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Abstract. Recently, we proposed a new derivative to conventional continuous
density hidden Markov modeling (CDHMM) that we call “subspace distribution
clustering hidden Markov modeling” (SDCHMM). SDCHMMs can be created by
tying low-dimensional subspace Gaussians in CDHMMs. In tasks we tried, usually
only 32–256 subspace Gaussian prototypes were needed in SDCHMM-based system
to maintain recognition performance of its original CDHMM-based system — a
reduction of Gaussian parameters by one to three orders of magnitude. Consequently,
both recognition time and memory were greatly reduced. We also have showed that if
the underlying subspace distribution tying structure is known, it may be used to train
an SDCHMM-based system with as little as eight minutes of speech from scratch. All
the results suggest that there is substantial redundancy in conventional CDHMM
and that SDCHMM is a more compact model. In this paper, we analyze the tying
structure from two perspectives: from the acoustic-phonetic perspective showing
that the tying structure seems to capture prominent relationship among phones;
and, from the model-theoretic perspective showing that SDCHMMs, if properly
created from CDHMMs, may be preferred over the latter as they are less complex
and have the potential of greater generalization power.

Keywords: distribution clustering, parameter tying, model complexity, Bayesian
information criterion
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1. Introduction

Despite the long desire to use speech — often the most natural and
efficient modality humans use to communicate — for human-machine
interaction, the promise of an ubiquitous speech user interface has yet
to be fulfilled. One reason is due to the high computational cost of
today’s state-of-the-art laboratory recognizers, mostly based on hidden
Markov modeling (HMM). To arrive at the high recognition accuracy,
recognizers are running at one to two orders of magnitude slower than
real time, requiring high-end workstations equipped with hundreds of
megabytes (MB) of memory. While there are many ways to achieve
greater speed or less memory usage (Beyerlein and Ullrich, 1995; Boc-
chieri, 1993; Komori et al., 1995; Padmanabhan et al., 1997; Seide,
1995; Gopalakrishnan and Bahl, 1996), it is less easy to achieve both

goals without sacrificing the accuracy. One exception is the successful
technique of parameter tying. In the past, various parameters such as
phones (generalized biphones/triphones (Lee et al., 1990)), states (tied-
state HMM (Hwang, 1993; Young and Woodland, 1993)), observation
distributions (tied-mixture/semi-continuous HMM (Bellegarda and Na-
hamoo, 1990; Huang and Jack, 1989; Singer and Lippmann, 1992)),
and feature parameters (Takahashi and Sagayama, 1995) have all been
tied. Recently, we propose to push the technique to an even finer
sub-phonetic unit — subspace distributions. Subspace distributions
are the projections of the full-space distributions of an HMM in low-
dimensional subspaces. The hypothesis is that speech sounds are more
alike in acoustic subspaces than in the full acoustic space. We call
our novel HMM formulation “subspace distribution clustering hidden

Markov modeling” (SDCHMM) (Bocchieri and Mak, 2001), and the
tying information among subspace distributions of SDCHMMs together
with the mappings between them and the full-space distributions the
subspace distribution tying structure (SDTS).

In (Bocchieri and Mak, 2001), we showed that Gaussian quantiza-
tion can be very efficient in low dimension, resulting in a reduction
of Gaussian parameters by one to three orders of magnitude. As a
result, there can be substantial savings in recognition time and memory
usage. Since then similar findings were obtained by other researchers
of the field (Aiyer et al., 2000; Rigazio et al., 2000; Astrov, 2002).
Table I shows the typical computational savings we (on the Resource
Management (RM) (Price et al., 1988) and Air Traffic Information
System (ATIS) (Hemphill et al., 1990)) and others (an IBM LVASR
task (Aiyer et al., 2000)) obtained in some recognition tasks1. In the

