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Embedded Kernel Eigenvoice Speaker Adaptation
and its Implication to Reference Speaker Weighting

Brian Mak, Roger Hsiao, Simon Ho, and James T. Kwok

Abstract— Recently, we proposed an improvement to the
conventional eigenvoice (EV) speaker adaptation using ker-
nel methods. In our novel kernel eigenvoice (KEV) speaker
adaptation [1], speaker supervectors are mapped to a kernel-
induced high dimensional feature space, where eigenvoices
are computed using kernel principal component analysis. A
new speaker model is then constructed as a linear combina-
tion of the leading eigenvoices in the kernel-induced feature
space. KEV adaptation was shown to outperform EV, MAP,
and MLLR adaptation in a TIDIGITS task with less than
10s of adaptation speech [2]. Nonetheless, due to many ker-
nel evaluations, both adaptation and subsequent recognition
in KEV adaptation are considerably slower than conven-
tional EV adaptation. In this paper, we solve the efficiency
problem and eliminate all kernel evaluations involving adap-
tation or testing observations by finding an approximate pre-
image of the implicit adapted model found by KEV adapta-
tion in the feature space; we call our new method embedded
kernel eigenvoice (eKEV) adaptation. eKEV adaptation is faster
than KEV adaptation, and subsequent recognition runs as
fast as normal HMM decoding.

eKEV adaptation makes use of multi-dimensional scaling
technique so that the resulting adapted model lies in the
span of a subset of carefully chosen training speakers. It
is related to the reference speaker weighting (RSW) adaptation
method that is based on speaker clustering. Our experimen-
tal results on Wall Street Journal show that eKEV adapta-
tion continues to outperform EV, MAP, MLLR, and the
original RSW method. However, by adopting the way we
choose the subset of reference speakers for eKEV adapta-
tion, we may also improve RSW adaptation so that it per-
forms as well as our eKEV adaptation.

Keywords— Eigenvoice speaker adaptation, kernel eigen-
voice speaker adaptation, kernel PCA, composite kernels,
pre-image problem, reference speaker weighting

I. Introduction

A well-trained speaker-dependent (SD) model generally
achieves better performance than a speaker-independent
(SI) model on recognizing speech from the specific speaker.
However, it is usually hard to acquire a large amount of
data from a user to train a good SD model; even if one
manages to do so, the speaker-specific data will not have
a phonetic coverage as broad as the SI model. A more
practical approach to attain the SD performance with-
out sacrificing the phonetic coverage is to adapt the SI
model with a relatively small amount of SD speech us-
ing speaker adaptation methods. Adaptation methods like
the speaker-clustering-based methods [3], [4], the Bayesian-
based maximum a posteriori (MAP) adaptation [5], and
the transformation-based maximum likelihood linear regres-
sion (MLLR) adaptation [6] have been popular for many
years. Nevertheless, when the amount of available adapta-
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tion speech is really small — for example, only a few sec-
onds — the eigenvoice-based (or eigenspace-based) adap-
tation method recently has drawn a lot of attention. The
(original) eigenvoice (EV) adaptation method [7] was mo-
tivated by the eigenface approach in face recognition [8].
The idea is to derive from a diverse set of speaker-specific
parametric vectors a small set of basis vectors called eigen-
voices that are believed to represent principal voice char-
acteristics (e.g. gender, age, accent, etc.), and any training
or new speaker is then a point in the eigenspace. In prac-
tice, a few to a few tens of eigenvoices are found adequate
for fast speaker adaptation. Since the number of estima-
tion parameters is greatly reduced, fast speaker adapta-
tion using EV adaptation is possible with a few seconds of
speech. The simple algorithm was later extended to work
for large-vocabulary continuous speech recognition [9], [10],
eigenspace-based MLLR [11], [12], and to approximate the
model prior in MAP adaptation [13], [14], [15]. In addition,
the eigenspace may be learned automatically by MLES [16],
or during model training as in CAT [17].

Meanwhile, in the machine learning research commu-
nity, recently there has been a lot of interest in the study
of kernel methods [18], [19], [20]. The basic idea is to
map data in the input space to a high dimensional fea-
ture space via some nonlinear map, and then apply a linear
method there. The computational procedure depends only
on the inner products in the feature space, which can be
obtained efficiently with a suitable kernel function. Thus,
the use of kernels provides elegant nonlinear generalizations
of many existing linear algorithms. A well-known exam-
ple in supervised learning is the support vector machines
(SVMs). In unsupervised learning, the kernel idea has also
led to methods such as kernel principal component analy-
sis (PCA) [21], kernel-based clustering algorithms [22], and
kernel independent component analysis (ICA) [23].

In [1], we proposed a kernel version of EV adaptation
called kernel eigenvoice (KEV) speaker adaptation that ex-
ploits possible nonlinearity in the input speaker supervec-
tor space using kernel methods in order to improve its adap-
tation performance. Speaker supervectors are mapped to
a kernel-induced high dimensional feature space1 via some
nonlinear map ϕ, and PCA is then applied there. During
the actual computation, the exact nonlinear map does not

1In kernel methods terminology, the original space where raw data
reside is called the input space and the space to which raw data are
mapped is called the feature space. In order not to confuse this with
the acoustic feature space in speech, the latter will always be called
the “acoustic feature space”, while the feature space in kernel meth-
ods will be simply called the “feature space” but may be sometimes
called the “kernel-induced feature space” when additional clarity is
necessary.
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need to be known, and the eigenvoices in KEV adaptation
are obtained in the kernel-induced feature space using ker-
nel PCA. In principle, since KEV adaptation is a nonlinear
generalization of EV adaptation, the former should be more
powerful than the latter, and KEV adaptation is expected
to give better performance. In fact, KEV adaptation will
be reduced to the traditional EV adaptation method if a
linear kernel is employed. In a TIDIGITS adaptation task,
it was shown that KEV adaptation outperformed the SI
model by about 30% using only 2.1, 4.1, or 9.6 seconds of
adaptation speech, and was better than MAP and MLLR
adaptation [1].

However, there is a price to pay for using kernel PCA
in KEV adaptation: adaptation and subsequent recogni-
tion can be substantially slower than EV adaptation due
to many online kernel evaluations during the computation
of observation likelihoods. The problem is due to the fact
that the eigenvoices found by KEV adaptation reside in the
kernel-induced feature space, and since a speaker acoustic
model is represented as a linear combination of these kernel
eigenvoices, after adaptation, a new speaker adapted (SA)
model exists only implicitly in the feature space. As there is
no explicit model for the new speaker in the input speaker
supervector space, any computation involving it has to be
done online on the implicit SA model in the feature space
via expensive kernel evaluations. Finding an exact or a
good approximate explicit model of an object in the input
space from its image in the feature space is known as the
pre-image problem in kernel methods. There are a few so-
lutions: a fixed-point iterative method in [24], an analytical
solution using distance constraints in [25], and by learning
the inverse map in [26]. In this paper, we integrate the
finding of an implicit SA model in the feature space us-
ing kernel PCA and the computation of its approximate
pre-image to arrive at an explicit SA model in the input
speaker supervector space. The novelty of our method is
that there are no kernel evaluations during adaptation in-
volving adaptation speech from the new speaker, and there
are no kernel evaluations at all during recognition. Conse-
quently, adaptation is faster and subsequent recognition is
as fast as conventional EV adaptation. Our new method
will be called embedded kernel eigenvoice (eKEV) speaker
adaptation.

