) reduction in HMM memory with a relative 4%
gain (1% drop) in accuracy.

SDCHMMs can be converted from a set of CDHMMs by pro-
jecting the mixture Gaussians of the CDHMMs onto subspaces,
and tying the ensuing subspace Gaussians. We propose to put
the most correlated features into a stream. This correlated-fea-
ture stream definition, though not guaranteed optimal, is shown
empirically giving good results. A modified-means Gaussian
clustering algorithm is also devised to tie the subspace Gaus-
sians.

The CD SDCHMMs show greater relative improvements than
the CI SDCHMMs probably due to the higher degree of re-
dundancy and decreased robustness of the CD CDHMMs. One
may thus postulate that SDCHMMs may be more effective with
larger acoustic models.

The impact of the number of streams on accuracy, computa-
tion time, and memory size is complicated. All things consid-
ered, 13 and 20 streams seem to be better choices.

A direction for future study is whether the tying structure of
the subspace Gaussians is reasonably consistent and portable
across different applications and acoustic environments. In this
case, with the great reduction of Gaussian parameters (mixture
weights, Gaussian means, and variances) by one to two orders
of magnitude, one should expect SDCHMMs to be trained from
scratch with much less training data than their parent CDHMMs.
It should also be easier to adapt these fewer parameters for a new
speaker or to another environment.
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