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Subspace Distribution Clustering
Hidden Markov Model

Enrico Bocchieri and Brian Kan-Wing Malssociate Member, IEEE

Abstract—Most contemporary laboratory recognizers require * high recognition accuracy;
too much memory to run, and are too slow for mass applications. « faster recognition;
Ong major cause of the prqblem is the large parameter space qf - smaller memory requirement;
their acoustic models. In this paper, we propose a new acoustic . iring f traini daptation dat
modeling methodology which we call subspace distribution requiring rewer training or adaptation _aa'
clustering hidden Markov modeling(SDCHMM) with the aim The most common approach to reducing the number of
at achieving much more compact acoustic models. The theory parameters in acoustic models is parameter tying. Similar

of SDCHMM is based on tying the parameters of a new unit, structures are discovered among the acoustic models, and they

namely the subspace distribution, of continuous density hidden ; ; i
Markov models (CDHMMs). SDCHMMs can be converted from are then tied together to share the same value. With the (limited)

CDHMMs by projecting the distributions of the CDHMMs onto amount of training data on hand, par.ameter tyi!’lg a”OW_S more
orthogonal subspaces, and then tying similar subspace distribu- COMplex acoustic models to be estimated reliably while the
tions over all states andall acoustic models in each subspace. number of model parameters will not grow unchecked. In
By exploiting th_e_ combinatorial effe_ct Qf subspace distribution the past, the technique of parameter tying has been applied
encoding, all original full-space distributions can be represented successfully at various granularities. Phones (context-inde-

by combinations of a small number of subspace distribution . . .
prototypes. Consequently, there is a great reduction in the number PENdent phones [10], generalized biphonesitriphones [11]),

of model parameters, and thus substantial savings in memory and States (tied-state HMM [12], [13]), observation distributions
computation. This renders SDCHMM very attractive in the prac-  (tied-mixture/semicontinuous HMM [14]-[17]), and feature
tical implementation of acoustic models. Evaluation on the Airline  parameters [18] have all been tied.

Travel Information System (ATIS) task shows that in comparison ; ; ; 3

to its parent CDHMM system, a converted SDCHMM system . The tec.hnOIOgy trend .IS tc.) tie acoustic m.Odels atfinenand
achieves seven- to 18-fold reduction in memory requirement for finer details so a_s to malr_ltaln good resolution among models
acoustic models, and runs 30%—60% faster without any loss of @S much as possible. In this paper, we propose to push the tech-

recognition accuracy. nigue to an even finer unit—subspace (stream) distribution—in
Index Terms—Distribution clustering, hidden Markov modeling, € context of hidden Markov modeling. Subspace distributions
subspace distribution. are the projections of the full-space distributions of an HMM in

lower dimensional spaces. The hypothesis is that speech sounds
are more alike in some acoustic subspaces than in the full
acoustic space. We call our novel HMM formulatisnbspace
HE HIGH computational cost of many state-of-the-art aidistribution clustering hidden Markov modelig§DCHMM).
tomatic speech recognizers is a major impediment to theirSDCHMMs can be derived from already existing continuous
deployment in mass applications. A significant challenge is @ensity hidden Markov models (CDHMMs) without requiring
design these recognizers so that they may be run on more affgdy extra training data nor re-training. The distributions of
able machines of lower processing power and smaller meméHpHMMs are projected onto orthogonal subspaces (or streams
size without losing accuracy. In the literature, there are tech); and similar stream distributions are then tied into a small
niques to speed up computation alone: for example, by simglymber of distribution prototypes ovalt states andll acoustic
exercising more vigorous pruning schemes, by computing stasedels in each stream. In this study, clustering (of the COHMM
likelihoods only from a small subset of the most relevant stagaussian projections) defines the tied subspace distributions.
probability density distributions [1]-[8], or by fast-match techin [20] we would show that the parameters of these subspace
niques [9]. Another approach is to reduce the number of parangéstributions can be reestimated from speech data, according to
ters in the acoustic models, to achieve the seemingly conflictingaximum likelihood, using the expectation-maximization (EM)
goals of algorithm [21]. By exploiting the combinatorial effect of sub-
space distribution encoding, all original full-space distributions
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itor coordinating the review of this manuscript and approving it for publication S
was Dr. Yunxin Zhao. number of subspace distribution prototypes. Consequently,
E. Bocchieri is with the AT&T Labs—Research, Florham Park, NJ 0793there is a great reduction in the number of model parameters,

USA (e-mail: enrico@research.att.com). _ _ gnd thus substantial savings in memory and computation. This
B. K.-W. Mak was with the Oregon Graduate Institute of Science an

Technology, Portland, OR 97201 USA and also with AT&T Labs—Researckenders SDCHMM very attractive in practical implementation

Florham Park, NJ 07932 USA. He is now with the Department of Comput@f acoustic models.