The pre-imaging procedure makes use of multi-
dimensional scaling technique, and the adapted speaker
model is confined to the span of a set of carefully chosen
reference speakers in the input space. In this perspective,
our eKEV adaptation method is similar to reference speaker
weighting (RSW) adaptation [3], [4]. RSW adaptation is
one kind of speaker-clustering-based adaptation methods
in which the adapted speaker model is assumed to be a
linear combination of a set of reference speakers. In [3],
the set of combination weights are equal, whereas in [4],
the weights are found by maximizing the likelihood of the
adaptation data of the new speaker. eKEV adaptation is
different from the RSW method in [4] in the way the ref-
erence speakers are defined, and eKEV adaptation further
requires the solution to be constrained to the part of refer-

ence speakers’ span that is related to the eigenspace found
by KEV adaptation in the kernel-induced feature space.
We will compare the two adaptation methods empirically
to check if such prior information is useful.

This paper is organized as follows. We first review the
conventional eigenvoice speaker adaptation method in Sec-
tion II, and kernel eigenvoice speaker adaptation in Sec-
tion III. The new method, embedded kernel eigenvoice
speaker adaptation, is detailed in Section IV. In Section V,
eKEV adaptation is evaluated and compared with other
common adaptation methods using TIDIGITS (a small-
vocabulary task) and WSJ0 (a large-vocabulary task) cor-
pora. Conclusions are finally drawn in Section VI.

II. Eigenvoice Speaker Adaptation (EV)

In standard eigenvoice speaker adaptation [7], a set
of speaker-dependent (SD) acoustic models are estimated
from speech data collected from many training speakers
with diverse speaking or voicing characteristics. All SD
models are hidden Markov models (HMMs) of the same
topology and the state probability density functions (pdf)
are Gaussian mixture models. For simplicity, we will as-
sume that each HMM state consists of a single Gaus-
sian; the extension to mixture of Gaussians is straight-
forward. Then a speaker model is represented by what
is called a speaker supervector that is composed by con-
catenating all the mean vectors of all his/her HMM state
Gaussians. That is, for the ith speaker, if there are R
Gaussians in his/her HMMs, each having a mean vec-
tor xir, r = 1, . . . , R, then his/her speaker supervector
is denoted by xi = [x′i1, . . . ,x

′
iR]′. If the dimension of

each mean vector is n1, then each speaker supervector
has a dimension of n2 = Rn1. Suppose that there are N
training speaker models represented by their supervectors,
x1,x2, . . . ,xN . In EV adaptation, linear principal compo-
nent analysis (PCA) is performed on the N speaker su-
pervectors and the resulting eigenvectors are called eigen-
voices. Any speaker, either a training speaker or a new
speaker, can now be represented as a linear combination of
these eigenvoices. In order to reduce the number of esti-
mation parameters for fast adaptation and to avoid un-
wanted variances, only the leading M < N eigenvoices
{v1, . . . ,vM} having the largest eigenvalues are kept to
represent a new speaker supervector s(ev). That is, the
centered supervector of the new speaker s̃(ev) (where ˜ is
added to any quantity in this paper to denote its centered
version) is

s̃(ev) =
M∑

m=1

wmvm , (1)

where s̃(ev) = s(ev) − x̄ and x̄ = 1
N

∑N
i=1 xi is the mean of

all training speaker supervectors, and w = [w1, . . . , wM ]′ is
the eigenvoice weight vector. Usually, only a few eigen-
voices (e.g., M < 50) are employed so that a small
amount of adaptation speech (e.g., a few seconds) is suf-
ficient for adaptation. Given the adaptation data O =
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{o1,o2, . . . ,oT }, the eigenvoice weights are usually esti-
mated by maximizing the likelihood of O. Mathematically,
one finds the optimal ŵ by maximizing the following Qb(w)
function:

Qb(w) =
R∑

r=1

T∑
t=1

γt(r) log (br(ot,w)) , (2)

where γt(r) is the posterior probability of the observation
sequence being at state r at time t, and br is the Gaussian
pdf of the rth state of the speaker adapted model. By
expanding the Gaussian pdf and ignoring all terms that
are independent of w, one may find the optimal ŵ that
maximizes the following reduced Q(w) function instead:

ŵ = argmax
w

Q(w)

= argmax
w

{
−

R∑
r=1

T∑
t=1

γt(r)‖ot − sr(w)‖2Cr

}
,(3)

where sr is the mean vector of the rth Gaussian of the
adapted speaker supervector; ‖ot − sr(w)‖2Cr

≡ (ot −
sr(w))′C−1

r (ot − sr(w)) and Cr is the covariance matrix
of the rth Gaussian. By differentiating Eqn. (3) with re-
spect to w, the optimal ŵ can be found by solving a
system of M linear equations (with M unknown weights,
wm,m = 1, . . . ,M). In theory, one may iterate the above
steps in the expectation-maximization (EM) fashion until
the optimal value of w converges. Details can be found
in [7].

III. Kernel Eigenvoice Speaker Adaptation
(KEV)

In [1], [2], [27], we generalized the computation of eigen-
voices by performing kernel principal component analysis
(PCA) instead of linear PCA. Linear PCA, on the other
hand, can be considered as a special case of kernel PCA
with the use of linear kernel. In this section, we will review
the theory of KEV adaptation and its use of composite
kernel. The description will also set the notations for the
ensuing discussion of our new embedded KEV adaptation.

A. Kernel Principal Component Analysis

Let k(·, ·) be the kernel with an associated mapping
ϕ that maps a pattern x ∈ Rn2 (a speaker supervec-
tor in the eigenvoice approach) in the input space X to
ϕ(x) ∈ Rn3 (which may be infinite though) in the kernel-
induced high dimensional feature space F . Given a set of N
patterns {x1, . . . ,xN} contained in X , their ϕ-mapped fea-
ture vectors are {ϕ(x1), . . . , ϕ(xN )} contained in F . The N
mapped patterns are first centered in the feature space by
finding the mean of the feature vectors ϕ̄ = 1

N

∑N
i=1 ϕ(xi).

Let the “centered” mapping be ϕ̃ so that ϕ̃(x) = ϕ(x)− ϕ̄.
In addition, let K = [Kij ] be the kernel matrix with

Kij ≡ k(xi,xj) ≡ ϕ(xi)′ϕ(xj) , (4)

and K̃ be the centered version of K with K̃ij =
ϕ̃(xi)′ϕ̃(xj).

To perform kernel PCA, instead of directly working on
the covariance matrix in the feature space, one may carry
out eigendecomposition on the centered kernel matrix K̃
as

K̃ = UΛU′ , (5)

where U = [α1, . . . ,αN ] with αi = [αi1, . . . , αiN ]′, and
Λ = diag(λ1, . . . , λN ). The mth orthonormal eigenvector
of the covariance matrix in the feature space is then given
by [21]

vm =
N∑

i=1

αmi√
λm

ϕ̃(xi) . (6)

Notice that all eigenvectors with non-zero eigenvalues are
in the span of the ϕ-mapped data in the feature space.

B. Composite Kernel

As seen from Eqn. (3), an estimation of the eigen-
voice weights requires the Mahalanobis distances between
any adaptation data ot and Gaussian means of the new
speaker in the acoustic observation space O. In the stan-
dard eigenvoice method, this is done by breaking down
the speaker-adapted supervector s(ev) to obtain its R con-
stituent Gaussian means s(ev)

1 , . . . , s(ev)
R (recall that s(ev) =

[s(ev)′

1 , . . . , s(ev)′

R ]′). However, in general, the use of kernel
PCA does not allow us to access each constituent Gaus-
sian directly because the state information is lost during
the ϕ-mapping of supervectors from the input supervec-
tor space X to the high dimensional kernel-induced feature
space F . Our solution in KEV adaptation [1] is to preserve
the necessary state information by using a possibly differ-
ent mapping for each of the R constituent Gaussian means,
and then apply a composite kernel function. For example,
the following direct-sum composite kernel had been tried
with good results:

k(xi,xj) = ϕ(xi)′ϕ(xj) =

 ϕ1(xi1)
...

