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Abstract

Recently, a new auditory-based feature extraction algorithm for robust speech recognition in noisy

environments was proposed [1], [2]. The new features are derived by mimicking closely the human pe-

ripheral auditory process and the filters in the outer ear, middle ear, and inner ear are obtained from

psychoacoustics literature with some manual adjustments. In this paper, we extend the auditory-based

feature extraction algorithm and propose to further train the auditory-based filters through discrimi-

native training. Using the data-driven approach, we optimize the filters by minimizing the subsequent

recognition errors on a task. One significant contribution over similar efforts in the past (generally under

the name of “discriminative feature extraction”) is that we make no assumption on the parametric form

of the auditory-based filters. Instead, we only require the filters to be triangular-like: the filter weights

have a maximum value in the middle and then monotonically decrease to both ends. Discriminative

training of these constrained auditory-based filters leads to improved performance. Furthermore, we

study the combined discriminative training procedure for both feature and acoustic model parameters.

Our experiments show that the best performance can be obtained in a sequential procedure under the

unified framework of MCE/GPD.
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I. Introduction

In automatic speech recognition (ASR), the design of acoustic models involves two main

tasks: feature extraction and data modeling. Feature extraction aims at finding succinct, rele-

vant, and discriminative features from acoustic data for later modeling, and data modeling tries

to create mathematical models for each acoustic entity with high discriminability. Acoustic

features such as linear predictive cepstral coefficients (LPCC), mel-frequency cepstral coeffi-

cients (MFCC), perceptual linear predictive coefficients (PLP) are commonly used, and the

most popular data modeling techniques in current ASR are based on hidden Markov modeling

(HMM). Recently, a new auditory-based feature extraction algorithm for robust speech recog-

nition was proposed [1]. It attempts to mimic more closely the human auditory process from

the outer ear, through the middle ear and to the inner ear. The filters in various parts of

the feature extraction module were obtained from psychoacoustics literature with some man-

ual adjustments and the resulting auditory-based features were shown more robust in noisy

environments [2]. However, not unlike the extraction of other more commonly used features

like MFCCs, some parameters in the feature extraction process are still set by experience,

heuristics, or simple psychoacoustics results. For example, the shape of the auditory-based

filters are manually modified from psychoacoustic results that were derived using simple or

mixed tones. There are reasons to believe that these auditory-based filters may not be optimal

for continuous speech in the sense that they may not result in minimum recognition errors,

especially under the context of a particular recognition task. In this paper, we attempt to de-

sign the auditory-based filters (AF) used in the feature extraction algorithm discriminatively

in a data-driven approach so as to minimize the final recognition errors. We will call the re-

sulting filters “discriminative auditory-based filters” (DAF). Furthermore, the training of DAF

is followed by the discriminative training of acoustic models under the unified framework of

MCE/GPD(minimum classification error and generalized probabilistic descent) [3], [4].

The past approaches of discriminative feature extraction (DFE) may be divided into two

major categories:

(1) Most DFE-related works are based on common features such as log power spectra [5], mel-

filterbank log power spectra [6], and LPCC [7]. In these works, a transformation network is

discriminatively trained to derive new discriminative features for the following data modeling

process. For instance, in [6], Chengalvarayan and Deng generalized the use of the discrete

cosine transform (DCT) in the generation of MFCCs and replaced it by state-dependent linear

transformations that were optimally and discriminatively trained in conjunction with the dis-
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criminative training of the HMM parameters. In the meantime, Rahim used neural networks to

transform LPCCs before they were input into digit HMMs [7]. Discriminative feature weight-

ing by Torre et al. [8] is a special form of feature transformation in which the transformation

matrix is diagonal. Notice that all these work do not touch the front-end signal processing

module that derives inputs to their transformation networks.

(2) In contrast, Alain Biem [9] applied joint discriminative training on both HMM parameters

and filters in the front-end. The two kinds of parameters, HMM parameters and filter param-

eters, were assumed independent. Two kinds of filter parameterization were tried: Gaussian

filters or free-formed filters. The acoustic models and the evaluation tasks were relatively sim-

ple to today’s standard, and the improvement was small. Furthermore, the free-formed filters

performed worse than the Gaussian filters.