Science, Hong Kong University of Science and Technology, Clear Water Bay,

Hong Kong (e-mail: mak@cs.ust.hk). inthis paper, the two terms, “subspace” and “stream” are used interchangeably
Publisher Item Identifier S 1063-6676(01)01789-8. to mean a feature space of dimension smaller than that of the full feature space.

. INTRODUCTION

1063-6676/01$10.00 © 2001 IEEE



BOCCHIERI AND MAK: SUBSPACE DISTRIBUTION CLUSTERING HIDDEN MARKOV MODEL 265

From the perspective of quantization, one may consider Sp,,, mean vector of thenth mixture component for the
CHMM as an approximation to the highly accurate CDHMM, sth state;
achieving great data compression by subspace distributiof), variance vector of thenth component for theth
quantization. From the perspective of hidden Markov mod- state;

eling, SDCHMM unifies the theory of CDHMM which N(:) Gaussian pdf.

employs full-space state probability density distributions arithe observation probability density of statés given by

the feature-parameter-tying HMM [22], [18] which is gen- M. M

erated by scalar quantization of the distributions. SDCHMM,cpmvm . ) 5 .

combines the accuracy of CDHMM with the compactness o?s ) = z_:l ComN (O3 Py T5m); z_:lcsrn =1
feature-parameter-tying HMM. In this aspect, it is interesting to . T (1)
compare this work with a similar approach called “split vector The key observation is that a Gaussian with diagonal covari-
quantization” [23], [24] that has been successfully applied tince can be expressed as a product of subspace Gaussians where
high-quality, low-bit-rate speech coding for years. In speeche subspaces (or streams) are orthogonal and together span the
coding, it is known that (full) vector quantization (VQ) resultsriginal full feature vector space. Formally, let us denote the full

in smaller quantization distortion than scalar quantization aéctor space of dimensiait by R” with an orthonormal basis,

any given bit rate [25]. However, to attain the required higivhich are composed of the column vectors offhe D identity

quality in practical telecommunication, full VQ suffers frommatrix. R ” is decomposed int& orthogonal subspac&s’: of
training, memory, and computation problems much like thogmensiond,, 1 < k < K, with the following conditions.

of our current complex speech recognizers. Split VQ overcomesCondition 1:
the complexity problem of full VQ by splitting the speech

vectors into sub-vectors of lower dimensions and quantizing Z de = D. )
the sub-vectors in their subspaces. Subvector quantization for

k=1
efficient speech recognition has recently been studied [26]. N
The above references and also this paper study tying of HMMCondition 2:
parameters at different levels (i.e., tying of HMM states, Gaus- RE ARY =), 1<i#j<K. 3)

sians, etc.), however the actual number of model parameters is

typically chosen by experiment or by other heuristics. Other re- Condition 3: The basis of each subspace is composed of a
cent studies have used model selection criteria from the statisigiset of the basis vectors of the full vector space.

Iiteratu're to determine the numbgr of Gaussian Components irEach of the origina| fu||_space Gaussians is projected onto
acoustic models [27]-[29], for a given amount of training dataach of thek streams to obtaidl subspace Gaussians of di-

The Organization of this paper is as follows. In Section II, Wﬁ]ensiondk, 1< k<K, with diagona| covariances. That is,
present the concept of SDCHMM. Section Il describes an iit) can be rewritten as

plementation method in which SDCHMMSs are converted from " X«

CDHMMs through Gaussian clustering algorithms. An algo- _ ~puvm X = 5
rithm for the definition of the streams based on feature corre- £» (0) = Z Cosm H N(Ows Bamis T5mt)
lation is also proposed. The SDCHMMs are evaluated in Sec- @)
tion IV on the ATIS task. The effect of different numbers of

streams and differentamounts of tying will be studied and evalyhereo,., . .., ando? . are the projection of the observation

ated on three metrics: accuracy, computation time, and memejy and mean and variance vectors of théh mixture compo-
requirement. In Section V, we compare the SDCHMM with tWant of thesth state onto thé&th stream, respectively.

similar HMM methodologies. Finally, we draw our conclusions for each stream, we treat its Gaussians as the basic mod-
in Section V. eling unit, and tie them acrosdl states ofill CDHMM acoustic
models. Hence, the state observation probability in (4) is modi-
Il. SUBSPACEDISTRIBUTION CLUSTERING HIDDEN MARKov  fied as

m=1 k=1

MODEL M, K
A. Theory of SDCHMM PSSDCHMM(O) = Z Csm <H Ntv,ed(ok; Hsmks Jgrnk)) .
m=1 k=1