ϕR(xiR)


′  ϕ1(xj1)

...
ϕR(xjR)


=

R∑
r=1

ϕr(xir)′ϕr(xjr)

=
R∑

r=1

kr(xir,xjr) , (7)

where kr(xir,xjr), r = 1, . . . , R, is the kernel for the rth
constituent Gaussian mean.

C. New Speaker in the Feature Space

Let the centered supervector of a new speaker found by
KEV adaptation in the feature space F be ϕ̃(kev)(s). Con-
ceptually, it corresponds to a speaker s in the input su-
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pervector space, even though s may not exist2. However,
the KEV adaptation method does not require the existence
of the pre-image s in the input supervector space. Analo-
gous to the formulation of a new speaker in the standard
eigenvoice approach (Eqn. (1)), ϕ̃(kev)(s) is assumed to be
a linear combination of the M leading eigenvoices found by
kernel PCA in F . That is, using Eqn. (1) and Eqn. (6), we
have

ϕ̃(kev)(s) =
M∑

m=1

wmvm =
M∑

m=1

N∑
i=1

wmαmi√
λm

ϕ̃(xi) . (8)

And the rth constituent of ϕ̃(kev)(s) is then given by

ϕ̃
(kev)
r (sr) =

M∑
m=1

N∑
i=1

wmαmi√
λm

ϕ̃r(xir) . (9)

Hence, the similarity between the rth constituent of the
adapted model and adaptation samples in the feature space
can be obtained as

k
(kev)
r (sr,ot)

≡ ϕ
(kev)
r (sr)

′
ϕr(ot)

=

[(
M∑

m=1

N∑
i=1

wmαmi√
λm

ϕ̃r(xir)

)
+ ϕ̄r

]′
ϕr(ot)

=

[(
M∑

m=1

N∑
i=1

wmαmi√
λm

(ϕr(xir)− ϕ̄r)

)
+ ϕ̄r

]′
ϕr(ot)

= Ar(t) +
M∑

m=1

wm√
λm

Br(m, t) , (10)

where ϕ̄r = 1
N

∑N
i=1 ϕr(xir) is the rth part of ϕ̄,

Ar(t) = ϕ̄′rϕr(ot) =
1
N

N∑
i=1

kr(xir,ot) , (11)

and

Br(m, t) =
N∑

i=1

αmi (kr(xir,ot)−Ar(t)) . (12)

D. ML Estimation of Kernel Eigenvoice Weights

To estimate the kernel eigenvoice weights w, one will
express the Q function, hence, the Mahalanobis distance
‖ot−sr‖2Cr

in terms of the kernel function. This can usually
be done with many common kernels (Appendix I). Good re-
sults had been obtained using the following isotropic Gaus-
sian kernel,

k(kev)
r (sr,ot) = exp(−βr‖ot − sr‖2Cr

) , r = 1, . . . , R. (13)

2The notation for a new speaker in the feature space requires some
explanation. If s exists, then its centered image is ϕ̃(kev)(s). However,
since the pre-image of a speaker found in the feature space may not
exist [20], the notation ϕ̃(kev)(s) is not exactly correct. However, the
notation is adopted for its intuitiveness and the readers are advised
to infer the existence of s based on the context.

Then the Mahalanobis distance between the rth con-
stituent of the adapted speaker model and the adaptation
data in the input speaker supervector space can be found
via the rth constituent kernel as follows:

‖ot − sr‖2Cr
= − 1

βr
log
(
k(kev)

r (sr,ot)
)

.

Hence, the KEV weights w may be estimated by modifying
the Q(w) function of Eqn. (3) as

Q(w) =
R∑

r=1

T∑
t=1

γt(r)
βr

log
(
k(kev)

r (sr,ot)
)

. (14)

Its derivative with respect to each KEV weight wm is given
by

∂Q
∂wm

=
1√
λm

R∑
r=1

T∑
t=1

γt(r)Br(m, t)

βrk
(kev)
r (sr,ot)

, m = 1, . . . ,M . (15)

Due to the nonlinear nature of kernel PCA, and thus
Eqn. (15), there is no closed form solution for the opti-
mal ŵ. The optimal kernel eigenvoice weights are solved
using generalized expectation-maximization (GEM) algo-
rithm [28] in which numerical methods like gradient ascent
method is used to improve the value of w during each max-
imization step.

IV. Embedded Kernel Eigenvoice Speaker
Adaptation (eKEV)

In our new embedded kernel eigenvoice (eKEV) speaker
adaptation method [29], [30], all online kernel evaluations
are eliminated by finding an approximate pre-image of the
adapted model found by KEV adaptation which resides in
the kernel-induced feature space F . Conceptually, if ν is
the adapted model found by KEV adaptation in F , we
would like to map it back to its pre-image ϕ−1(ν) in the
input space X . However, the exact pre-image, in general,
does not exist, and one can only settle for an approximate
solution. The problem is known as the “pre-image prob-
lem” in the kernel method community.

Here we would like to apply an analytical solution we
previously proposed in [25] to find the pre-image of the
KEV adapted model. The method uses the distances be-
tween the expected (approximate) pre-image and a set of
“reference points” (which in our case will be called “ref-
erence speakers”) as constraints and solves for the optimal
pre-image in the least-square sense3. In general, these refer-
ence speakers are independent of the speaker-adapted (SA)
model to be found, but, as will be discussed in Experiment
2 of Section V-A.3, better performance is obtained if they
are sufficiently close to the expected SA model. Although
the definition as well as the size of the set of reference
speakers can be important to the performance of eKEV
adaptation in practice, they are immaterial to the theory
of the adaptation method; we will leave their discussion to
Section V.

3It is analogous to finding the location of an object using a set of
global positioning system satellites.
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For consistency with the description of KEV adaptation
in Section III, the composite kernels again will be used for
the following discussion. However, we would like to empha-
size that the use of composite kernels is not necessary, and
one may perform eKEV adaptation with common “non-
composite” kernels. Nevertheless, since Gaussian kernel is
commonly used in the kernel community which can be also
viewed as a tensor product composite kernel, our discus-
sion using composite kernels is applicable to the common
Gaussian kernel as well.

A. eKEV Algorithm Formulation

The eKEV adaptation method is illustrated pictorially
in Fig. 1. In the figure, all the five training speak-
ers {x1,x2, . . . ,x5} are used to derive the eigenvoices in
the feature space F by kernel PCA. The new speaker-
adapted model4 ϕ(kev)(sx) in the feature space is restricted
to the feature subspace spanned by the selected kernel
eigenvoices. For many commonly used kernels, there is a
simple relationship between the input-space distance and
the feature-space distance. Thus, from the distances be-
tween ϕ(kev)(sx) and the feature-space reference speak-
ers {ϕ(x1), ϕ(x2), ϕ(x3)}, one can also obtain the corre-
sponding distances between s(ekev)

x , the (approximate) pre-
image of ϕ(kev)(sx), and the input-space reference speakers
{x1,x2,x3}. By confining s(ekev)

x to lie in the subspace
spanned by these three reference speakers, it is shown in
[25] that s(ekev)

x can be analytically obtained by satisfying
all three distance constraints between s(ekev)

x and x1,x2,x3

in the least-squares sense. Mathematically, this mainly re-
lies on computing the singular value decomposition (SVD)
of the matrix [x1,x2,x3], which obtains a basis in the sub-
space spanned by these three reference speakers.

In the algorithm, two sets of distances are actually com-
puted in the input speaker supervector space X : the Eu-
clidean distances d0 = [‖z1‖2, ‖z2‖2, . . . , ‖zn‖2]′ ∈ Rn be-
tween the n reference speakers and their centroid, and the
Euclidean distances d = [d1, d2, . . . , dn]′ ∈ Rn between the
n reference speakers and the pre-image s(ekev)

x . Both set
of distances are labelled in Fig. 1 and will be explained in
details in STEP 2 and STEP 4 below.