1 Since the comparative performance of SDCHMMs and CDHMMs is the main
theme here, details of the recognition systems, such as the number of tied states,
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table, memory savings (MS) refers only to the memory used by mixture
weights (4 bytes), Gaussian means (4 bytes) and variances (4 bytes),
and indices used to encode the SDTS (1 byte); and time savings (TS)
refers to savings in the total decoding time, not just the computation
time of Gaussian likelihoods. Both memory and time savings are com-
puted by comparing the figures in an SDCHMM-based system with
respect to those in the corresponding CDHMM-based system. In (Mak
and Bocchieri, 2001), we further demonstrated on the ATIS task that
if one has a priori knowledge of the SDTS of ATIS, one may even
train context-independent or context-dependent SDCHMMs for the
task from scratch using as little as 8 minutes of ATIS data which
perform as well as their CDHMM counterparts. All these results suggest
substantial redundancy in our standard CDHMM-based systems, and
that the SDTS is a succinct representation of the inter-relationship
among phones.

Table I. Typical computational savings by SDCHMMs (Vocab = size of vocabulary
in words, PP = grammar perplexity, WER = word error rate (%), G = #Gaussian,
K = #subspaces, g = #subspace Gaussian prototypes per subspace, MS = memory
savings, TS = time savings)

Task Monophone Vocab PP WER G K g MS TS

/Triphone

ATIS monophone 1,536 20 9.5 2,254 20 128 87.8% 30.0%

ATIS triphone 1,536 20 5.2 76,154 13 128 94.5% 56.0%

RM triphone 1,000 60 3.9 5,349 39 64 85.2% 60.8%

IBM triphone 20,000 160 11 43,444 40 64 86.2% —

Although tying structures and schemes are not new in speech recog-
nition systems, in the past, parameter tying is generally only treated as
a technique to robustly increase model complexity for a given amount of
training data. Little analysis is done on the resulting tying structures.
In this paper, we examine the SDTS in SDCHMMs from two different
perspectives, hoping that it will shed some light on our understand-
ing of these tying structures. Firstly, in Section 3, we will present an
acoustic-phonetic analysis of the SDTS. The major outcome is that
the SDTS seems to capture prominent relationship among phones.

language models, etc. are not provided. However, from the various word accuracies,
one can be assured that these results are generated from reasonably good systems.
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Secondly, in Section 4, we will examine SDCHMMs from the model-
theoretic perspective, and consider tying as a model order selection
problem. The analysis shows that the Bayesian information criterion
(BIC) is a fairly good predictor of SDCHMM performance. That is, a
less complex SDCHMM-based system — with a smaller BIC value —
has a higher recognition accuracy. In addition, SDCHMMs that perform
better than CDHMMs (from which they are derived) on testing data
have smaller BICs.

In the next section, we will first review the basic theory of SD-
CHMM.

2. Review of SDCHMM

In this Section, we review the theory of subspace distribution clustering
hidden Markov modeling, and briefly outline two ways to train SDCH-
MMs: one directly from training data if the subspace distribution tying
structure is known, and an indirect conversion from a set of CDHMMs.

2.1. Theory of SDCHMM

The theory of SDCHMM is derived from that of continuous density
hidden Markov model (CDHMM) in which state-observation distribu-
tions are estimated as mixture Gaussian densities with M components
and diagonal covariances (or block-diagonal covariances2). Using the
following notations (where bold-faced quantities represent vectors):

O : an observation vector of dimension D

Pi(O) : output probability of state i given O

cim : weight of the m-th mixture component of state i

µim : mean vector of the m-th component of state i

σ2
im : variance vector of the m-th component of state i

N (·) : Gaussian pdf

the observation probability of the i-th state of a CDHMM is given by

P CDHMM

i (O) =
M
∑

m=1

cim N (O;µim,σ2
im),

M
∑

m=1

cim = 1. (1)

2 For simplicity and clarity, this paper assumes Gaussians with diagonal covari-
ances which are most commonly used in speech recognition. The discussion can
easily be generalized to the case with block-diagonal covariances.
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The key observation is that a Gaussian with diagonal covariance
can be expressed as a product of subspace Gaussians where the sub-
spaces (or streams3) are orthogonal and together span the original full
feature vector space. To derive K-stream SDCHMMs from a set of
CDHMMs, we first partition the feature set with D features into K

disjoint feature subsets with dk features,
∑K

k=1 dk = D. Each of the
original full-space Gaussians is projected onto each feature subspace
to obtain K subspace Gaussians of dimension dk, 1 ≤ k ≤ K, with
diagonal covariances. Thus, Eqn. (1) can be rewritten as

P CDHMM

i (O) =
M
∑

m=1

cim

(

K
∏

k=1

N (Ok;µimk,σ
2
imk)

)

(2)

where Ok, µimk, and σ2
imk are the projection of the observation O, and

mean and variance vectors of the m-th mixture component of the i-th
state onto the k-th subspace respectively.