The theory of SDCHMM is derived from that of the con- (5)
tinuous density hidden Markov model (CDHMM). Let us
first consider a set of CDHMMs (possibly with tied statesThe ensuing HMM will be called theubspace distribution clus-
in which state-observation distributions are estimated #eaxing hidden Markov mod€éSDCHMM). Fig. 1 shows an ex-
mixture Gaussian densities witif components and diagonaltension of various HMM tying schemes to include SDCHMMs.
covariances. Using the following notations (where, as usudhere are four streams in the example.

bold-faced quantities represent vectors): The SDCHMM formulation can be generalized to any mix-

O observation vector of dimensiai; ture density if the component pdf can be expressed as a product
P(O) state output probability give®; of subspace pdfs of the same functional form, provided that the
Csm weight of themth mixture component for theth three above conditions are satisfied. An obvious generalization

state; is the mixture of Gaussians with block-diagonal covariances.
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Fig. 1. Subspace distribution clustering hidden Markov models with four streams.

However we investigate only SDCHMMs based on CDHMMa 20-stream SDCHMM system with as few as two subspace dis-
with mixture Gaussian densities and diagonal covariances. tribution prototypes per stream can represg#it= 1048 576
different full-space distributions. Of course, in reality, more pro-

B. Distribution Clustering totypes are required to ensure small quantization errors. This can
In practice, the proposed SDCHMM as in (5) can be ol?—e achieved with more streams or more prqtgtypes per strgam.

tained by clustering or quantizing the subspace Gaussians op2CHMMs are also computationally efficient because if a

CDHMMs in each stream. That is, to derivé-stream SD- small number of the subspace Gaussians are shared by a large

CHMMs from a set of CDHMMs in which there are originallyn“mber of full-space Gaussian components, all these subspace

a total of V full-space Gaussian distributions, the subspaé@dussian log likelihoods can be precomputed once and only

Gaussians in each stream are clustered into a small sbt ofnce at the beginning of every frame, and their values are stored

prototypes

in lookup tables. During Viterbi decoding [31] of &-stream

SDCHMM system, the log likelihood of a Gaussian component

Nantized( Q62 ) 1<i<L, 1<k<K of a state can be (_:ompute_d as the summatiak pfegomputec_i
subspace Gaussian log likelihoods and the log mixture weight.

whereL <« N. Each original subspace Gaussian is then “ap-

proximated” by its nearest subspace Gaussian prototype |||, M oDEL CONVERSION FROMCONTINUOUS DENSITY HMM s

N(Owi fopypes 02,,1) o NTwantized(Q, -y g2 ) _The formulation of the subspace di_stribution clustering
T hidden Markov model as of (5) of Section Il suggests that

with I being given by SDCHMMs may be implemented in the following two steps as

shown in Fig. 2:

I =arg min_ dist (N(Ok; Bypis Tomics) 1) train continuous density hidden Markov models for all
tsast vamtised ) the phonetic units (possibly with tied states), wherein
NN O gy, ogr))  (6) state observation distributions are estimated as mixture

) . ) . Gaussian densities with diagonal covariances;
wheredist(-) measures the distance between two Gaussian dIS-Z) convert the CDHMMSs to SDCHMMs by tying the sub-
tributions. , _ space (or stream) Gaussians in each stream.

In this respect, SDCHMMs can be considered as an approxi-gjnce the training of CDHMMs is well covered in the litera-
mation to the conventional CDHMMs. ture [32], [33], we will notrepeatit here. Instead, we assume that

a set of (well-trained) CDHMMs is given, and we focus only on
C. Why Are SDCHMMs Good? the conversion of the CDHMMs to SDCHMMs [34], [35].

If the subspace distributions are properly clustered, all orig- Tying of subspace Gaussians consists of splitting the
inal full-space distributions can be represented by some comhill speech feature vector space into disjoint subspaces (or
nations of a small number of subspace distribution prototypsgseams), projecting mixture Gaussians of CDHMMs onto
with small quantization errors. The combinatorial effect of sulthese subspaces, and then clustering the subspace Gaussians
space distribution encoding can be very powerful: For instandato a small number of Gaussian prototypes in each subspace.
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h T
rabming data 4-Stream Definition:
12MFCC
12AMFCC
CDHMM
Training 12A2MECC
e+ Ae+ A%
inuous densi .
13-Stream Definition:
1 .| MFCC+ AMFCC + A?MFCC]|
2
s i et
definition Gtustaring o _ _
39-Stream Definition: each one-dimensional (1-D) fea-
l ture is put into one stream.
Note that 1-stream SDCHMMs are identical with the original
CDHMMs and 39-stream SDCHMMs are the same as feature-
et parameter-tying HMMs.
_ _ 2) Correlated-Feature StreamsiVe adopt the heuristic that
Fig. 2. Conversion of CDHMMs to SDCHMMs. correlated features, by definition, should tend to cluster in a sim-

ilar manner, and require each stream to have the most correlated

distribution clustering algorithms to tie subspace Gaussiafi@ns for the clustered subspace Gaussians. This definition has
They will be evaluated in the next section. the additional benefit of providing a single coherent definition

for anyarbitrary number of streams afydimension. Note that,
although the features are assumed uncorrelated locally within
each Gaussian distribution (with diagonal covariance), during

To derivek -stream SDCHMMs, we first have to partition thegystering of the subspace Gaussians, it is the global feature cor-
feature sef2” with D features intaX disjoint feature subsets yg|ation that matters.