This paper is not about discriminative design of feature transformation networks. Instead,

optimization of the auditory-based filters is studied under the framework of the auditory-based

feature extraction algorithm. We postulate that the shape of human auditory filters is not

arbitrary, but based on psychoacoustic evidence, it should be “triangular-like” as defined in

Section II. Our non-parametric formulation of the triangular-like constraint is general enough

that it covers the triangular filters commonly used in computing MFCCs as well as the Gaussian

filters used in Biem’s work [9]. One of the challenges in this paper is to derive a mathematical

expression for such constrained filters. We achieve this through two parameter-space transfor-

mations.

This paper is organized as follows: In the next Section, we first review the auditory-based

feature extraction algorithm and explain the suggested triangular-like constraint in details. In

Section III, we derive the formulas for discriminative training of various auditory-based filter

parameters. This is followed by experiments and results on the Aurora2 corpus in Section IV.

Finally in Section V, we conclude with remarks on future investigations.

II. Review of the Auditory-based Feature and Its Psychoacoustic Constraints

Based on an analysis of humans’ peripheral auditory system, the auditory system was divided

into several modules. The function of each module was analyzed from a signal processing point

of view and was implemented by appropriate signal processing models. The final algorithm

also took into consideration the computational complexity. A diagram of the feature extraction

algorithm is presented in Fig. 1. There are three modules which differ from other auditory-

based approaches: outer-middle ear transfer function (OME-TF), linear interpolation from

linear frequency to Bark frequency, and auditory-based filtering. The frequency responses of
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the outer-middle ear and the auditory-based filters are obtained from psychoacoustics literature

with some manual adjustments and are plotted in Fig. 2 and Fig. 3 respectively. The OME-TF

is used to replace the pre-emphasis filter used in other feature extraction (such as LPCC and

MFCC), and the auditory-based filters are used to replace the triangular filters commonly used

in computing MFCC. There are two reasons to select the shape of an auditory-based filter in

Fig. 3:

1. it is similar to the shape of human auditory filter as reported in [10], and

2. it is also similar to the shape of speech formants. Through moving-average operation, the

formants can be enhanced. Some studies showed that enhanced formants may improve speech

intelligibility [11], [12].

We notice that the shape of an auditory filter in the psychoacoustic literature is determined

experimentally using simple or mixed tones that are not real speech, and we have to manually

adjust these filters to get better recognition performance [2]. It is clear that the filters may not

be optimal for different speech recognition tasks. In this paper, we would like to extend the

algorithm and design the auditory-based filters to achieve minimum classification errors.

In the human auditory system, the filtering function is actually performed when the traveling

wave due to a sound runs along the basilar membrane. Each specific location exhibits the

highest response to the traveling wave of a characteristic frequency. Therefore, the human

auditory filters must satisfy the following constraints:

• their shape must be continuous and should not contain discontinuities as in the triangular

filter commonly used to compute MFCCs;

• the peak of a filter must locate at somewhere in the middle; and

• the response must taper off to both ends monotonically.

We will call any filters that satisfy the above constraints “triangular-like filters” and the

constraints collectively as the “triangular-like constraint”. The triangular-like constraint can

then be represented mathematically as follows: If the width of a filter is (Ll + 1 + Lr), with

weights {w−Ll
, w−Ll+1, . . . , w−1, w0, w1, . . . , wLr−1, wLr}, then

(a) 0.0 ≤ w−Ll
≤ w−Ll+1 ≤ · · · ≤ w−1 ≤ w0;

(b) 0.0 ≤ wLr ≤ wLr−1 ≤ · · · ≤ w1 ≤ w0; and

(c) w0 = 1.0.

In the next Section, we will derive a non-parametric mathematical expression for a triangular-

like filter using two parameter-space transformations.
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III. Discriminative Filter Design

In our acoustic modeling framework, there are two types of free parameters Θ = {Λ,Φ}: the

HMM parameters Λ and the parameters Φ that control feature extraction (FE). Λ includes

state transition probabilities aij , and observation probability distribution functions bj, i, j =

1, 2, . . . , S, where S is the number of states in a model. Φ consists of all parameters in the

feature extraction process as described in Fig. 1. In this paper, we only deal with the auditory-

based filters which are trained discriminatively by minimizing the classification errors.

A. Auditory-based Filter Design

The auditory-based features are extracted as described in Section II and [1]. In the design,

a 128-point Bark spectrum from the outer-middle ear is fed to 32 auditory-based filters in the

inner ear that are equally spaced at an interval of 4 points apart in the spectrum as shown

in Fig. 4. Thus, after auditory-based filtering, the 128-point Bark spectrum is converted to

32 filter outputs (or channel energies) from which cepstral coefficients are computed using the

discrete cosine transform. An auditory-based filter of our system may be treated as a two-

layer perceptron without nonlinearity as depicted in Fig. 5. In the figure, the weight in the

second-layer perceptron wβk is the gain and weights wαk in the first layer represent the filter.