Details of the method are described step-by-step as fol-
lows.

STEP 1: Variance Normalization

Because the pre-image finding algorithm uses Euclidean
distance constraints, whereas the Gaussian kernel we em-
ploy in KEV or eKEV adaptation involves Mahalanobis

4The notation of the various models related to the new speaker-

adapted (SA) model may need further explanation. s
(ekev)
x is used to

represent the final SA model in the input space. Its exact image in

the feature space should be ϕ(s
(ekev)
x ). On the other hand, conceptu-

ally eKEV adaptation first employs KEV adaptation to compute an

implicit SA model ϕ(kev)(sx) in the feature space and s
(ekev)
x is found

as an approximate pre-image of ϕ(kev)(sx) . Notice that, in general,

ϕ(s
(ekev)
x ) and ϕ(kev)(sx) are different, and they are assumed to be

close to each other in this paper.

distance (between speaker supervectors or acoustic obser-
vations), we will first normalize each of the R constituents
of any speaker supervector x by its own covariance. The
normalized model of x is represented by y = C− 1

2 x where

C =


C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 0 CR

 .

Hereafter, the pre-image of the new speaker-adapted model
will be represented by s(ekev)

x in the original input super-
vector space, and s(ekev)

y in the normalized input space.

STEP 2: Finding the Distance between Reference Speakers
and Their Centroid in the Input Space

Without loss of generality, let {y1, . . . ,yn} be the n ref-
erence speakers, and they are collected into a n2 × n ma-
trix Y = [y1, . . . ,yn]. (Recall that n2 is the dimension
of each speaker supervector.) They are first centered at
their centroid ȳ = 1

n

∑n
i=1 yi by using the n× n centering

matrix H = I − 1
n11′ so that the centered Y is given by

Ỹ = YH. Assuming that these n reference speakers span a
q-dimensional space (i.e. the rank of Y is q), we can obtain
the SVD of Ỹ as

Ỹ = UΛV′ = UZ , (16)

where U = [e1, . . . , eq] is an n2×q matrix with orthonormal
columns ei; Λ = diag(λ1, . . . , λq) is a q×q diagonal matrix
containing the eigenvalues; Z = [z1, . . . , zn] is a q×n matrix
with columns zi being the projections of yi onto the ej ’s.

The squared Euclidean distance of each yi, i = 1, . . . , n,
from the centroid ȳ can now be easily computed as ‖zi‖2.
They are collected into an n-dimensional vector,

d0 = [‖z1‖2, ‖z2‖2, . . . , ‖zn‖2]′ ∈ Rn . (17)

STEP 3: Similarity between the New Speaker and the Ref-
erence Speakers in the Feature Space

Analogous to Eqn. (10), the similarity between the rth
constituent of the SA model s(ekev)

yr and that of the jth
reference speaker yjr in the kernel-induced feature space
can be found by replacing ot of the equation by yjr as
follows:

k(kev)
r (s(ekev)

yr ,yjr) = Ar(j) +
M∑

m=1

wm√
λm

Br(m, j) , (18)

where

Ar(j) =
1
N

N∑
i=1

kr(yir,yjr) , (19)

and

Br(m, j) =
N∑

i=1

αmi (kr(yir,yjr)−Ar(j)) . (20)
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Fig. 1. The eKEV adaptation method.

STEP 4: Finding the Distance Constraints between the
New Speaker and the Reference Speakers in the Input Space

It is further assumed that the required pre-image s(ekev)
y

lies in the span of the n reference speakers, and its squared
Euclidean distances from them are collected into the fol-
lowing n-dimensional vector:

d = [d1, d2, . . . , dn]′ ∈ Rn . (21)

The squared Euclidean distance dj between s(ekev)
y and

the jth reference speaker can be computed from the dis-
tances between each of their corresponding R constituents
since

dj ≡ ‖s(ekev)
y − yj‖2 =

R∑
r=1

‖s(ekev)
yr − yjr‖2 ≡

R∑
r=1

djr .

If the direct-sum composite kernel of Eqn. (7) is used, and
each constituent kernel is similar to the Gaussian kernel of
Eqn. (13), then we have

k(kev)
r (s(ekev)

yr ,yjr) = e−βr‖s
(ekev)
yr −yjr‖2 = e−βrdjr .

Therefore, the distance between s(ekev)
y and the jth ref-

erence speaker yj in the input space can be deduced from
their similarity in the feature space using the corresponding
kernel value as follows:

dj ≡
R∑

r=1

djr = −
R∑

r=1

1
βr

log k(kev)
r (s(ekev)

yr ,yjr) . (22)

Notice that each distance component djr can be computed
from the kernel evaluation of k

(kev)
r (s(ekev)

yr ,yjr) as given

by Eqns. (18, 19, 20). The kernel evaluation does not in-
volve any adaptation or testing observations, though it de-
pends on the adaptation observations indirectly through
the eigenvoice weights w. Instead, it only requires the
evaluation of constituent kernel values kr(yir,yjr), r =
1, . . . , R, between any two training speakers which can be
pre-computed offline.

STEP 5: Finding the Pre-image

From [25], an approximate (normalized) pre-image that
optimally satisfies the distance constraints in d of Eqn. (21)
in the least-squares sense is given by the following equation:

s(ekev)
y = −1

2
UΛ−1V′(d− d0) + ȳ , (23)

where U, Λ, and V are the results of SVD of Ỹ given
by Eqn. (16). To show the dependence of s(ekev)

y on the
eigenvoice weights, let’s re-write s(ekev)

y as

s(ekev)
y (w) = Pd(w) + q (24)

where

P = −1
2
UΛ−1V′ , (25)

and

q = −Pd0 + ȳ . (26)

Notice that only d∈ Rn depends on w∈ RM as shown in
Eqns. (18, 22), and both P∈ Rn2×n and q∈ Rn2 are inde-
pendent of w.

Finally, the speaker’s unnormalized adapted model
s(ekev)
x (w) can be obtained from Eqn. (24) as

s(ekev)
x (w) = C

1
2 s(ekev)

y = C
1
2 (Pd(w) + q) . (27)
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STEP 6: Gradient Computation

From Eqn.(27), the rth constituent of a new speaker’s
model s(ekev)

xr , which is also the mean vector of the rth
Gaussian of his/her HMMs, is given by

s(ekev)
xr (w) = C

1
2
r (Prd(w) + qr) , (28)

where Pr∈ Rn1×n consists of the ((r−1)n1+1)th to (rn1)th
rows of P that are used in the computation of s(ekev)

yr (w),
and qr = −Prd0 + ȳr. Substituting Eqn. (28) into the
Q(w) function of Eqn. (3), and differentiating the result
w.r.t. the mth weight wm, we obtain the following weight
gradient:

∂Q
∂wm

=
R∑

r=1

T∑
t=1

γt(r)(ot − s(ekev)
xr (w))′C−1

r

∂s(ekev)
xr (w)
∂wm

. (29)

From Eqn. (27), we may obtain the derivative of s(ekev)
xr (w)

as

∂s(ekev)
xr (w)
∂wm

= C
1
2
r Pr

∂d(w)
∂wm

. (30)

Combining Eqn. (22) and Eqn. (18), and differentiating the

result w.r.t. wm,m = 1, . . . ,M , the jth element of
∂d(w)
∂wm

is found to be:

∂dj

∂wm
= − 1√

λm

R∑
r=1

Br(m, j)

βrk
(kev)
r (s(ekev)

yr (w),yjr)
,

j = 1, . . . , n . (31)

Finally, substituting the results of Eqns. (30, 31) onto
Eqn. (29), the derivative of Q(w) w.r.t. each eigenvoice
weight wm can be readily obtained.