A. Issue |—Stream Definition

Qh with dy features] < k < K. Formally, letP? be such a a) Multiple correlation measureThe correlatiorp;; be-
partition, then tween two variables is commonly measured by Pearson’s mo-
ment product correlation coefficient
K
PR = {9 Y d=D and ghnat =) @) - @
k=1 0,05

whereo; ando; are the standard deviations of tith and;th

wherel < k # j < K. . . . . .
i o . . . variables respectively, and; is the square root of their covari-
The partitionP;; is optimal if subsequent tying of subspace . .
. . o ance. Nevertheless, multiple correlation measures among three
Gaussians in the feature subspaces of the partition results”in . . L
o - . 0f more variables are less studied. In the statistics literature,
minimal total quantization error for a predetermined number of ' . o . .
multiple correlation is usually reduced to a binary correlation

prototypes and clustering algorithm. In general, the clusteri 1. However, this is inappropriate in our context where a mul-
problem cannot be solved analytically, and is tackled nume’FJgiB ' . pprop . .
iple correlation measure that emphasizes mutual correlations

cally using iterative procedures. Since the total number of posFz . N . .
. he . o : among all variables at the same time is more desirable. In this
sible partitions is usually very large, it is not feasible to deter- - . :
) : " ; . aper, we propose a new definition of a multiple correlation co-
mine the optimal partition by numerically computing the quantE s .
. : . -efficient R defined as
zation errors due to all possible candidates. Thus some heuristic
approach has to be used to obtain a reasonable partition. R % _ determinant of correlation
1) Common StreamsQur speech input comprises 39
features: 12 MFCCs, normalized power, and their first- and
second-order time derivatives. By putting conceptually similar T4t is, the multiple correlation coefficiedt among vari-
features together in a stream like the commonly used streagpges is
in discrete HMM and semicontinuous HMM, the following

“common” definitions of streams are explored. Lpiz pis 0 Pk

1-Stream Definition: P21 P23 P2k
R=1—|pPa1 p32 1 - pa|, ©)

matrix of the variables.

12MFCC + 12AMFCC + 12AZMFCC+ ¢ + Ae + AZe : : : B
Pr1 PRz PR3 -t 1
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In the case when there are only two variablBssquals the TABLE |
square of the moment product correlation coefficient. ARTIS: 20 (DRRELATED FEATURE STREAMS
It can also easily be shown th&thas the following desirable
properties of a correlation measure:

STREAM | FEATURES

e 0 <RI, 1 c1, AAcy
. \{\{hen all variables are correlated, i¥i, j, p;; =1, R = 9 ca, AAC
. V\;hen all variables are uncorrelated, i.¥4, j, p;; = 3 3, Alcs

0,k =0. 4 cay AAey

b) Derivation of streams:Practically, we apply a greedy

algorithm [37] to obtain streams in which the features are most 5 ¢s Alcs
correlated, as depicted in Algorithm 1. It is simple to modify 6 cs, AAcs
the algorithm in cases when the number of featutes not
a multiple of the number of streanis. Since the streams are 7 e, Aler
restricted to have the same dimension, the computation of mul- 8 cs, AAcs
tiple correlation coefficients involves only determinants of any

9 Cg, AACQ

n X n matrices obtained by deleting afp — ») rows and the
corresponding columns from the x D feature correlation ma- 10 c10, AAcyg
trix—which needs to be computed once. As a result, the algo-
rithm is efficient.

Table | shows the definition of 20 correlated-feature streams 12 c12, AAcyg
generated by Algorithm 1 using 1000 utterances from the ATIS

11 C11, AACH

training corpus. From the definition, MFCC addMFCC are 13 Acy, Aer
found mostly correlated. 14 Acy, Acg
15 AC3, Acs

Algorithm 1: Selection of the Most Correlated-Feature Streams

(of the Same Dimension) 16 Acy; e

Goal: Given D features, defind{ n-dimensional streams with 17 Acs, Aco
D =nkK.

Step 1)Compute the multiple correlation coefficient amany 18 Acio, Acy
set ofn features according to (9). [There are totallyD, n) 19 Ae, AAe

coefficients.]

Step 2)Sort the multiple correlation coefficients in descending
order, each tagged by anfeature tuple indicating the fea-
tures it computes from.

Step 3)Starting from the top, an-feature tuple is moved from
the sorted list to the “solution list” ihoneof its features al-
ready appear in any feature tuples of the solution list.