Although the two-layer perceptron can be represented by an equivalent one-layer perceptron,

the structure allows us to examine the resulting filter shapes and gains separately 1.

B. Discriminative Training of Feature Extraction Parameters

Let’s first denote various parameters in the auditory-based feature extraction as follows:

et : FFT inputs to auditory-based filters at time t

ut : outputs from auditory-based filters at time t

zt : channel outputs at time t

xt : acoustic features at time t

vt : static acoustic features at time t

v′

t
: delta acoustic features at time t

v′′

t
: delta delta acoustic features at time t

wαk : filter weights of the k-th channel

wβk : gain of the k-th channel

δk : supplementary deltas associated with wαk

1Similar treatment appears in [9] which used Gaussian filters with separate trainable gains.
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These parameter notations are also illustrated in Fig. 6. As usual, vectors or matrices are

bold-faced and matrices are capitalized.

The empirical expected string-based misclassification error L, is defined as

L(Θ) =
1

Nu

Nu
∑

u=1

Lu(Θ) =
1

Nu

Nu
∑

u=1

l(d(Xu)) (1)

where Xu is one of the Nu training utterances; d(.) is a distance measure for misclassifications;

and l(.) is a soft error counting function. We follow the common practice of using the sigmoid

function for counting soft errors and using log-likelihood ratio between the correct string and

its competing hypotheses as the distance function. That is,

l(d) =
1

1 + exp(−αd + β)
(2)

where the parameter α controls the slope of the sigmoid function and β controls its offset from

zero, and

d(Xi) = Gi(Xi) − gi(Xi) (3)

in which the discriminant function g(.) is the log-likelihood of a decoding hypothesis of an

utterance. Thus, if an utterance Xi of duration T is represented by the model sequence Λi,

then its log-likelihood is denoted as gi(Xi) and

gi(Xi)

= log P (Xi|Λi)

≈ log P (Xi, Qmax|Λi)

= log πq1
+

T−1
∑

t=1

log aqtqt+1
+

T
∑

t=1

log bqt(xt) (4)

where Qmax(= q1, q2, . . . , qt, qt+1, . . . , qT ) is the HMM state sequence obtained from Viterbi

decoding. Gi(Xi) is the log of the mean probabilities of its Nc competing strings and is defined

as

Gi(Xi) = log





1

Nc

Nc
∑

j=1;j 6=i

exp(ηgj(Xi))





1/η

(5)

where η controls the weightings of the various hypotheses. Usually the competing hypotheses

are obtained through N-best decoding but as we will explain later, we also attempt to im-

prove the convergence and solution of MCE/GPD by a new heuristic which we call “N-nearest

hypotheses” [13].
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To optimize any parameter θ ∈ Θ, one has to find the derivative of the loss function Li with

respect to θ for each training utterance Xi:

∂L(Xi)

∂θ
= ∂Li

∂θ
= ∂l

∂d

[

∂d
∂gi

· ∂gi

∂θ
+ ∂d

∂Gi
· ∂Gi

∂θ

]

. (6)

l(.) is the sigmoid function given in Eqn.(2), and its derivative is

∂l
∂d

= αl(1 − l) . (7)

From Eqn.(3), we obtain the derivatives of the distance function w.r.t. the discriminant func-

tions as

∂d
∂gi

= −1 (8)

and

∂d
∂Gi

= +1 . (9)

Also, from Eqn.(5) we get

∂Gi

∂θ
=

∑Nc

j 6=i exp(ηgj(Xi))
∂gj

∂θ
∑Nc

j 6=i exp(ηgj(Xi))
. (10)

Hence, Eqn.(6) becomes

∂Li

∂θ
= ∂l

∂d





∑Nc

j 6=i exp(ηgj(Xi))
(

∂gj

∂θ
− ∂gi

∂θ

)

∑Nc

j 6=i exp(ηgj(Xi))



 . (11)

To evaluate Eqn.(11), one has to find the partial derivative of gi w.r.t. any trainable pa-

rameters. We will drop the utterance index i for clarity from now on. Also, since many works

have been done on discriminative training of HMM parameters with MCE/GPD, one may refer

to the tutorial paper [4] for the re-estimation formulas of HMM parameters and we will only

present those of feature extraction parameters. To do that, we first assume that the trainable

FE parameters in Φ are independent of HMM parameters (as in [9]). Secondly, it is helpful

to see that the log-likelihood of an utterance is related to an FE parameter φ ∈ Φ through

the static features, and the dynamic features are related to φ also through the static features.