For each stream, we tie the subspace Gaussians across all states of
all CDHMMs. Hence, the state observation probability in Eqn. (2) is
modified as

P SDCHMM

i (O) =
M
∑

m=1

cim

(

K
∏

k=1

N (Ok;µk,ωk(i,m),σ
2
k,ωk(i,m))

)

(3)

where ωk(·) represents the tying structure: it maps the k-stream of
the m-th component of the mixture Gaussian of state i to a subspace
Gaussian prototype of the k-th stream.

2.2. SDCHMM Training

SDCHMMs can be trained either directly from speech data or indirectly
from a set of already-trained CDHMMs as shown in Fig. 1.

2.2.1. Indirect Training: Model Conversion from CDHMMs

The formulation of SDCHMM as of Eqn. (3) suggests that SDCHMMs
may be implemented in two steps as shown in the left block in Fig. 1:

(1) Train CDHMMs for all the phonetic units (possibly with tied states),
wherein state observation distributions are estimated as mixture
Gaussian densities with diagonal covariances.

3 In this paper, the two terms, “subspace” and “stream” are used interchangeably
to mean a feature space of dimension smaller than that of the full feature space.
“Subspace” is clearer mathematically, but “stream” is more common in the speech
recognition community.
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DIRECT
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continuous density
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Direct
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Figure 1. Two methods of training SDCHMMs

(2) Convert the CDHMMs to SDCHMMs by tying the subspace Gaus-
sians in each stream. Details of the stream definitions and the
clustering algorithm can be found in (Bocchieri and Mak, 2001).

2.2.2. Direct Training

Although the indirect training scheme of SDCHMMs through model
conversion of CDHMMs is simple and runs fast, it requires an amount
of training data as large as CDHMM training since the scheme requires
intermediate CDHMMs. It does not make use of the fact that SDCH-
MMs have significantly fewer Gaussian parameters (mixture weights,
means, and variances). Thus, if we have a priori knowledge of the
subspace distribution tying structure (SDTS), one should be able to
train SDCHMMs directly from significantly less speech data as shown in
the right-block in Fig. 1. Maximum likelihood estimation of SDCHMM
parameters may be done in much the same way as CDHMM parameters
are estimated using the Baum-Welch algorithm (Baum et al., 1970). In
fact, the additional constraints imposed by the SDTS only alter the
way in which statistics are gathered from the training observations.
That is, to estimate the Gaussian parameters of a subspace Gaussian
prototype, statistics are collected from all frames of any states of any
models that use the prototype. The detailed re-estimation formulas can
be found in (Mak and Bocchieri, 2001).
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3. Acoustic-Phonetic Analysis of the Subspace Distribution

Tying Structure

From Section 2, one way to create SDCHMMs is through converting
conventional CDHMMs. The conversion involves a simple Gaussian
clustering process which is fully automatic, utilizing only acoustic in-
formation from the training data. Yet recognition results on the ATIS
task (Table II) show that, for instance, SDCHMMs with 20 streams
and 64 subspace Gaussians prototypes per stream are adequate to
represent the original context-dependent CDHMMs containing 76,154
full-space Gaussians — a reduction of Gaussian parameters (means and
variances) by a factor of more than 1,000. What is even more intriguing
is that with only two subspace Gaussian prototypes — or one bit of
information — per stream, a 39-stream context-dependent SDCHMM-
based system can still achieve a WER of 9.1%. Such efficient tying
suggests that the (original) full-space Gaussians are highly redundant.
It is therefore interesting to “see” how acoustics are similarly realized
by which speech units from the subspace distribution tying structure.

