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Kernel Eigenspace-based MLLR Adaptation
Brian Mak and Roger Hsiao

Abstract— Recently, we have been investigating the ap-
plication of kernel methods for fast speaker adaptation by
exploiting possible non-linearity in the input speaker space.
In this paper, we propose another solution based on kernel-
izing the eigenspace-based MLLR adaptation (EMLLR) method.
We call our new method “kernel eigenspace-based MLLR adap-
tation” (KEMLLR). In KEMLLR, speaker-dependent (SD)
models are estimated from a common speaker-independent
(SI) model using MLLR adaptation, and the SD MLLR
transformation matrices are mapped to a kernel-induced
high-dimensional feature space, and kernel principal com-
ponent analysis is used to derive a set of eigenmatrices in
the feature space. In addition, composite kernel is used
to preserve the row information in the transformation ma-
trices. A new speaker’s MLLR transformation matrix is
then represented as a linear combination of the leading ker-
nel eigenmatrices, which, though exists only in the feature
space, still allows the speaker’s mean vectors to be found
explicitly. As a result, at the end of KEMLLR adaptation,
a regular HMM is obtained for the new speaker and subse-
quent speech recognition is as fast as normal HMM decod-
ing. KEMLLR adaptation was tested and compared with
other adaptation methods (MAP, MLLR, EV, EMLLR, and
eKEV) on the Resource Management and Wall Street Jour-
nal tasks using 5s or 10s of adaptation speech. It is found
that in both cases, KEMLLR adaptation gives the greatest
improvement over the SI model with 11–20% word error
rate reduction.

Keywords— Eigenvoice speaker adaptation, eigenspace-
based MLLR adaptation, kernel PCA, composite kernels,
kernel eigenvoice adaptation, embedded kernel eigenvoice
adaptation, BFGS optimization.

I. Introduction

When the amount of adaptation speech is really small,
say, a few seconds, eigenspace-based adaptation meth-
ods [1], [2], [3], [4] have been shown more effective than
the traditionally popular methods such as the Bayesian-
based maximum a posteriori (MAP) adaptation [5] and the
transformation-based maximum likelihood linear regression
(MLLR) adaptation [6]. The eigenvoice (EV) adaptation
method [1] was motivated by the eigenface approach in
face recognition [7]. The idea is to derive from a diverse
set of speakers a small set of basis vectors called eigen-
voices using principal component analysis (PCA) (or other
basis-deriving algorithms). These eigenvoices are believed
to represent different voice characteristics (e.g. gender, age,
accent, etc.), and any training/new speaker is then a point
in the eigenspace. That is, a new speaker vector is repre-
sented as a linear combination of the eigenvoices, and the
combination weights may be obtained by maximizing the
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likelihood of his/her adaptation data. In practice, a few to
a few tens of eigenvoices are found adequate for fast speaker
adaptation. Since the number of estimation parameters is
greatly reduced, fast adaptation using EV is possible with
a few seconds of speech [1].

In Kuhn’s original eigenvoice adaptation [1], a speaker is
represented by a supervector that is composed by splicing
the mean vectors of his hidden Markov models (HMMs)
together. Chen et al. [2] later suggested using a speaker’s
MLLR transforms instead of his HMM mean vectors to rep-
resent the speaker in their eigenspace-based MLLR (EM-
LLR) adaptation method; a speedup was also proposed
in [8]. Since the dimension of the speaker MLLR trans-
forms is usually much smaller than the total dimension
of HMM mean vectors, EMLLR requires less memory and
computation resources. EMLLR also naturally solves the
problem of aligning mixture density components across dif-
ferent speakers in eigenvoice adaptation. Both EV and EM-
LLR approaches have been successfully applied to large vo-
cabulary continuous speech recognition (LVCSR) [9], [10],
[11]. A shortcoming of deriving the speaker eigenspace by
PCA is that it only minimizes the residual in the least-
square sense, and is inconsistent with the maximum like-
lihood (ML) criterion usually used to find a speaker’s lo-
cation in the eigenspace. Furthermore, orthogonality of
the eigenspace is not necessarily required. In light of this,
Nguyen later proposed finding the speaker eigenspace by
the ML approach in his maximum likelihood eigenspace
(MLES) method [12]. Interestingly, at the same time that
eigenvoice was first proposed, Gales, in his cluster adap-
tive training (CAT) [13] — a separate and independent ef-
fort — already proposed the ML estimation of the speaker
eigenspace within the speaker-adaptive training (SAT) [14]
framework. Under the CAT scheme, both the eigenspace,
cluster weights, and model parameters can be jointly op-
timized. Both Gales and Nguyen showed in LVCSR tasks
that speaker eigenspace found by the ML approach outper-
formed speaker eigenspace found by PCA.