Let’s assume that the final feature vector xt at time t consists of N static features vt and N

dynamic features v′

t
which are computed from vt by the following regression formula

v′

t
=

L1
∑

m=−L1

c′mvt+m (12)
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where c′m(m = −L1, . . . , L1) are the regression coefficients. Hence, the derivative of the utter-

ance log-likelihood g of Eqn.(4) w.r.t an FE parameter φ is given by

∂g

∂φ
=

∑

t

1

bqt(xt)

2N
∑

j=1

∂bqt

∂xtj
· ∂xtj

∂φ
(13)

=
∑

t

1

bqt(xt)

N
∑

j=1

[

∂bqt

∂vtj
· ∂vtj

∂φ
+

∂bqt

∂v′
tj

· ∂v′
tj

∂φ

]

=
∑

t

1

bqt(xt)

N
∑

j=1

∂bqt

∂vtj
· ∂vtj

∂φ
+

∑

t

1

bqt(xt)

N
∑

j=1

∂bqt

∂v′
tj





L1
∑

m=−L1

c′m
∂v(t+m)j

∂φ



. (14)

Finally, the derivative of an utterance log-likelihood g w.r.t. any (static or dynamic) feature

parameters xtj is given by

∂bqt

∂xtj
= −

M
∑

m=1

cqt,m N qt(xt)

(

xtj − µqt,mj

σ2
qt,mj

)

. (15)

Using Eqn.(7), Eqn.(14), and Eqn.(15), Eqn.(11) may be computed if
∂vtj

∂φ
is also known.

The computation of
∂vtj

∂φ
depends on the nature of the training parameter φ. In this paper, we

are only interested in optimizing the filter parameters and the re-estimation formula of each

type of filter parameters is presented below.

B.1 Re-estimation of Triangular-like Filter Parameters

As explained in Section II, we only require the auditory-based filters to be triangular-like. We

further simplify the design by having the peak of a filter right at the middle. For a digital filter

with (2L+1) points, we associate the filter weights {w−L, w−L+1, . . . , w−1, w0, w1, . . . , wL−1, wL}
with a set of deltas δ, {δ−L, . . . , δ−1, δ1, . . . , δL}. (Notice that ∆wi = wi−1 − wi in Fig. 7 for

i = 1, 2, . . . , L, are related to δi by Eqn.(16) below.) Positively-indexed weights are related to

the positively-indexed deltas mathematically as follows:

wj = 1 − F (
j
∑

i=1

H(δi)) , j = 1, . . . , L (16)

where, F (.) and H(.) are any monotonically increasing functions such that

0.0 ≤ F (x) ≤ 1.0 and 0.0 ≤ H(x) . (17)

Negatively-indexed weights are related to the negatively-indexed deltas in a similar manner.

The motivation is that we want to subtract more positive quantities from the maximum weight



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, September 20, 2003 9

w0 as we move towards the two ends of a filter. Eqn.(16) involves two functions: H(.) is any

monotonically increasing function which turns arbitrarily-valued deltas to positive quantities,

and F (.) is any monotonically increasing function that restricts the sum of transformed deltas

to less than unity. In this paper, H(x) is set to the exponential function exp(x), and F (x) is

a sigmoid function defined as follows:

F (x) =
2

1 + e−γx
− 1

where γ was set to 0.001 in the following experiments.

C. Re-estimation of Filter Gains

The gain of the k-th channel filter is represented by the weight wβk in the second layer of

the filter shown in Fig. 5. Since the static feature vt is related to the non-linearity function

output zt which in turn is related to the filter output ut, by applying the chain rule (see Fig. 5

and Fig. 6), one may obtain the derivative of each static feature vtj w.r.t. the gain of the k-th

channel as follows:

∂vtj
∂wβk

=
∂vtj
∂ztk

· ∂ztk
∂utk

· ∂utk
∂wβk

. (18)

The static feature vt is the discrete cosine transform (DCT) of zt, and if we denote the DCT

matrix by W (D), then vt = W (D) · zt. Therefore,

∂vtj
∂ztk

= W
(D)
jk . (19)