Table II. Reduction of Gaussian parameters by context-dependent SDCHMMs
on ATIS (K = #subspaces, g = #subspace Gaussian prototypes per subspace,
WER = word error rate (%), GPR = reduction in Gaussian parameters)

K g WER GPR

1 76,154 5.2 1

4 256 5.8 297

13 128 5.2 595

20 64 5.0 1,189

39 32 5.0 2,380

39† 2 9.1 38,077

† This case used a much larger decoding beam width of 270 while all other cases
used a beam width of 170.

With the huge number of combinations of phonetic units, HMM
states, and Gaussian components in SDCHMMs, it is hard to visualize
the whole subspace distribution tying structure in a single picture. In
the following, we present a simple quantitative analysis of the number
of subspace Gaussians that are shared by corresponding HMM states
of any pair of phones. We hope that the analysis will shed some light
on the acoustic-phonetic nature of speech.
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3.1. Analysis on ATIS

In order to generate some readable visual plots of the subspace dis-
tribution tying structure between phone pairs, we employ a less com-
plex SDCHMM-based system. To do that, we first trained monophone
CDHMMs with about 4,000 ATIS training utterances. The CDHMMs
have the same HMM configuration as the baseline CDHMMs of Table I
except that there are only four Gaussian mixture components per state
(instead of 16 in the latter). Twenty-stream monophone SDCHMMs
were then derived from the CDHMMs by the model conversion scheme
as explained in Section 2.2.1 requiring 64 prototypes per stream. The
resulting SDCHMMs have a recognition word error rate (WER) of
12.6%4. The SDTS of the 20-stream SDCHMMs is then analyzed.

3.2. Methodology

For the corresponding states of any two phonetic SDCHMMs with the
same number of HMM states, which are modeled as mixture Gaus-
sian densities, the constituent subspace Gaussians of their full-space
Gaussians are compared. Specifically, for each stream, the number of
common subspace Gaussians at the corresponding states of the two
SDCHMMs are counted irrespective to which mixture components the
subspace Gaussians come from. The procedure may be expressed in
pseudo-code as follows:

for each pair of phones (P, Q) with the same number of states
for each state
{

num common subgaussian = 0
for each stream
{

P .list = subspace Gaussians from all mixture components of phone P
in this state projected onto this stream

Q.list = subspace Gaussians from all mixture components of phone Q
in this state projected onto this stream

num common subgaussian += Common Gaussian(P .list, Q.list)
}
print(num common subgaussian)

}

Common Gaussian(list1, list2)
{

find the number of common subspace Gaussians between list1 and list2
}

4 The result is worse than the one in Table I. It is mainly due to the reduced
model complexity.
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Since each subspace Gaussian may be represented by its prototype
index, a full-space Gaussian in a 20-stream SDCHMM can be repre-
sented by a tuple of 20 prototype indices, one for each stream. For
example, the 4-mixture densities of the third state of the phones “s”
and “z” are represented as:

{ < 2, 4, 3, 2, 9, 46, 2, 52, 2, 2, 33, 13, 46, 37, 13, 21, 46, 60, 42, 2 >,

< 2, 24, 12, 24, 2, 46, 24, 16, 13, 21, 47, 12, 46, 46, 46, 46, 2, 48, 28, 2 >,

< 0, 24, 31, 34, 28, 2, 28, 35, 46, 37, 46, 46, 33, 46, 37, 46, 46, 48, 24, 21 >,

< 4, 37, 12, 25, 34, 46, 4, 52, 31, 21, 16, 25, 12, 51, 44, 24, 5, 25, 12, 4 > }

and

{ < 46, 4, 47, 2, 47, 46, 13, 52, 2, 2, 33, 46, 46, 41, 13, 21, 46, 13, 24, 2 >,

< 0, 24, 31, 34, 28, 12, 28, 35, 27, 37, 46, 12, 33, 46, 37, 21, 46, 48, 13, 21 >,

< 46, 24, 46, 24, 2, 46, 24, 16, 13, 21, 47, 52, 33, 46, 46, 46, 2, 57, 28, 2 >,

< 0, 4, 46, 44, 28, 13, 47, 37, 25, 1, 5, 4, 25, 51, 35, 21, 5, 25, 25, 25 > }

respectively. Thus, to determine the number of common subspace
Gaussians in the fourth stream of the third state of “s” and “z”, the
two lists {2, 24, 34, 25} and {2, 34, 24 44} are compared and the result
is three. Note that the order of indices is ignored. The computation
is repeated for every stream and the counts are accumulated for each
state.