Recently, we have been investigating another way to im-
prove the original eigenspace-based adaptation methods
by exploiting possible non-linearity in their working space
with the use of kernel methods [15], [16], [17]. In [18], we
proposed the first kernel version of EV adaptation called
the kernel eigenvoice (KEV) speaker adaptation method.
The idea is to map input speaker supervectors to a kernel-
induced high-dimensional feature space1 via some nonlin-
ear map ϕ, and then apply kernel PCA [19] there to extract

1In the kernel methods terminology, the original space where raw
data reside is called the input space and the space to which raw data
are mapped is called the feature space. Readers are cautioned not to
confuse this feature space with the acoustic feature space in speech.
Sometimes, we will call the feature space in kernel methods as “kernel-
induced feature space” when additional clarity is necessary.
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the eigenvoices. During the actual computation, the exact
nonlinear map need not be known. Instead, kernel PCA
only requires the similarities between any two mapped in-
puts (in the form of their dot products) in the feature space,
which is captured by a kernel function; this is known as the
kernel trick2 [16]. In principle, since the KEV adaptation
method is a nonlinear generalization of the EV adapta-
tion method, the former should be more powerful than the
latter, and KEV adaptation is expected to give better per-
formance. In fact, KEV adaptation is reduced to the tradi-
tional EV adaptation method if linear kernel is employed.
In a TIDIGITS adaptation task, it was shown that KEV
adaptation outperformed the SI model by about 30% using
only 2.1, 4.1, or 9.6 seconds of adaptation speech [20], and
was better than EV, MAP, and MLLR adaptation [21].

Although KEV adaptation performs well, the perfor-
mance gain is obtained at the expense of many online kernel
evaluations during both adaptation and recognition. One
solution is the embedded kernel eigenvoice (eKEV) speaker
adaptation method [22], [23]. eKEV adaptation eliminates
all online kernel evaluations during recognition by finding
an approximate pre-image3 [24] of the new speaker4 model
obtained by KEV adaptation. Unlike KEV adaptation in
which the new adapted speaker model resides only in the
“fictitious” feature space, at the end of eKEV adaptation,
a “real” HMM is obtained for the new speaker in the input
space. However, eKEV adaptation has a limitation: the
new speaker’s supervector must lie on the span of a set of
reference (training) speakers; it can be argued that the new
speaker model is sub-optimal.

In this paper, we investigate another solution to the com-
putation problem of KEV by applying kernel methods on
eigenspace-based MLLR (EMLLR) adaptation instead. We
will show that one may kernelize the EMLLR adaptation
method in such a way that although the MLLR transfor-
mation matrix for the new speaker is not explicitly found,
the mean vectors of his new model still can be directly
computed using kernel methods — in other words, a real
speaker HMM is obtained at the end of the adaptation. As
a result, subsequent recognition with the new speaker is as
fast as usual HMM decoding without any online kernel eval-
uations. We call our new method kernel eigenspace-based
MLLR adaptation (KEMLLR). The basic idea of KEM-
LLR adaptation has already been reported and evaluated
on the Resource Management (RM) task with 1000 words
in [25], [26]. This paper further improves our previous work
by generalizing the Gaussian kernel function to use Maha-
lanobis distance (instead of Euclidean distance) so as to
normalize the MLLR transformation matrix components
before kernel PCA is performed. It will be shown that
such normalization gives better adaptation performance.
In addition, the improved KEMLLR method was tested

2Under the Mercer’s condition, any positive semi-definite kernel can
be represented as a dot product in a high-dimensional space.

3Finding an exact or a good approximate vector in the input space
from its image in the feature space is known as the pre-image problem
in kernel methods.

4In this paper, we will refer to the speaker to whom the system is
adapting as the “new speaker.”

and compared with other adaptation methods on both the
RM task as well as the Wall Street Journal (WSJ0) task
with 5000 words.

The paper is organized as follows. We first review the
eigenspace-based MLLR adaptation method in Section II.
Our new kernel eigenspace-based MLLR speaker adapta-
tion method is then detailed in Section III. This is fol-
lowed by experimental evaluation in Section IV, and an
analysis of eigenmatrix weights in Section V. Finally, the
paper ends with concluding remarks and pointers for future
directions in Section VI.