Step 4)Repeat Step 3 until all features appear in the soluti

20 Acn

2) Modified k-Means Gaussian Clustering Algo-
rithm: Algorithm 2 shows a noveD(.J Ln) modified k-means
clustering algorithm which derived. subspace Gaussian
Cr))rgototypes fromn Gaussians, in/ iterations without using
any heuristics. With/L <« n for large acoustic models, the

list. _ euristics. With/. ar
Step 5)The feature tuples in the “solution list” are thgstream linearity in » implies improved efficiency (over the ensemble
definition. merging algorithm).

To compute the distance between two Gaussians during
_ _ distribution clustering, we adopt the classification-based
B. Issue Il—Subspace Gaussian Clustering Bhattacharyya distance, which is defined as
Two very different clustering schemes are investigated: L
- i i i 1 4+
A bottom-up agglomerative clustering algorithm [19] and a Dinar = = (pro — p)* [ 1 2} (1 — 1)

top-down modifiedk-means (MKM) clustering algorithm. 2
1) Agglomerative Gaussian Clustering Algorithrithe en- S 4,
semble merging algorithrfor state tying described in [38] can 1 ‘T
be applied without modification to cluster subspace Gaussians + 3 In W (20)
1 2

in each stream instead of HMM states. It is a bottom-up agglom-
erative clustering scheme in which two subspace Gaussians are
merged if they result in minimum increase in distortion (scatter).
To avoid an otherwis©(n?) complexity, the algorithm intro- Algorithm 2: Modified k-Means Gaussians Clustering
duces the heuristic that at each iteration, the Gaussian corégorithm

sponding to the smallest training ensemble must be merged.@gal: to derive K-stream SDCHMMs with L subspace
a result, the algorithm has a complexity@fn?). Gaussian prototypes per stream.
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TABLE 1

ATIS: 20 TESTING CONDITIONS AND PERFORMANCE OF THEBASELINE CI/CD SYSTEMS
CONDIT!ON/PERFORMANCE | CI SYSTEM CD SYSTEM
#Test Sentences 981 (1994 ARPA-ATIS evaluation set)
Vocabulary 1,536 words
Language Model word-sequence bigram (perplexity = 20)
#Training Utterances ~12,000 ATIS ~20,000 ATIS
#HMMs 48 9,769
#States 142 3,916 (tied)
Max. #Mixtures per State 16 20
#Gaussians (39-dimensional) | 2,254 76,154
#Acoustic Parameters 178,066 6,016,166
Search one-pass Viterbi beam search
Lexical Structure lexical tree linear lexicon
Beam-Width 100 170
CPU 150MHz MIPS R4400 | 195MHZ MIPS R10000
Word Error Rate 9.4% 5.2%
Time (x real-time) 1.93 7.06
HMM Memory Usage 0.71MB 24MB

Step 1) InitializationFirst train a one-stream Gaussian mixturgerances. Thé& Gaussians are split intb subspace Gaussians
model with L components. Project each of tlheGaussian for each stream, which are then used as seeds for clustering. If
components onto thé& Subspaces according to the givemo training data are available, one may, for example, randomly
K-stream specification. The resultaAtL subspace Gaus- pick L subspace Gaussians from the CDHMMs to start the clus-
sians will be used as initial subspace Gaussian prototypestering procedure.

Step 2)Similarly project each Gaussian pdf in the original

CDHMMs onto theX” subspaces; IV. EVALUATION OF SDCHMM
Step 3)For each stream, repeat Steps 4 and 5 until some conver-
gence criterion is met; A. ATIS Task

Step 4) MembershipAssociate each subspace Gaussian of The Air Travel Information System (ATIS) [43] is a medium-
CDHMMs with it nearest prototype as determined by theirocabulary, spontaneous, and goal-directed speech recognition
Bhattacharyya distance; task. An ATIS system allows users to speak naturally to inquire

Step 5) UpdateMerge all subspace Gaussians which share tabout air travel information stored as a relational database which
same nearest prototype to become the new subspace Gaussiderived from the American Official Airline Guide. To date,
prototypes. the ATIS corpora contain nearly 25000 utterances with a vo-

cabulary size of 1536 words. The query database includes in-
formation on 23 457 air flights for 46 cities and 52 airports in

wherep; and;, i = 1, 2, are the means and covariances % %United States and Canada. A set of 981 utterances were set
the two Gaussians [39]. The Bhattacharyya distance has b dee for the 1994 ARPA_ATIS evaluation.