3.3. Results

Forty-five phones (excluding three noise models) are used in our ATIS
system, each having three HMM states. The number of common sub-
space Gaussians between any pairs of the 45 phones can be computed
for each of their three states. The phones are further divided into two
major categories: 18 vowels and 27 consonants5. Histograms of counts
of the number of common subspace Gaussians between any two phones
within each category and across the two categories are shown in Fig. 2
together with some of their statistics.

In addition, Fig. 3–5 provides a visualization of the SDTS between
three pairs of phones belonging to various phonetic categories:

− vowel-vowel pair: “ae” and “eh”

− consonant-consonant pair: “s” and “z”

− consonant-vowel pair: “t” and “iy”.

5 The vowels are: aa, ae, ah, ao, aw, ax, axr, ay, eh, er, ey, ih, ix, iy, ow, oy, uh,
and uw; and the consonants are: b, ch, d, dh, dx, el, en, f, g, hh, jh, k, l, m, n, ng,
nx, p, r, s, sh, t, th, v, w, y, and z.
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In each of the three figures, the abscissas are stream indices ranging
from 1 to 20, while the ordinates are the subspace Gaussian prototype
indices for each stream. For each stream of the 4-mixture Gaussians
of a state, the subspace Gaussian prototype indices of the first phone
in the pair are represented by the four letters “a”, “b”, “c”, and “d”.
Subspace Gaussians symbolized by the same letter belong to the same
full-space Gaussian component. Thus, if one connects all the letter “a”’s
together across the 20 streams, one obtains the “trajectory” of a full-
space Gaussian encoded by its subspace Gaussian prototypes. On the
other hand, the subspace Gaussian prototype indices of the second
phone in the pair are represented indiscriminately by square boxes. A
match of subspace Gaussians between the two phones occurs when any
of the four letters is “captured” by a box. (Due to the low resolution
on the ordinate, only when a letter is right in the middle of a square
box is there actually a match.) Specifically, the number of matches in
the three figures, from the first state to the third state are:

− between “ae” and “eh”: 21, 26, 27

− between “s” and “z”: 25, 28, 48

− between “t” and “iy”: 0, 0, 5

while the maximum possible number of matches is 20 × 4 = 80.

3.4. Discussion

The computed figures should be compared with the expected number of
common subspace Gaussians between two 4-mixture SDCHMM states
should the matches occur by pure chance, which is found to be 0.24
per stream. Thus, the expected number of common subspace Gaussians
between two 20-stream SDCHMM states is 20 × 0.24 = 4.8 if the
matches occur by chance.

By comparing the expected number of matches of 4.8 and the figures
shown in Fig. 2–5, we have the following observations:

− The extent of sharing of subspace Gaussians splits along broad
phonetic categories (vowels and consonants; and within conso-
nants, along sub-categories of fricatives, plosives, nasals and ap-
proximants (Ladefoged, 1993)). That is, there is more sharing of
subspace Gaussians between two vowels or two consonants than
between a vowel and a consonant; and, within consonants (from
results not shown here due to space limitation), there is more
sharing between two fricatives, two plosives, etc. For example, the
mean number of shared subspace Gaussians between two vowels
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Figure 2. Counts of the number of common subspace Gaussians between phones of
different broad categories in an ATIS SDCHMM-based system
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matches from the 1st to the 3rd state are 21, 26, 27)
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Figure 4. Subspace distribution tying structure between “s” and “z” (number of
matches from the 1st to the 3rd state are 25, 28, 48)
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Figure 5. Subspace distribution tying structure between “t” and “iy” (number of
matches from the 1st to the 3rd state are 0, 0, 5)
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or consonants are well above 4.8, the expected number of matches
by chance; however, that between vowels and consonants are below
4.8 for the beginning and middle states. The effect is conspicuously
illustrated by Fig. 3–5 in which vowel pair “ae”–“eh” and conso-
nant pair “s”–“z” have 25–60% of their subspace Gaussians shared
in all three states; whereas there is basically no sharing between
the consonant-vowel pair “t”–“iy”.