STEP 7: Estimation of Eigenvoice Weights

The gradient of Eqn. (29) is nonlinear in w and there
is no closed form solution for the optimal ŵ. Again, as
in KEV adaptation, we apply GEM algorithm to find the
optimal weights. GEM is similar to the conventional EM
algorithm except for the maximization step: EM looks for
a w that maximizes the expected likelihood found in the
E-step but GEM only requires a w that improves the like-
lihood. Many numerical methods may be used to update
w based on the derivatives of Q. In this paper, gradient-
based algorithms are used to compute w(l) from w(l − 1)
based only on the first-order derivative: for the small vo-
cabulary TIDIGITS evaluation, the simple gradient ascent
algorithm is employed; for the large vocabulary WSJ0 eval-
uation, the more advanced BFGS method is used for faster
convergence.

B. Robust eKEV Adaptation

Since the amount of data in fast speaker adaptation
is so small, the adaptation performance may vary widely
as overfitting may readily occur. To get a more robust
performance, the pre-image of the speaker-adapted model

found by eKEV adaptation s(ekev)
x is interpolated with the

speaker-independent (SI) supervector x(si) to obtain the
final robust SA model s(rekev)

x . That is,

s(rekev)
x = w0x(si) + (1− w0)s

(ekev)
x , 0 ≤ w0 ≤ 1 . (32)

The required derivatives for gradient ascent are then up-
dated as follows:

∂Q
∂wm

=
R∑

r=1

T∑
t=1

γt(r)(ot − s(rekev)
xr (w))′C−1

r

∂s(rekev)
xr (w)
∂wm

,(33)

for m = 0, 1, . . . ,M , where

∂s(rekev)
xr

∂w0
= x(si)

r − s(ekev)
xr , (34)

and

∂s(rekev)
xr

∂wm
= (1− w0)

∂s(ekev)
xr

∂wm
. (35)

The derivative ∂s(ekev)
xr

∂wm
in the last equation is again given

by Eqns. (30, 31).
Similar robust adaptation method had been proposed in

our previous work on KEV adaptation [1].

C. Remarks on Speed

The use of kernel methods, in general, may significantly
increase the total computation. Both KEV and eKEV
adaptation have to compute the kernel matrix (Eqn. (4))
in order to perform kernel PCA to derive the kernel
eigenvoices (Eqn. (8)). This requires kernel evaluations
kr(xir,xjr) between any two training speaker supervec-
tors, which, fortunately, can be pre-computed offline. In
addition, KEV adaptation has to compute kernel evalu-
ations kr(xjr,ot) between any training speaker supervec-
tor xj and adaptation speech frames ot during adaptation,
and k

(kev)
r (sr,ot) between the adapted model ϕ(kev)(s) and

testing speech frames ot during recognition (Eqns. (10, 11,
12)). Obviously, these kernel values must be computed on-
line during adaptation and recognition. On the other hand,
no observations are involved in any kernel evaluations in
eKEV adaptation: adaptation only requires kernel evalua-
tions between any reference speaker supervectors and the
training speaker supervectors (Eqns. (18, 19, 20)), which
are only a subset of the kernel evaluations that have been
already computed for kernel PCA. Thus, eKEV adaptation
is expected to be faster than KEV adaptation in both adap-
tation and recognition. In fact, since an explicit speaker-
adapted model s(ekev)

x is produced by eKEV adaptation,
subsequent recognition should be as fast as normal HMM
decoding.

V. Experimental Evaluation

The proposed embedded kernel eigenvoice (eKEV) adap-
tation method was evaluated on a small-vocabulary contin-
uous speech recognition task using the TIDIGITS speech
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corpus [31], and on a large-vocabulary continuous speech
recognition (LVCSR) task using the Wall Street Journal
(WSJ0) speech corpus. We first used the simpler task of
TIDIGITS to familiarize ourselves with the behavior of the
new eKEV adaptation method. This includes the investiga-
tion of different methods to find the set of reference speak-
ers, the effect of its size on the adaptation performance,
and the speed of eKEV adaptation. Then its adaptation
performance was compared with other common adaptation
methods on both corpora. Specifically, the following mod-
els or adaptation methods were compared:
SI: the baseline speaker-independent model.
(robust) eKEV: the speaker-adapted (SA) model found
by our new robust eKEV adaptation method as described
by Eqn. (32) of Section IV-B.
(robust) KEV: the SA model ϕ(rkev)(s) found by our
previously robust KEV adaptation method as described
in [1]. It is the result of interpolation between the SA model
ϕ(kev)(s) found by KEV adaptation and the ϕ-mapped SI
supervector ϕ(x(si)) in the feature space given by the fol-
lowing formula:

ϕ(rkev)(s) = w0ϕ(x(si)) + (1− w0)ϕ(kev)(s),
0.0 ≤ w0 ≤ 1.0 . (36)

This is analogous to the robust eKEV adaptation.
(robust) EV: the SA model s(rev) computed as the in-
terpolation between the SI supervector x(si) and the su-
pervector s(ev) found by EV adaptation. That is,

s(rev) = w0x(si) + (1− w0)s(ev) , 0.0 ≤ w0 ≤ 1.0 , (37)

where w0 is estimated jointly with the other eigenvoice
weights by maximizing the adaptation data. In this paper,
EV was actually implemented as a special case of KEV
adaptation using a linear kernel 5.
MAP: the SA model found by MAP adaptation [5].
MLLR: the SA model found by MLLR adaptation [6].

A. Evaluation on Small-vocabulary Continuous Speech
Recognition

In this part, we would use simple digit models to in-
vestigate the behavior of eKEV adaptation on the smaller
TIDIGITS corpus. The simple task allows us to run many
experiments for the investigation.

A.1 TIDIGITS Corpus

The TIDIGITS corpus contains clean connected-digit ut-
terances sampled at 20 kHz. It is divided into a standard
training set and a test set. There are 163 speakers (of both

5Using the composite linear kernel: kr(x,y) = x′C−1
r y, and

Eqn. (40) in the Appendix, the Mahalanobis distance in the

Q(w) function can be expressed as: ‖ot − sr‖2Cr
= o′tC

−1
r ot +

kr(sr(w), sr(w)) − 2kr(sr(w),ot). The term kr(sr(w),ot) can
be computed by Eqn. (10), while the term kr(sr(w), sr(w)) =

ϕ
(kev)
r (sr)

′
ϕ

(kev)
r (sr) can be computed from Eqn. (9). As a result,

the Q(w) function is quadratic and its derivative is linear, and the
optimal weights can be found by solving a system of linear equation
as expected.

genders) in each set, each pronouncing 77 utterances of
one to seven digits (out of the eleven digits: “0”, “1”, . . .,
“9”, and “oh”). There is no overlap between the training
speakers and test speakers. The speaker characteristics are
quite diverse with speakers coming from 22 dialect regions
of USA, and their ages ranging from 6 to 70 years old.

A.2 Acoustic Models

All training data were processed to extract 12 mel-
frequency cepstral coefficients and the normalized frame
energy from each speech frame of 25 ms at every 10 ms.
Each of the eleven digit models was a strictly left-to-right
HMM comprising 16 states with one diagonal-covariance
Gaussian per state. In addition, there were a 3-state “sil”
model to capture silence and a 1-state “sp” model to cap-
ture short pauses between digits. All HMMs were trained
by the EM algorithm. Thus, the dimension of the obser-
vation space n1 is 13 and that of the speaker supervector
space n2 is 11 models × 16 states/model × 13/state =
2288.

Firstly, a set of speaker-independent (SI) digit models
were trained. Then a set of speaker-dependent (SD) digit
models were trained for each individual training speaker
by borrowing the covariances and transition matrices from
the corresponding SI models, and only the Gaussian means
were estimated. Furthermore, the “sil” and “sp” models
were simply copied to each SD model. In our pilot exper-
iments, it was found that SD models trained in this way
performed better than SD models that did not share any
model parameters with the SI models.