used in several speech-related tasks [40]-[42], leading to goao

results. The Bhattacharyya distance captures both the first- and ) )

the second-order statistics, and is expected to give better clis-Baseline CDHMM Recognizer

tering results than the Euclidean distortion measure employed irOur baseline system consists of AT&T’s ATIS recognizer

the agglomerative Gaussian clustering algorithm, which makesed in the 1994 ARPA-ATIS evaluation [44], [45]. The con-

use of only the first-order statistics. figurations, testing conditions, and performance of both the con-
To initiate the iterativeék-means clustering procedure for thdext-independent (Cl) and context-dependent (CD) baseline sys-

conversion of CDHMMs td{-stream SDCHMMSs with sub- tems are described in Table II.

space Gaussian prototypes per stream, we first train a Gaussiahhe recognizer front-end is based on mel-frequency cepstral

mixture model with, components using 1000 ATIS training ut-analysis of input speech sampled at 16 kHz. At every 10 ms, 31
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Fig. 3. ATIS: Recognition accuracy of 13-stream SDCHMMs with various stream definitions and clustering schemes. (a) Context-independend ifi)dels an
context-dependent models.

mel-frequency energy components are computed from a filter ¢ correlated-feature stream definitien modified k-means

bank by performing an FFT on faame of 20 ms of speech. Gaussian clustering.

The energies are converted to 12 mel-frequency cepstral coeffiThirteen streams are chosen because both the common stream
cients (MFCCs) by cosine transfor@epstral mean subtraction definition and the correlated-feature stream definition readily

is then performed using the average MFCCs per utterance. &pply. Each stream consists of exactly three features, and is tied
nally a speech feature vector for one frame is composed fromt®3n identical number of subspace Gaussian prototypes, ranging
components: 12 MFCCs and normalized power, and their firétom eight to 256 in different experiments. Each of the ensuing
and second-order time derivatives computed as follows: 13-stream SDCHMM systems is then tested on the 1994 ATIS
evaluation dataset.

Fig. 3(a) and (b) show incremental improvements in recog-
nition performance when correlated-feature streams and/or
the modifiedk-means Gaussian clustering algorithm are used.
The incremental improvement due to either correlated-feature
streams or the modifie-means Gaussian clustering algorithm
. alone is similar in the case of Cl models. In the case of CD
C. Evaluation models, most of the gain in accuracy comes from the modified

All components of the baseline recognizers are kept intagtmeans Gaussian clustering algorithm. Nonetheless, the
except that their acoustic models are converted from CDHMNisiprovements are observed with both CI and CD models at
to SDCHMMs. The testing conditions are exactly the same aBnost all levels of quantization—various numbers of subspace
those described in Table II. All subspace (stream) Gaussian I@gaussian prototypes. This shows that by bringing more knowl-
likelihoods are precomputed at the beginning of each frame, agye into play—correlation in the correlated-feature stream
their values are stored in tables in contiguous meradmaddi-  definition and second-order statistics in the modifiecheans
tion, for implementation and system simplicity, all streams a®aussian clustering algorithm, better subspace Gaussian tying
tied to the same number of subspace Gaussian prototypes inschieved.
our SDCHMMs. Henceforth, all experiments are run with SDCHMMs derived

1) Stream Definitions and Clustering Algorithm$Vith the using the modifiedk-means Gaussian clustering algorithm
two types of stream definitions of Section I1I-A and the two cluswith correlated-feature streams except for the four-stream
tering algorithms of Section IlI-B, four different combinationsSSDCHMMSs which are derived with the common four-stream
of stream definitions and clustering algorithms are tested usidgfinition.

z[t] =normalized MFCC or power
Ax[t] =2zt + 2] + 2[t + 1] — z[t — 1] — 22t — 2]
AAz[t] = Azt + 1] — Azt — 1]

13 streams:

» common stream definitio- ensemble merging;

clustering;

2) Recognition AccuracyThe baseline Cl (CD) CDHMMs
are converted to Cl (CD) SDCHMMs with 8-256 (2—256) sub-

« common stream definitios modified k-means Gaussian space Gaussian prototypes per stream. One, four, 13, 20, and 39

streams are tried. Fig. 4 shows their recognitio

» correlated-feature stream definitignensemble merging; terms of word error rate (WER).

2We have also tried to compute the subspace Gaussian log-likelihoods on th
fly during decoding, but unless when there are more than 512 prototypes

In general, WER decreases with more stream
tot&ypes as expected, since more streams of sm
ghiould result in smaller distortions when the s

n accuracies in

s and more pro-
aller dimensions
ubspace Gaus-

stream, precomputation of the log-likelihoods always entails faster recogniti®ans are quantized, and more prototypes should give smaller
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Fig. 5. ATIS: Effect of number of streams and subspace Gaussian prototypes on SDCHMM recognition speed (the best systems of Table Il are marked with
squares). (a) Context-independent models and (b) context-dependent models.