The derivative of the non-linearity function r(.) depends on its exact functional form, and we

will denote it by r′. Since zt = r(ut), the derivative is

r′ = ∂ztk
∂utk

. (20)

For the k-th channel, the gain is related to the channel output utk (see Fig. 5) as

utk = wβk · ytk (21)

where ytk is the output from the first layer of the filter. Thus,

∂utk
∂wβk

= ytk . (22)

Substituting the derivatives in Eqn.(19), Eqn.(20), and Eqn.(22) into Eqn.(18), we obtain

∂vtj
∂wβk

= W
(D)
jk · r′ · ytk . (23)
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D. Re-estimation of Filter Weights

Filter weights of the k-th channel wαk are re-estimated indirectly through the associated

deltas. Again using the chain rule in a similar fashion as in the re-estimation of filter gains

(see Fig. 5 and Fig. 6), the derivative of the j-th static feature w.r.t. the h-th delta in the k-th

channel filter is given by

∂vtj

∂δkh
=

∂vtj
∂ztk

· ∂ztk
∂utk

· ∂utk
∂ytk

· ∂ytk

∂δkh
. (24)

Since utk = wβk · ytk, therefore

∂utk
∂ytk

= wβk . (25)

The filter output ytk is given by

ytk =
L
∑

i=−L

wαki · etki

= etk0

+
−1
∑

i=−L

[

1 − F

(

−1
∑

m=i

H(δkm)

)]

etki

+
L
∑

i=1

[

1 − F

(

i
∑

m=1

H(δkm)

)]

etki . (26)

Hence, for the positively-indexed deltas

∂ytk
∂δkh

= −H ′(δkh)

[

L
∑

i=h

F ′ · etki

]

. (27)

Substituting Eqn.(19), Eqn.(20), Eqn.(25), and Eqn.(27) into Eqn.(24), we obtain

∂vtj

∂δkh
= W

(D)
jk · r′ · wβk

{

−H ′(δkh)

[

L
∑

i=h

F ′ · etki

]}

. (28)

A similar expression can be derived for the negatively-indexed deltas.

E. Updates

Finally, a (locally) optimal model or feature extraction parameter θ ∈ Θ may be found

through the iterative procedure of GPD using the following update rule:

θ(n + 1) = θ(n) − ε(n) · ∂L
∂θ

∣

∣

∣

∣

θ=θ(n)
. (29)

Notice that the convergence of GPD requires that
∑

n ε(n)2 < ∞. One common way to

ensure the requirement is to have the learning rate decrease properly with time.



IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, September 20, 2003 11

F. Miscellaneous

It is worth to mention that some of the filter parameters such as the filter gains must be

positive quantities. (Weights of our triangular-like auditory-based filter are always positive

by our definition though.) To ensure any parameter X to be positive, we apply the following

parameter transformation [9], [4]

X → X̃ : X = eX̃ . (30)

Optimization is performed over the transformed parameters which are converted back to the

original parameter space after MCE training.

Moreover, most current systems employ Cepstral Mean Subtraction (CMS) to alleviate the

adverse effect due to channel mismatches. To do that, the re-estimation formulas above have

to be modified slightly. The changes are small and straight-forward, and we will leave them to

the readers. However, when CMS is used together with log non-linearity, one may verify that

the filter gains then will not be changed.

IV. Evaluation

Extensive experiments were performed to answer the following questions:

• May the auditory-based filters be further optimized for a task?

• As there have not been many works done on training both the front-end feature extraction

parameters as well as the model parameters together, what may be a good procedure to do so?

• How sensitive is the training procedure to the initial configuration of the filters?

A. The Aurora2 Corpus

Discriminative training of our new auditory-based filters was evaluated on the Aurora2 cor-

pus. It was created for research in robust distributed speech recognition under noisy environ-

ments. It was chosen because the auditory-based features were originally developed for noisy

ASR.

The Aurora2 [14], [15] corpus consists of connected digits from the adult portion of the

clean TIDIGITS database [16]. The utterances were pre-filtered using simulated telephone

channel and GSM channel respectively, and various types of noises were added to the filtered

TIDIGITS at 6 different SNR levels ranging from 20dB to -5dB at 5dB steps. There are totally

8440 utterances in the training data spoken by 55 male and 55 female adults. Two training

methods are defined for evaluating recognition technologies on the corpus; but only the multi-

condition training method was attempted in this work. The test data consist of 4004 utterances
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spoken by 52 male and 52 female speakers that are different from the training speakers. Three

test sets are defined to evaluate recognition technologies under different matching conditions

as summarized in Table I.