On the test data, the word accuracies of the baseline SI
model is 96.25%6 In addition, we also checked the quality
of the SD models using a 7-fold cross-validation: for each
training speaker, his data was divided into 7 roughly equal
subsets, and 6 subsets were used for training his acous-
tic model which was then tested on the remaining subset.
The average word accuracy over all 163 training speakers
is found to be 98.76%. It shows that our way of training
SD models produces sufficiently good acoustic models for
subsequent eigenvoice determination.

A.3 Experiments

In all experiments, only the training set was used to train
the SI HMMs and SD HMMs from which the SI and SD
speaker supervectors were derived. Adaptation was per-
formed on the test speakers. Five, ten, and twenty digits
were used for adaptation, which correspond to an average
of 2.1s, 4.1s, and 9.6s of adaptation speech (or 3.0s, 5.5s,
and 13.0s of speech if the leading and ending silences are
counted as well). To improve the statistical reliability of

6The word accuracy of our SI model is not as good as the best
reported result on TIDIGITS which is about 99.7%. The main reason
is that we used only 13-dimensional static cepstra and energy features,
and each state was modeled by a single Gaussian. Furthermore, one
of the methods we were comparing with, namely, KEV adaptation
requires online computation of many kernel function values and is
computationally very expensive. Since the task is mainly employed
to investigate the behavior of the new eKEV adaptation method, we
think the use of the simple model is justified.
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the results, all results are the averages of a 5-fold cross-
validation over all 163 test speakers. Moreover, all adapta-
tion experiments were performed in the supervised mode7,
and only one GEM iteration was run as in some prelimi-
nary experiments it was found that more GEM iterations
did not further improve the adaptation performance.

Parameter initialization and settings

In the following TIDIGITS experiments, the simple it-
erative gradient ascent algorithm was used to compute the
(locally) optimal eigenvoice weights in each maximization
step of the GEM algorithm. Proper initialization of various
system parameters can be important for its success.
• Kernel eigenvoice weights initialization: Since we are
adapting the SI model to the new speaker, it is reason-
able to start searching from the kernel eigenvoice weights
of the speaker supervector of the SI model x(si). For eKEV
adaptation, these kernel eigenvoice weights were found by
projecting the normalized SI supervector y(si) = C− 1

2 x(si)

onto each kernel eigenvoice vm,m = 1, . . . ,M , in the
kernel-induced feature space as follows:

wm(0) = v′mϕ̃(y(si))

=
N∑

i=1

αmi√
λm

ϕ̃(yi)′ϕ̃(y(si))

=
N∑

i=1

αmi√
λm

(ϕ(yi)− ϕ̄)′(ϕ(y(si))− ϕ̄)

=
N∑

i=1

αmi√
λm

[
k(yi,y(si)) +

1
N2

N∑
p=1

N∑
q=1

k(yp,yq)

− 1
N

N∑
p=1

(
k(yi,yp) + k(y(si),yp)

)]
.

• The width of all direct-sum composite Gaussian kernels
were set identical to the value of 0.0005. That is, βr = β =
0.0005 for r = 1, . . . , R. The value was empirically found
to give good performance for KEV adaptation on a subset
of training speakers [1].
• The initial learning rate was set empirically to 0.0001.
• The number of kernel eigenvoices was fixed to 7 as it
empirically gave the best performance in some preliminary
experiments.
• The gradient ascent algorithm stopped when either the
relative improvement on the likelihood of the adaptation
data was less than 0.00015, or 1000 iterations was reached.

Experiment 1: Different methods to find the reference speakers

7According to our previous work on KEV adaptation [1], supervised
KEV adaptation and unsupervised KEV adaptation on this TIDIG-
ITS task had very similar performance. We expect eKEV adaptation
to have the same behavior too.

TABLE I

Effect of different types of reference speakers on eKEV

adaptation on TIDIGITS. (The number of reference speakers

is 10.)

Amount of ML SI Neighbors
Adaptation Data Neighbors Euclidean Mahalanobis

2.1s 97.41 96.33 96.52
4.1s 97.53 96.43 96.60
9.6s 97.58 96.50 96.68

The computation of the pre-image relies on its distances
to a set of reference speakers. In the reference paper of the
pre-image finding method [25], the neighbors of a de-noised
image in the kernel-induced feature space are used as the
reference set. However, in our problem, the whereabouts of
the speaker-adapted (SA) model is not known beforehand,
neither in the feature space nor in the input supervector
space, and so are the locations of its neighbors. In this
paper, we investigated two ways to determine the initial
set of reference speakers of the SA model to be found:
• SI model’s neighbors: If no additional information is
available, it is reasonable to start with the neighbors of
the SI model since the adaptation method begins its search
from the SI model. The neighbors can be computed using
either Euclidean distance or Mahalanobis distance. One
advantage of using SI neighbors is that they can be com-
puted offline.
• Maximum likelihood (ML) neighbors: Conceptually,
since we are using the maximum likelihood criterion for de-
termining the SA model, it should be close to those training
speakers that also have high likelihood of the adaptation
data.

The effect of different types of neighbors on the adapta-
tion performance of the eKEV method is shown in Table I.
The number of neighbors was fixed to 10 for the investiga-
tion. From the results, it indeed seems that the final SA
model is closer to its ML neighbors than the SI neighbors.
Since there can be many local maxima in the solution of
the gradient method, we hypothesize that a good initial-
ization of its neighborhood to the ML neighbors may have
avoided the poorer local maxima.

In the last experiment, the neighbors were initialized and
pre-determined before the start of eKEV adaptation and
remained unchanged during the course. In general, these
neighbors may be updated after each GEM iteration to
the real neighbors of the SA model as determined by their
Mahalanobis distances. We had run additional experiments
with such neighbor updates in the case of ML neighbors. It
was found that most of the neighbors remained the same,
and the final model had very similar performance as that
of the SA model obtained without neighbor updates.

Experiment 2: Effect of the number of ML reference speakers

Another issue about the reference speakers is how many
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Fig. 2. Effect of the number of maximum-likelihood reference speak-
ers on eKEV adaptation on TIDIGITS.

of them are adequate. On the one hand, adaptation is
faster with fewer reference speakers as fewer distance con-
straints have to be computed. On the other hand, the cur-
rent method of using distances from reference speakers of
a neighborhood to find the pre-image tries to exploit local-
ized information to constrain the solution space. If there
are too few reference speakers8, the distance constraints
may be too weak to lead to a good pre-image solution.
However, if too many reference speakers are included, those
that are far away will dominate the distance constraints (as
the pre-image is obtained from a least-squares approxima-
tion), and the idea of using localized information for the
determination of the pre-image is not utilized.

Fig. 2 shows the performance of various adapted models
found by eKEV adaptation using different numbers of ML
neighbors. It is concluded that for this particular problem,
five ML neighbors give the best performance. In practice,
the optimal number of reference speakers may be deter-
mined by cross-validation.
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Fig. 3. Computational time taken by each gradient ascent iteration
during eKEV adaptation on TIDIGITS.

8Since the pre-image is always constrained to lie on the span of
neighbors, the theoretical minimum number of neighbors is 2.