quantization errors. For example, 39-stream CD SDCHMMmarabolas that curve upwards. The longer recognition time at
obtain the best WER of 5.0% with 16 subspace Gaussian pratioe two ends of the parabolic curves are due to two very dif-
types, while 20-stream CD SDCHMMSs require 64 prototypeferent effects:
and 13-stream CD SDCHMMs reach their best WER of 5.2% more prototypes S|mp|y require more Computation for the
with at least 128 prototypes. The best C| SDCHMMs (Wlth 20 Subspace Gaussian |Og-|ike|ihood5;
streams and 128 prototypes, or 39 streams and 32 prototypes) fewer prototypes lead to poorer SDCHMMs (due to larger
compare well with the baseline CI CDHMMs (9.5% versus  quantization errors) with less discriminating power and
9.4%), and the best CD SDCHMMs (with 20 streams and  more active states during a Viterbi search (using the same
64 prototypes, or 39 streams and 16 prototypes) actually peam-width), and, thus, more computation.
outperform the baseline CD CDHMMs (5.0% versus 5.2%). The CD SDCHMM system is quite insensitive to the first ef-
This suggests that some of the original CD CDHMMs may n@éct when compared with the Cl SDCHMM system. Itis because
be well trained, and subspace Gaussian tying may help impraMgre are about 10 times more active states during decoding in
these poor models by interpolating them with the better-traingige CD system. With the large number of active states in the
models, or by pooling together more training data for them. CD system, the pre-computation of subspace Gaussian log-like-
3) Recognition SpeedThe corresponding total recognitionjihoods represents a small proportion of the total computation
times of the SDCHMM systems of Fig. 4 are presented in Fig.tfme.
relative to real-time performance. The relationships betweenThe impact of the number of streams on recognition speed
recognition speed and the number of prototypes are genera\complicated by the above two effects, but in general, more
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TABLE Il
ATIS: SUMMARY OF THE BEST RESULTS

K = #streams

n = #subspace Gaussian prototypes per stream

CI = context independent

CD = context dependent

WER = word error rate (%)

TIME is relative to that of the baseline system

PR = parameter reduction

MS = memory savings.

For PR, figures in parentheses take into account the mappings of subspace Gaussians to the

full-space Gaussians. For MS, 1-byte mappings are assumed.)

Cl/cD | K n WER | TIME PR MS

ClI 1] 2254 | 94 1.00 1 1

Cl |13| 256 | 9.7 | 0.72 | 8(3.5) | 6.1

Cl {20 128 | 95 | 0.70 | 15(3.1) | 76

CI (39| 32 | 95 | 0.70 |38 (1.9) | 6.7

CD 1 | 76154 | 5.2 1.00 1 1

CD | 4| 256 | 58 | 042 | 63(15) | 35

CD |13 128 5.2 044 | 70 18

(5.6)
CD |20| 64 | 50 | 0.50 |74 (3.8) | 13
(2.0)

CD |39 32 5.0 0.67 | 77 7.3

streams means more additions in the computation of state lpgrameter space to obtain more robust models. Nevertheless, it
likelihoods (5) and more (software) function calls, hence longés still amazing to see that the 76 154 Gaussians of the baseline
recognition time. context-dependent CDHMMs can be represented by 32-128
4) Summary of Best Result&rom the discussion above,subspace Gaussians per stream.
there is a trade-off between recognition accuracy and recog-Thirteen, 20, or 39 streams all work well in both CD or ClI
nition speed by adjusting the number of streams and thgstems, but their impacts on savings in computation, memory,
number of prototypes. By overlaying Fig. 5 onto Fig. 4, thenodel parameters and accuracy are quite different. For the ClI
best SDCHMM recognition systems with various numbers afystems, 13- to 39-stream SDCHMMs all give similar perfor-
streams are determined and summarized in Table IlI. mance in terms of accuracy, speed and memory requirement.
The CD SDCHMMs perform better than the CI SDCHMMSsThe only difference lies in their number of model parameters:
when compared with their respective baseline systems. The @®stream SDCHMMs (with 1-D scalar streams) have the
SDCHMMs require fewer prototypes but give relatively bettdiewest model parameters if one does not count the subspace
accuracies, higher computation efficiency, greater memoBaussian encoding parameters, thanks to the efficiency of scalar
savings and larger reduction in model parameters. The mgs@antization which requires fewer prototypes. However, once
plausible explanation is that the Cl models are less complase include the encoding parameters, 39-stream SDCHMMs
and robustly trained due to the large amount of availabtequire more model parameters than SDCHMMs with fewer
training data. Further tying of Cl model parameters rendesfreams because they consume one encoding parameter per
over-smoothing of the parameters. As a result, more prototypseam for each subspace Gaussian. On the other hand, since
are required to maintain acceptable quantization errors. @mere are many more distributions and HMM state evaluations
the contrary, the CD SDCHMMSs are highly complex, anth CD systems than in Cl systems, the greater sharing of
modeling the rare triphones has always been a proble@aussian parameters in CD SDCHMMs entails greater savings
Obviously, results of Table Ill suggest that some triphones arecomputation, memory, and model parameters.
still not well trained, and further tying at the (finer than state) Various statistical significance tests from National Institute of
unit of subspace Gaussians can effectively reduce the mo8&ndards and Technology (NIST) are run on the performance
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Fig. 6. ATIS: Operating curves of SDCHMMs (the best systems of Table Il are marked with squares).