B. Experimental Setup

B.1 Feature Extraction

Auditory-based features were extracted from speech utterances every 10ms as described in

Section II over a window of 25ms. Thirteen cepstral coefficients including c0 were computed

from each frame of auditory-based features, which we will call them as auditory-based feature

cepstral coefficients (AFCC). Here c0 was used to represent the frame energy. Each auditory-

based filter had 11 weights and the middle (6-th) weight was assumed maximum with the

value of 1.0. However, each of the 32 channels had its own filter and the triangular-like filters

were not assumed symmetric. The logarithm function was used as the non-linearity function

to compress channel outputs before DCT was performed. The final feature vector has 39

dimensions consisting of 13 static AFCCs and their first- and second-order derivatives, which

are computed using linear regression. Cepstral mean subtraction was performed to alleviate

channel mismatches.

B.2 Acoustic Modeling

We followed the baseline model configurations of the Aurora evaluation of ICSLP 2002: all

the 11 digit models were whole-word models, and they were strictly left-to-right HMMs with

no skips. Each digit HMM has 16 states with 3 Gaussian mixture components per state. The

silence model was a 3-state HMM with 6 Gaussian mixture components. In addition, there

was a 1-state HMM to represent short pauses which was tied to the middle state of the silence

HMM. The HTK software was used for maximum-likelihood estimation (MLE) of all models

as well as the subsequent decoding.

B.3 Discriminative Training

From the initial MLE digit models, discriminative training was performed to derive MCE

estimates of the HMM parameters and/or MCE estimates of the filter parameters. The same

training data were utilized to perform both MLE and discriminative training. In theory, it

will be better to use another set of data that are independent of the MLE training data so

as to avoid over-fitting the data. However, we would like to conform with Aurora’s set-ups

so that our results may be compared with other similar efforts; therefore, we did not use any
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additional data. Furthermore, corrective training was employed. Competing hypotheses were

obtained using our new N-nearest decoding algorithm [13] instead of the commonly used N-best

decoding method. A problem with N-best hypotheses is that when the correct hypothesis is

too far from the N-best hypotheses, the training datum will fall into the un-trainable region of

the sigmoid function. The use of the N nearest competing hypotheses tries to keep the training

data as close to the trainable region as possible. Consequently, the amount of effective training

data is increased, and since there is no need to use a flatter sigmoid and a large learning rate,

the training seems to be more stable.

Since the HMM parameters and the feature extraction (FE) parameters were assumed inde-

pendent, different learning rates might be employed as suggested by [9]. This can be important

as the two types of parameters may have very different dynamic ranges. In our current inves-

tigation, the following starting learning rates were found empirically to give good results:

starting learning rate of FE parameters : 1.0

starting learning rate of HMM parameters : 442.0 .

These learning rates R decreased with iterations n as R(n) = R(0) · (1− n
Imax

) , and we limited

the maximum number of iterations Imax to 50.

Other parameters in the MCE/GPD procedure were set as follows: α and β in the sigmoid

function of Eqn.(2) were set to 0.1 and 0.0 respectively. β was set to zero so that our dis-

criminative training will try to correct all mis-recognized utterances. The α value of 0.1 was

empirically determined to give good performance. Finally, the value of η in Eqn.(5) was set to

1.0 to give equal weights to all competing hypotheses.

B.4 Various Training Methods

Since there are two sets of trainable parameters: HMM or FE parameters, we also studied

the most effective procedure for their training. The following different training methods were

explored:

Method 1. MFCC Baseline: ML estimation of the digit models using traditional MFCCs;

Method 2. AFCC Baseline: ML estimation of the digit models using AFCCs;

Method 3. M-only: discriminative training of HMM parameters only;

Method 4: F-only: discriminative training of FE parameters — filter gains and weights —

only;

Method 5. F+M: joint or simultaneous discriminative training of HMM and FE parameters;
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Method 6. F + M-mle: discriminative training of FE parameters followed by an ML re-

estimation of the models under the new feature space;

Method 7. F + M-mce: discriminative training of FE parameters followed by discriminative

training of the HMM parameters under the new feature space; and

Method 8. F + M-mle + M-mce: same as F + M-mle but followed by a subsequent dis-

criminative training of HMM parameters.