Experiment 3: Speed Comparison

The main objective of eKEV adaptation is to improve
the speed of adaptation and recognition of KEV adapta-
tion as discussed in Section IV-C. Figure 3 shows that the
adaptation speed of eKEV adaptation is indeed an order of
magnitude faster than that of KEV adaptation. (The exact
speedup factors by eKEV adaptation over KEV adaptation
are 6.24, 8.75, and 14.5 for 2.1s, 4.1s, and 9.6s of adapta-
tion speech respectively.) We also checked the recognition
speed of their adapted models. It was found that, on av-
erage, KEV adapted models took 227s to recognize one
second of test speech, while eKEV adapted models — reg-
ular HMMs — only took 1.67s; that is, a speed up of 136
times. (All experiments were run on a Pentium III 1GHz
machine with 512MB RAM.)
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Fig. 4. Performance comparison among MLLR, MAP, EV, KEV, and
eKEV adaptation methods on TIDIGITS. (Recall that the accuracy of
the corresponding baseline SI model is 96.25%. Since the performance
of the SI model and EV adaptation are almost the same, they cannot
be differentiated in the plots. Thus, we do not plot the SI performance
in the figure.)

Experiment 4: Comparison with other adaptation methods

In this experiment, eKEV adaptation was compared with
the standard EV adaptation and our previous KEV adapta-
tion, as well as the conventional MAP and MLLR adapta-
tion. For each adaptation method, we tried to find the best
setup for the method so as to obtain its best results for com-
parison purpose. That means, for eKEV adaptation, five
ML neighbors and seven kernel eigenvoices were employed;
for EV and KEV adaptation, the best results were obtained
with the optimal number of eigenvoices which were one and
eight respectively; for MAP adaptation, the best results
were achieved with the best scaling factors in the range of
1–30; for MLLR adaptation, only global MLLR was tried,
and the better results from using either diagonal or full
transformation matrices were used for comparison. Notice
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that for MLLR adaptation, no efforts were made to inter-
polate the raw MLLR results with the SI model.

The results are plotted in Fig. 4. We have the following
observations:
• eKEV adaptation outperforms all other methods in all
three cases with different amount of adaptation data. It
reduces the word error rate (WER) of the SI model by
37.0%, 40.5%, and 41.3% respectively with 2.1s, 4.1s, and
9.6s of adaptation speech.
• Among the three conventional adaptation methods,
MAP adaptation gives the best performance when there
are only 2.1s or 4.1s of adaptation speech. When there are
about 10s of data, MLLR adaptation performs the best.
• It is surprising and disappointing that the standard EV
adaptation only has comparable performance as the SI
model’s in this task9.
• All the three EV-based methods saturate quickly: their
adaptation performance only improves very slightly after
5s of adaptation speech.
• Both versions of kernelized EV adaptation, namely KEV
or eKEV adaptation, outperform standard EV adaptation.
The results suggest that nonlinear kernel PCA using com-
posite kernels can be more effective in finding the eigen-
voices.
• Although the robust versions of EV, KEV, and eKEV
adaptation are tried, it is found that the weighting w0 of
the SI model always went to zero during robust eKEV
adaptation; this does not happen in robust EV or KEV
adaptation. One possible explanation is that the reference
speakers in eKEV adaptation provide much stronger prior
information for adaptation than the SI model; this is con-
sistent with the motivation of RSW adaptation. (For the
difference in performance between robust EV/KEV adap-
tation and their non-robust counterparts, please refer [1].).
• eKEV adaptation is consistently better than KEV adap-
tation by an average of (absolute) 0.33%. The two meth-
ods differ in how they evaluate the Q(w) function that
maximizes the likelihood of the adaptation speech. KEV
adaptation maps the acoustic observations to the feature
space to compute their likelihoods on an implicit adapted
speaker model in the feature space, while eKEV adapta-
tion maps the adapted model from the feature space back
to the input space before computing acoustic observation
likelihoods. Theoretically speaking, it is hard to tell which
of the two adaptation methods should be better in terms
of recognition performance. However, there may be three
reasons for eKEV’s better performance:
– Since there is no analytical solution for both KEV and

eKEV adaptation, numerical methods are used to search
for the optimal kernel eigenvoice weights, and there can
be many local optima. The use of reference speakers seem
to provide a guidance for a better local maximum solution
than KEV adaptation.
– The use of Gaussian kernels requires that the kernel

value in Eqn. (10) of KEV adaptation and that in Eqn. (18)
of eKEV adaptation must be positive. Hence, the opti-

9The apparently poor performance of EV adaptation has been dis-
cussed thoroughly in [1].

mization of the eigenvoice weight vector w is subject to
the constraint that these kernel values are strictly greater
than zero. In our current KEV and eKEV implementa-
tion, we simply check that the constraint is not violated
otherwise adaptation stops before meeting the convergence
requirement. In our experience, the constraint was violated
much more frequently in KEV adaptation than in eKEV
adaptation10. We believe that the use of reference speakers
in eKEV adaptation help confine the search space to stay
in a feasible region. As a result, eKEV adaptation seems
to converge to a better solution.
– In practice, since eKEV adaptation runs much faster

than KEV adaptation (Experiment 3 above), we may run
more gradient ascent iterations in eKEV adaptation than in
KEV adaptation. For instance, we may set the maximum
number of iterations to about 1000 in eKEV adaptation,
but only about 100 iterations in KEV adaptation. Thus,
KEV adaptation is more likely to stop without reaching
the convergence requirement.

B. Evaluation on Large-vocabulary Continuous Speech
Recognition (LVCSR)

In this section, we would like to check if eKEV adapta-
tion is also effective on a relatively large-vocabulary recog-
nition task using triphone HMMs with Gaussian-mixture
states. The use of a large number of context-dependent
models and multiple-Gaussian mixtures poses new chal-
lenges and some changes in the eKEV adaptation imple-
mentation are deemed necessary.

B.1 WSJ0 Corpus

The Wall Street Journal corpus WSJ0 [32] with 5K vo-
cabulary was chosen. The standard SI-84 training set was
used for training the speaker-independent (SI) model. It
consists of 83 speakers and 7138 utterances for a total of
about 14 hours of training speech (after discarding the
problematic data from one speaker as in the Aurora4 cor-
pus [33]). The standard nov’92 5K non-verbalized test set
was used for evaluation. It consists of 8 speakers, each with
about 40 utterances.

B.2 Acoustic Modeling

The traditional 39-dimensional MFCC vectors were ex-
tracted at every 10ms over a window of 25ms from the
training and testing data. The speaker-independent (SI)
model consists of 15,449 cross-word triphones based on 39
base phonemes. Each triphone was modeled as a contin-
uous density HMM which is strictly left-to-right and has
three states with a Gaussian mixture density of 16 com-
ponents per state. State tying was performed to give 3131
tied states in the final SI model. In addition, the same
type of “sil” and “sp” models were trained as in the last
TIDIGITS experiments.

10Actually, in the new implementation of eKEV adaptation used in
the WSJ evaluation in Section V-B, by using BFGS plus line search,
it is found that the constraint was never violated. However, for the
TIDIGITS evaluation, we keep the old implementation which was
closer to the implementation of KEV adaptation in [1] so that the
two methods can be fairly compared.
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Because of the large number of triphone models and
Gaussians, there are not sufficient data to train a speaker-
dependent (SD) model for each of the 83 training speakers.
Instead, following the common practice of EV adaptation
for LVCSR [10], we created the SD models by MLLR adap-
tation using a regression tree of 32 classes. Notice that
the dimension of the training speaker supervectors in this
WSJ0 evaluation is much higher than that in the TIDIG-
ITS evaluation: n2 = 3131 tied states ×16 Gaussians/state
×39/Gaussian = 1, 958, 736. One way to save models stor-
age is to store only the MLLR transforms for each SD
model, and the actual means are computed on-the-fly when
needed.

B.3 Experiment: Comparison with other adaptation meth-
ods

eKEV adaptation was compared with EV, MAP, and
MLLR adaptation on the WSJ0 corpus. KEV adaptation
was not tried as the online kernel value computations now
would involve speaker supervectors of over a million dimen-
sions, and would run very slowly. Again efforts were made
to find the best setup for each method as in the TIDIGITS
evaluation. For the conventional EV adaptation, 10 eigen-
voices were found giving good results; for MAP adaptation,
the best results with a scaling factor in the range of 3–12
were reported.