differences among the recognition systems of Table Ill. Most @fhere ¢, is the weight in thesth state of thenth mixture
the tests indicate no significant difference among the various @mponent in théth stream satisfying the stochastic constraint
(CD) systems. The only test that indicates a difference actuaﬂyﬁf:l Comi = 1.
finds the SDCHMM systems more accurate. Comparing (11) with (5), one finds two differences:
5) Operating Curves:The previous discussion thatis based « there is a switch between the product operafd) énd
on Viterbi decoding using one particular beam-width can be bi-  symmation operato() in the two equations;
ased. Fig. 6 studies the effect of beam-width on various SD- « in an SCHMM state, each of thi€ Subspace Gaussians is
CHMM systems of Table 11l with their operating curves. associated with its own mixture weight,..., whereas one
The asymptotic performances of CI SDCHMMs are basi-  mixture weighte,,, is shared among all th& subspace
cally the same as those of their parent CI CDHMMSs, while  Gaussians of a SDCHMM state.
CD SDCHMMs outperform CD CDHMMs asymptotically. Ingoth differences arise from the fact that SCHMMs assume
addition, the SDCHMM curves always lie to the left of theyream independence in the state probability density function
CDHMM curve on each graph; thus, SDCHMM systems aigsfinition, while SDCHMMSs do not. That is, for each state,
always faster. Similarly, operating curves of SDCHMMSs witiscHMmMs estimate one mixture Gaussian density from each
fewer streams also lie to the left of SDCHMMs with morgy the streamsndependentlyand then combine the subspace
streams though they may saturate sooner with poorer accuragigg;ssian likelihoods by assuming again independent streams.
(for example, compare the operating curves of 20-stream angever, the assumption of feature independence between
39-stream ClI SDCHMMs, or those of 13-stream and 20-streafy streams commonly used in speech recognition is hardly

CD SDCHMMs). The best compromise seems to come frostified. SDCHMMs therefore start with CDHMMs using

20-stream SDCHMM systems. the full feature speech vectors without assuming any feature
independence. The correlation between features at each state is
V. COMPARISON WITH OTHER HMM s well modeled by a mixture Gaussian density. An implication of

the difference in the scope of the assumptions is the number of

We compare our SDCHMM to two other hidden Markotreams required: The SCHMM favors fewer streams of higher

modeling methodologies: semi-continuous HMM (SCHMMyimensions, so that correlation among more features can be
[14], [15], and feature-parameter-tying HMM (FPTHMM)modeled and there will be fewer mixture weights. Conversly,

[18], [22]. SDCHMM favors more streams of lower dimensions so that
quantization of the subspace Gaussians of CDHMMs will give
A. With Semi-Continuous HMM smaller quantization errors and more accurate models.

At first glance_, _SDCHMM may appear similar to SCHI\/_IM:B With Feature-Parameter-Tying HMM
Both methods divide the feature space into streams, and tie sub- ) .
space (or stream) distributions across all states of all HMMs, The feature-parameter-tying HMM turns out to be a special
However, close scrutiny shows that-stream SCHMMs com- ¢ase of our SOCHMM when the number of streaiiis|s set to
pute the state likelihood differently as the size of the feature vectdp, In a sense, the FFTHMM is the

scalar quantization (SQ) version of our SDCHMM. However,
K s we note that
PSCHMM () H <Z ComiN YO 03%) 1) main storage cost of SDCHMMs is incurred by the sub-
space Gaussian encoding indices which grow in propor-
(12) tion with the number of streams;

m=1

k=1
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2) computational cost of the state log-likelihood (5) is di- A direction for future study is whether the tying structure of
rectly proportional to the number of streams once all suthe subspace Gaussians is reasonably consistent and portable
space Gaussian likelihoods are precomputed. across different applications and acoustic environments. In this

Thus, although SQ of the subspace Gaussians in FPTHMERSE, with the great reduction of Gaussian parameters (mixture
has the advantage of simplicity and generally gives the high#&ights, Gaussian means, and variances) by one to two orders
compression of subspace Gaussians, it needs more storage sp®@gnitude, one should expect SDCHMMs to be trained from

and more computation time than SDCHMMs with< D. The  scratch with much less training data than their parent CDHMMs.
difference is more conspicuous for large systems. It should also be easier to adapt these fewer parameters for a new

The evaluation results of Section IV, for example, Fig. 6, haw@eaker or to another environment.
confirmed this.
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