The various training methods are also summarized in Table II.

C. Experiments and Results

The performance of various discriminative training methods of our triangular-like filters on

each test subset as well as on the overall test set of the Aurora2 corpus is plotted in Fig. 8.

Notice that the recognition accuracy of each test set is computed as the mean accuracy over

speech of all SNRs except the clean portions and the speech at -5dB in conformity with the

evaluation metric of Aurora2. Two baseline results are included for comparison purpose: the

baseline results used by ICSLP 2002 for Aurora Evaluation [17] (labelled as “MFCC Baseline”),

and the baseline results using the auditory-based features (labelled as “AFCC Baseline”).

From Fig. 8, it is clear that the use of the auditory-based features (AFCC Baseline) out-

performs the MFCC Baseline results and reduces the overall WER by 11.6%. Although the

models were trained on noises and channels that create test set A, the auditory-based features

give similar performance on test set B which contains mismatched noises, and even better

performance on test set C which employs different channel characteristics and noises. On the

other hand, the performance of the MFCC Baseline drops substantially on test set C. It is

our general observation that the auditory-based features are more robust than MFCCs in mis-

matched testing environments, and the findings agrees with those reported in [1], [2]. Since the

AFCC Baseline results are far better than the MFCC Baseline results, and we are investigating

whether discriminative auditory-based filter (DAF) gives additional gains over the basic AFCC

parameters, we compare the performance of various DAF training methods with respect to

the AFCC Baseline, and the corresponding relative word error rate reductions (WERR) are

computed in Table III.

Optimizing the auditory-based filters alone by discriminative training (“F-only” method)

gives a WERR of 4.1% relative to the AFCC Baseline results. On the other hand, discriminative

training of the HMM parameters alone is much more effective: the “M-only” training method

achieves a WERR of 17.3%. It will be interesting to see if the two gains are additive. We first

investigated joint optimization of the two kinds of parameters by discriminative training, but
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the result turned out to be very close to that of “M-only” training. The finding agrees with

Torre’s comments in [8] that joint optimization of model and FE parameters is only effective for

small classification problem; and for large complex system, the evolution of the FE parameters

is small compared with that of the model parameters during joint optimization. There are two

plausible reasons:

• There are far more model parameters (11 models × 16 states × 3 mixtures × 39 features

× 2 = 41184 Gaussian means and variances) than FE parameters (32 channels × 11 = 352

filter gains and weights). The larger model space allows more room for improvement than the

smaller feature space, and the improvement due to HMM parameters over-shadows that due

to FE parameters.

• The model parameters and feature extraction parameters are not truly independent. When

the feature space is changed (due to changes in FE parameters) the HMM parameters should

be re-estimated under the new feature space.

The “F+M-mce” training method tries to remedy the first problem by combining the two

training methods, “F-only” and “M-only” training, sequentially rather than simultaneously. To

partially address the second problem as well, in the “F+M-mle+M-mce” training method, FE

parameters are trained discriminatively, then new HMMs are re-estimated using the ensuing

features by the EM algorithm, from which discriminative models are derived. The “F+M-mle”

training method stops after new ML models are re-estimated from the new features. The

last two training methods are computationally expensive owing to the ML re-estimation step.

Below are what we find:

• Although simultaneous discriminative training of HMM and FE parameters does not give

additional improvement over the “M-only” training method, sequential application of discrimi-

native training firstly on FE parameters and then HMM parameters gives a small but significant

additional gain over the “M-only” training method: the “F+M-mce” training method achieves

a WERR of 20.0% compared with a WERR of 17.3% by the “M-only” training method.

• However, the biggest performance improvement comes from the “F+M-mle+M-mce” training

method when models were re-trained under the new feature space as demanded by the new

DAFs using the ML criterion before discriminative training was used again to fine-tune the

HMM parameters. The final WERR is 21.7%.

• We also had checked the importance of the final MCE training of HMM parameters by leaving

out the step as in the “F+M-mle” training method. It can be seen that simply ML re-training

of the models with the new DAFs alone does not give additional gain over DAFs.
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Finally the performance difference between the AFCC Baseline system and the “F-only”

system, and that between the “M-only” system and the “F+M-mle+M-mce” system are both

statistically significant (at the 0.05 confidence level).