For each of the 8 testing speakers, 1–3 utterances of his
speech were randomly selected so that the amount of adap-
tation speech is about 4s or 8s (or, 5s and 10s respectively
if one includes the silence portions), and his adapted model
was tested on his remaining speech in the test set. This was
repeated three times and the three adaptation results are
averaged before they are reported. Finally, a bigram lan-
guage model of perplexity 147 was employed in this recog-
nition task.

To speed up the convergence of the gradient-based search
in each M-step of the GEM procedure, the simple gradient-
ascent algorithm was replaced by the quasi-Newton BFGS
algorithm [34] plus line search. BFGS is similar to the tra-
ditional Newton’s method and makes use of the Hessian to
retrieve the Newton’s direction. However, it approximates
the Hessian with an estimate that can be derived solely
from the gradient. As a result, it is more efficient and it
can enforce the Hessian estimate to be strictly positive-
definite. It was found that only about 10–20 BFGS itera-
tions are now required.

Parameter initialization and settings

We used a simple adaptation task on the Resource Man-
agement [35] to help set the system parameters, and then
they were applied to the WSJ0 task without modification.
These parameter settings are listed below for readers’ ref-
erence:
• βr = β = 0.005 for r = 1, . . . , R.
• The learning rate was initialized to 0.1, but it was subse-
quently changed during a heuristic line search procedure.
• The number of kernel eigenvoices was fixed to 7.

• The number of ML reference speakers was fixed to 5.
• The gradient ascent algorithm stopped when either the
relative improvement on the likelihood of the adaptation
data was less than 0.00015, or 30 iterations was reached.

TABLE II

Performance of MLLR, MAP, EV, and eKEV adaptation on

WSJ0.

Model/Adaptation Method 4s 8s

SI 92.26 92.26
MAP 92.48 92.47
MLLR 92.32 92.98

EV 92.46 92.51
eKEV 92.86 92.92

Results and Discussions

Table II summarizes the performance of the various
adaptation methods. Below are some additional or dif-
ferent observations we have beyond those we have already
made in the TIDIGITS evaluation:
• All the three conventional adaptation methods — EV,
MAP, and MLLR — now give slight improvement over the
SI model when 4s of adaptation data are available. With 8s
of adapting speech, MLLR adaptation again outperforms
the other two methods.
• While EV adaptation has no improvement in the TIDIG-
ITS experiments, it now outperforms the SI model and is
comparable with MAP adaptation.
• eKEV adaptation again outperforms all the other meth-
ods under comparison in the 4s case, and is comparable
with MLLR adaptation in the 8s case. It reduces the WER
of the SI model by 7.75% and 8.52% respectively with 4s
and 8s of adaptation speech.

TABLE III

Comparison between eKEV and RSW using different types

of reference speakers.

Adaptation Method Reference Speakers 4s 8s

SI — 92.26 92.26
eKEV ML 92.86 92.92
RSW cluster 92.33 92.41
RSW ML 92.89 92.83

C. Implication to Reference Speaker Weighting (RSW)

As we mentioned in the Introduction section that eKEV
adaptation and RSW are similar in that both methods re-
strict a speaker-adapted model to lie in the span of a set
of reference speakers. The two methods are also different
in some details:
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• The definition of the reference speakers are different.
From the experiments in Section V-A, eKEV adaptation
suggests to use maximum-likelihood (ML) reference speak-
ers, but RSW uses speaker clusters defined by their speak-
ing rates [4].
• eKEV adaptation further requires the adapted model to
lie on the part of the reference speakers’ span that is re-
lated to the eigenspace found by KEV adaptation in the
kernel-induced feature space. The conjecture is that the
constraint may provide some useful prior information in
the spirit of the eigenvoice approach to improve the adap-
tation performance.

Two additional experiments were run on the WSJ0 task
to investigate the adaptation performance of eKEV and
RSW with regards to the above two differences. The ex-
perimental procedure is the same as in the last Section V-B.
For eKEV adaptation, five ML reference speakers were em-
ployed. For RSW, the procedure described in [4] were im-
plemented. However, we define the speaker-adapted model
simply as a linear combination of M reference speakers
{x1,x2, . . . ,xM}:

s(rsw) =
M∑

m=1

wmxm . (38)

In addition, no restriction is placed on the values of
wm,m = 1, . . . ,M .

RSW was tested with two different definitions of refer-
ence speakers:
• Clustered speaker groups as defined in [4]. Thus, six
speaker clusters were hierarchically defined: first based on
the gender and then their speaking rates; each cluster con-
sists of roughly 14 training speakers.
• The exact ML speakers as used by eKEV adaptation.

The results are shown in Table III. It can be seen that
the definition of reference speakers is essential to the per-
formance of RSW and eKEV adaptation. The clustered
speaker groups based on speaking rate give only small im-
provement. However, the use of ML reference speakers may
boost the performance of RSW so that it is as good as that
of eKEV adaptation.

VI. Conclusions

In this paper, we attempt to solve the efficiency prob-
lem of our previously proposed kernel eigenvoice (KEV)
speaker adaptation method by embedding the kernel PCA
procedure in the computation of the speaker-adapted (SA)
model. Although both KEV and eKEV adaptation meth-
ods try to improve the standard EV adaptation by ex-
ploiting the nonlinearity in the speaker supervector space
via kernel PCA, eKEV adaptation using embedded ker-
nel PCA has the additional advantage of eliminating all
kernel evaluations between the training speaker supervec-
tors and the adaptation or testing observations. This is
achieved by finding an approximate pre-image of the im-
plicit SA model in the kernel-induced feature space so that,
at the end, there is an explicit SA model in the input su-
pervector space from which regular acoustic HMMs can be

constructed. As a result, both eKEV adaptation and sub-
sequent recognition using its SA model run much faster
than those of KEV adaptation with no performance degra-
dation. In terms of adaptation performance, eKEV adap-
tation also outperform EV, MAP, and MLLR adaptation
when less than 10s of adaptation speech are available. For
instance, with only 4s of adaptation data, eKEV adapta-
tion reduces the WER of the SI model by 40.5% in our
simple TIDIGITS task, and 7.75% in the more complex
WSJ0 task.

The successful use of a set of carefully chosen refer-
ence speakers in our novel eKEV adaptation prompts us
to re-visit the reference speaker weighting (RSW) tech-
nique. It turns out that our use of maximum-likelihood
(ML) reference speakers can greatly boost the adaptation
performance of RSW. At the end, by adopting the ML
reference speakers, both eKEV and RSW adaptation have
similar performance. It shows that local speaker informa-
tion is of great importance to speaker adaptation. On the
other hand, our experiments using the WSJ0 task does
not support our conjecture about the possible advantage
of the additional prior information provided by the kernel
eigenspace; further investigations will be needed.
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Appendix

I. Relation between Distance and Kernel
Functions

Without loss of generality, the Euclidean distance d(x,y)
between 2 vectors: x and y in the input space, can be
expressed in terms of many common kernel functions. Let’s
rewrite the Euclidean distance in terms of inner products
as follows:

d(x,y) = ‖x− y‖2 = x′x + y′y − 2x′y . (39)

Case I: Linear Kernel. Let k(x,y) = x′y, then

d(x,y) = k(x,x) + k(y,y)− 2k(x,y) . (40)

Case II: Polynomial Kernel. Let k(x,y) = (1 + x′y)n,
then

d(x,y) = (k(x,x)
1
n − 1) + (k(y,y)

1
n − 1)− 2(k(x,y)

1
n − 1)(41)

= k(x,x)
1
n + k(y,y)

1
n − 2k(x,y)

1
n .
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