− In the mid-states, where the coarticulatory effect is weaker and the
identity of a phone is better preserved, there is much less sharing of
subspace Gaussians between vowel-consonant pairs, while vowel-
vowel pairs exhibit more sharing. In fact, the average number (3.48)
of common subspace Gaussians between vowel-consonant pairs is
well below the expected value of 4.8. The histogram for the case of
vowel-vowel pairs is also more uniform than that of consonant-
consonant pairs. This may be attributed by the more gradual
differences in the articulations of the vowels. In contrast, the ar-
ticulations of different categories of consonants are very different
(c.f. nasals vs. plosives).

− On average, there is more sharing between two vowels than be-
tween two consonants. This again confirms the greater resemblance
between vowels.

All the observations are well in accord with our knowledge about the
phones. The analysis provides some understanding of the efficiency of
subspace distribution clustering hidden Markov modeling in encoding
the phonetic information.

4. Model-Theoretic Analysis of SDCHMM

Before statistical pattern classification can be performed, mathematical
models are first built from observations; and in the case of speech
recognition, they are acoustic models. An immediate question is: What
is the “best” model that can be estimated from a given set of data?
This is a question of great controversy and different schools of model
complexity have their own meaning of what is “best” (if they agree on
whether there is a “best” at all). In terms of Kolmogorov complexity,
it is even an unsolvable problem (Li and Vitanyi, 1997). Nevertheless,
if we fix the family of models and for a finite set of models, there are
still an arsenal of complexity measures for model selection that have
been found useful in practice. That is, given a set of data X, and a set
of models λ ∈ Λ with model parameters θλ that explain X, determine
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the “best”model λ̂ among the models λ ∈ Λ. In this Section, we will
borrow an analytical tool from the model complexity community to
compare various SDCHMMs and investigate its predictive power of the
models’ recognition performance.

4.1. Measures of Model Complexity

Model complexity measures can be classified into two categories:

1. Measures directly derived from the posterior probability of a model.
That is, the best model is

λ̂ = argmax
λ∈Λ

P (λ|X)

= argmax
λ

P (X|λ)P (λ)

= argmin
λ

[− log P (X|λ) − log P (λ)] . (4)

Common measures of this type include (minimum) Akaike Infor-
mation Criterion (AIC) (Akaike, 1974) and Bayesian Information
Criterion (BIC) (Schwarz, 1978). Their main differences lie on how
they approximate the priors.

2. Measures derived from coding theory to find the shortest string
that encodes the posterior probability of Eqn.(4), most notably
the Minimum Description Length (MDL) (Rissanen, 1978) and
Minimum Message Length (MML) (Wallace and Boulton, 1968).
They differ mainly on the coding schemes and their emphasis on
the priors.

A detailed treatment of the topic is beyond the scope of this paper and
interested readers are referred to a survey by A. D. Lanterman (Lanter-
man, 2001).

While these model complexity measures differ in details, they all
may be expressed as penalized log-likelihoods:

model complexity

= −log likelihood of data + penalty due to complexity

= − log P (X|θλ, λ) + C(X, θλ|λ) . (5)

In this paper, we choose the Bayesian Information Criterion (BIC) as
our metric to compare the complexity of various SDCHMMs. BIC has
been used in other fields with some success (Liang et al., 1992; Wax
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and Kailath, 1985) and is also not unfamiliar to the speech commu-
nity (Chan et al., 2000; Chen and Gopalakrishnan, 1998).