C.1 Shape of Trained Filters

Fig. 9 shows the shape of all the 32 DAFs (solid curves) after training that was initialized

by Li’s filters as in [1] (dotted curves). In general, the DAFs are not symmetric and the deltas

δi or ∆wi, i = −L, . . . , L are not the same. When we compare the trained filters with the

initialization filters, we observe that, with a few exceptions:

• the first 10 filters are asymmetric and their left halves are raised from their initial positions.

• the next 12 filters are more or less symmetric and both left and right halves are raised from

their original positions.

• the changes to the remaining filters are mixed.

C.2 Sensitivity to Initial Filter Parameters

Like other numerical methods that is based on gradient descent to solve optimization prob-

lems, different initial parameters may lead to different local minima using the MCE/GPD

algorithm. An experiment was conducted to check the sensitivity of our DAF training algo-

rithm using a different type of initial filters, the triangular filters. The triangular filters were

chosen for two reasons: (1) they are commonly used in the computation of MFCCs, and (2) it

is better if our algorithm may work with initial filters of simple shapes than one particular set

of filters — Li’s filters which was determined from real telephone data with different kinds of

background noise [1]. The previous experiments with various training methods were repeated

using triangular filters as the initial filters and the results are shown in Table IV. We also

plot out the envelopes of the overall frequency response due to DAFs using Li’s filters and

triangular filters as the initial filters in Fig. 10 (a) and (b) respectively. It can be seen that

both their recognition results and filter response envelopes are very similar to each other. One

reason for the similar results may be that Li’s filters and triangular filters are close enough for

our application. The performance of our DAF training algorithm using other very dissimilar

initial filters — for example, rectangular filters or filters of non-simple shapes — is still an open

question.
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V. Conclusions

In this paper, we proposed a discriminative training algorithm to extract auditory-based

features and found an effective procedure to estimate both feature and model parameters

discriminatively. We make as few assumptions as possible on the shape of the auditory-based

filters, and only require them to be triangular-like. It is found that joint discriminative training

of both the model parameters and filter parameters cannot supersede discriminative training

of the model parameters alone. On the other hand, if discriminative training is applied sequen-

tially to the filter parameters and then the model parameters, an additional gain is observed.

Although the gain is modest, we believe that there are rooms for improvement. For instance,

we will try to improve the resolving power of the filters under different acoustic contexts and

phonetic contexts.

In the current training procedure, the model and feature parameters are assumed independent

of each other. Theoretically, the model parameters are trained for a given feature space; if the

features are changed, the model parameters should follow suit. In one sense, our current work is

our first step to merge the two processes: feature extraction and estimation of model parameters

together. In this paper, the two processes are linked together via the recognition feedbacks. In

the future, we will try to couple them together more closely and re-visit the problem of their

joint optimization.
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TABLE I

Description of the 3 test sets of Aurora2

Test Testing Conditions #Utterances

Set Matched Channel Matched Noises

A yes yes 28,028

B yes no 28,028

C no yes + no 14,014

TABLE II

Various Training Methods (“joint” means joint training; “seq” means sequential

training)

Method Name MCE of MLE of MCE of

Feature HMM HMM

1 MFCC Baseline X
√

X

2 AFCC Baseline X
√

X

3 M-only X X
√

4 F-only
√

X X

5 F+M
√

joint X
√

joint

6 F+M-mle
√

seq

√
seq X

7 F+M-mce
√

seq X
√

seq

8 F+M-mle+M-mce
√

seq

√
seq

√
seq
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TABLE III

Word Error Rate Reduction of Various Training Methods

Test M-only F-only F F F

Set +M-mle +M-mce +M-mle

+M-mce

A 21.2% 5.5% 5.3% 23.9% 27.0%

B 13.4% 2.6% 4.3% 16.4% 16.2%

C 17.4% 4.2% 4.9% 19.1% 22.5%

Overall 17.3% 4.1% 4.8% 20.0% 21.7%

TABLE IV

Sensitivity to the initial filter parameters

Initial AFCC- M-only F-only F F+M-mle

Filters Baseline +M-mce +M-mce

Li’s 88.54% 90.52% 89.01% 90.83% 91.03%

Triangular 88.65% 90.33% 89.08% 90.60% 90.89%
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Fig. 1. Extraction of auditory-based features (after Li et al. [1])
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Fig. 9. Shape of the 32 MCE-trained auditory-based filters (solid curves). The training was initialized

by Li’s filters as in [1] (dotted curves).
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Fig. 10. Envelope of the overall frequency response of the outer-middle-inner ear using DAFs that

trained from initial (a) triangular filters, and (b) Li’s filters.