4.2. Complexity Analysis of SDCHMMs Using BIC

Since we are interested only in the difference in model complexity be-
tween conventional CDHMMs and our SDCHMMs, there is no need to
compute the BIC for any common information between the two models.
Specifically, our SDCHMMs are converted from CDHMMs by keeping
the same HMM topologies (number of states, transitions, and number
of Gaussian mixtures for each state), transition probabilities, as well as
Gaussian mixture weights, which are thus common to both models and
they can be factored out from our BIC calculation. The only differences
between SDCHMMs and CDHMMs are their Gaussian parameters and
the addition of the subspace distribution tying structure in SDCHMMs.
Therefore, we simplify the BIC of CDHMMs and SDCHMMs as follows:

BIC(λCDHMM) = − log P (X|λ̃CDHMM ) +
DCDHMM

2
log N . (6)

BIC(λSDCHMM) = − log P (X|λ̃SDCHMM ) +
DSDCHMM

2
log N .(7)

where, λ̃CDHMM is the maximum likelihood estimate of the set of
CDHMMs and λ̃SDCHMM is the set of SDCHMMs converted from
λ̃CDHMM ; DCDHMM is the sum of all Gaussian parameters in CDHMMs;
DSDCHMM is the sum of all Gaussian parameters plus the encoding of
SDTS in SDCHMMs; and N is the number of training speech frames.
Furthermore, if we let

K = number of streams
g = number of subspace Gaussian prototypes per stream
G = number of full-space Gaussians
D = dimension of each feature vector

then Eqn.(6) and Eqn.(7) become

BIC(λCDHMM) = − log P (X|λ̃CDHMM ) + DG log N. (8)

BIC(λSDCHMM) = − log P (X|λ̃SDCHMM ) +

(

Dg +
GK

2

)

log N.(9)

4.3. Analysis of SDCHMMs on Resource Management

SDCHMMs of various complexities were generated from the Resource
Management task (RM) (Price et al., 1988) for this analysis. 39-dimensional

main.tex; 14/06/2003; 15:20; p.17



18 Brian Mak

feature vectors, consisting of 12 MFCCs and normalized energy plus
their first- and second-order derivatives, were extracted every 10ms.
Training data come from 3990 speaker-independent training utterances
in the feb91 RM corpus, and the testing data is comprised of 300
utterances from the same corpus. There are totally 1,369,977 training
speech frames.

4.3.1. Procedure

From the RM training corpus, CDHMMs and SDCHMMs of various
complexities were derived as follows:

Step 1. Speaker-independent and context-dependent CDHMMs were trained
using the HTK Toolkit (Young et al., 1999). There are 2,279 tri-
phones and 5,349 Gaussians.

Step 2. SDCHMMs with various numbers of streams (1, 13, 20, 39) and
subspace Gaussian prototypes (64, 128, 256, 512) were obtained by
the conversion method described in Section 2.2.1.

Step 3. For each set of HMMs, forced alignment was performed over all
training data and the sum of acoustic likelihoods was recorded.

Step 4. Each set of HMMs was used to decode all training and test data
separately to get their word recognition accuracies with a very large
beam-width to mitigate the effect of pruning the search space.

Step 5. The Bayesian information criterion of each set of CDHMMs and
SDCHMMs was computed by Eqn.(8) and Eqn.(9) respectively.

The relation between the log-likelihoods on training data, BIC and
recognition performance of each set of HMMs is depicted in Table III
and Fig. 6.

4.4. Discussion

From Table III, we have the following observations on the model like-
lihoods:

− the baseline CDHMMs have the highest log-likelihood. This is
expected since all other SDCHMMs are approximations to the
baseline CDHMMs.

− for a given number of streams, the log-likelihood increases mono-
tonically with the number of subspace Gaussian prototypes in the
SDCHMMs. This again agrees with the fact that since SDCHMMs
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Figure 6. BIC analysis on various HMMs (Performance of the baseline CDHMMs
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Table III. Model complexity analysis of HMMs using BIC (K = #stream; g = #subspace
Gaussian prototypes per stream; LL = log-likelihood over all training data; P = penalty
before multiplied by log N/2; WER1/WER2 = word error rate on training/testing data)

Model K g LL(×107) P (× log N/2) BIC (×107) WER1 WER2

SDCHMM 1 1,024 -9.04880 85,221 9.10901 6.64 6.28

SDCHMM 1 2,048 -8.93470 165,093 9.05134 4.87 6.04

SDCHMM 1 3,072 -8.83998 244,965 9.01305 4.20 4.99

SDCHMM 1 4,096 -8.74931 324,837 8.97881 3.40 4.15

CDHMM 1 5,349 -8.65962 417,222 8.95439 2.65 3.95

SDCHMM 13 64 -8.99707 74,529 9.04973 3.89 4.75

SDCHMM 13 128 -8.92331 79,521 8.97949 3.55 4.47

SDCHMM 13 256 -8.87021 89,505 8.93345 3.27 4.27

SDCHMM 13 512 -8.83138 109,473 8.90872 3.25 4.19

SDCHMM 20 64 -8.86780 111,972 8.94691 3.25 4.47

SDCHMM 20 128 -8.80656 116,964 8.88920 3.11 4.31

SDCHMM 20 256 -8.76324 126,948 8.85293 2.93 4.19

SDCHMM 20 512 -8.74248 146,916 8.84628 2.89 3.99

SDCHMM 39 64 -8.71393 213,603 8.86484 2.84 3.82

SDCHMM 39 128 -8.69752 218,595 8.85196 2.71 4.03

SDCHMM 39 256 -8.68971 228,579 8.85120 2.74 3.99

SDCHMM 39 512 -8.68312 248,547 8.85872 2.71 3.90

are converted from the baseline CDHMMs and better approx-
imation is obtained with more prototypes, resulting in smaller
quantization errors and thus higher likelihoods.

− for a given number of prototypes, the model likelihood also in-
creases with the number of streams proving that Gaussian cluster-
ing is more effective in lower dimensional spaces.

Likelihoods of the models are highly correlated with their recognition
performance. In general, except for the 1-stream SDCHMMs, the recog-
nition performance of the various models on both the training and
testing data agrees well with their likelihoods: higher the likelihood is,
smaller the recognition error will be. However, the 1-stream SDCHMMs
and the rest of SDCHMMs seem to take on two different courses so that,
for example, although a 1-stream SDCHMM and 20-stream SDCHMM
may have the same likelihood, the latter always has a lower WER.
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Now, when we look at the BICs of the models, most of the obser-
vations with model likelihoods also holds for the model BICs. This is
not surprising as the log-likelihood accounts for about 98.6% of the
value of a BIC on average. However, if all models are taken into con-
sideration, the recognition performance of the models correlate better
with their BICs than their likelihoods. From Fig. 6, except for the
baseline CDHMMs, the WERs of all the other SDCHMMs more or
less fall with their BIC values. In this aspect, the BIC is a better
predictor of a model’s performance. According to Table III, 10 SD-
CHMMs (starting from the one with 13 streams and 256 subspace
Gaussian prototypes and downwards) have smaller BICs than the base-
line CDHMMs. Among them, two models actually have a smaller WER
on the test data than the baseline CDHMMs while half of them are
within (relatively) 2.0% of the baseline WER (and some of these dif-
ferences are actually not statistically significant). Hence we see that
even though the log-likelihoods dominate overly in the BIC value of the
models, they may not be a good metric for the models’ predictive power.
Instead, model complexity measure such as BIC, though imperfect as
shown in our case, can be a better indicator.

5. Conclusion

Recently, we developed the subspace distribution clustering hidden
Markov models (SDCHMM) to improve system performance in terms
of speed and memory usage. Other researchers were able to repeat our
experience in their own laboratories. Yet there lacks a formal analysis
on SDCHMMs. In this paper, we attempt to investigate the effective-
ness of subspace distribution tying in SDCHMMs from two different
perspectives. From an acoustic-phonetic analysis, we conclude that the
subspace distribution tying structure can capture prominent acoustic
relationship among the phones. For instance, phones belonging to the
same broad phonetic category are tied to a much greater extent than
those belonging to different categories. From a model-theoretic analysis
using the Bayesian information criterion (BIC) as a measure of model
complexity, we find that less complex HMMs generally result in higher
recognition accuracy, and the BIC is a better predictor of their recog-
nition performance (on testing data) than their likelihoods (computed
from the training data). Furthermore, SDCHMM-based systems with a
lower recognition error rate than the reference CDHMM-based system
all have smaller BIC values.

main.tex; 14/06/2003; 15:20; p.21



22 Brian Mak

In summary, SDCHMMs are more compact models and can give
better system performance than their parent CDHMMs from which
they are derived.
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