II. Eigenspace-based MLLR (EMLLR) Adaptation

Suppose there are some speech data from N speakers,
and a speaker-independent (SI) model that is a hidden
Markov model (HMM) with totally Ng Gaussians. These
speakers should come from a diverse population so that
there is a good coverage of different speaker characteristics
such as speaking style, accent, age, gender, etc. Then N
speaker-dependent (SD) models of the same HMM topol-
ogy are estimated from the SI model by MLLR speaker
adaptation. Let’s further assume that all of the Ng Gaus-
sians in the SI model are grouped into L regression classes,
and let H be the mapping function that maps the gth Gaus-
sian to its regression class h = H(g), where g = 1, . . . , Ng,
and h = 1, . . . , L. The estimation of each SD model con-
sists in finding L MLLR transformation matrices for each
speaker. That is, the gth Gaussian mean vector µ

(i)
g ∈ Rd

of the ith speaker is given by

µ
(i)
g = Y(i)′

H(g)ξ
(si)
g (1)

where Y(i)′

H(g) ∈ Rd×(d+1) is his MLLR transformation for

the H(g)-th regression class, and ξ(si)
g = [µ(si)

g

′
, 1]′ is the

augmented mean vector of the corresponding Gaussian in
the SI model5. Notice that the mean vector is augmented
with an extra element of 1 to allow an affine MLLR trans-
formation — a rotation followed by a translation.

In eigenspace-based MLLR (EMLLR) adaptation, a
speaker is indirectly represented by a speaker transfor-
mation supervector (STSV) which is obtained by stack-
ing up the L vectorized MLLR transformation matrices,
{Y(i)′

1 , . . . ,Y(i)′

L }, of the speaker. Let’s denote the STSV
of the ith speaker by y(i) = [vec(Y(i)

1 )′, . . . , vec(Y(i)
L )′]′.

Principal component analysis (PCA) is performed using the
correlation matrix of the N STSVs, {y(1),y(2), . . . ,y(N)},
to obtain the eigenvectors, v(emllr)

m ,m = 1, 2, . . . , N , which
are the vectorized eigenmatrices6. To do that, each STSV

5In this paper, vector quantities are written in bold letters, and
matrices are in capital bold letters. Scalar quantities are not bold.
The transpose of a vector or matrix is denoted by the superscript ′.
In addition, for any quantity x, various accents will be used to indi-
cate its mean, centered version, and centered and variance-normalized
version respectively as follows: x̄, x̃, and x̂.

6The formulation of EMLLR in [2] used the covariance matrix of
the speaker transformation supervectors to perform PCA, but the
original eigenvoice paper [1] suggests that PCA using the correlation
matrix gives better results; our own experience agrees with the latter.
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is mean-zeroed and then normalized by its variance. Let’s
further denote the centered and variance-normalized STSV
of the ith speaker by ŷ(i). Then, we have

ŷ(i) = C− 1
2

y (y(i) − ȳ) (2)

where ȳ = 1
N

∑N
i=1 y(i) is the mean STSV among the N

speakers, and Cy is the diagonal covariance of the STSVs.
For a new speaker, his centered and normalized STSV ŷ
is approximated as a linear combination of the M leading
vectorized eigenmatrices as

ŷ ' ŷ(emllr) =
M∑

m=1

wmv(emllr)
m (3)

where w = [w1, . . . , wM ]′ will be called the eigenmatrix
weight vector. Finally, the speaker’s STSV y is given by

y ' y(emllr) = ȳ + C
1
2
y ŷ(emllr) . (4)

To get each HMM Gaussian component of the new
speaker model, let’s first add the subscript hr to any
quantity to represent the part of the quantity that is re-
lated to the rth row of the hth MLLR transformation
matrix. Thus, the new speaker STSV can be written
as y = [. . . ,y′h1, . . . ,y

′
hd, . . .]

′, where yhr ∈ R(d+1) for
r = 1, . . . , d and h = 1, . . . , L is the rth row of his hth
MLLR transformation matrix. Then, yhr = ȳhr+C

1
2
yhrŷhr,

and according to Eqn. (3),

ŷhr =
M∑

m=1

wmv(emllr)
mhr . (5)

Hence, the rth component µgr of the gth Gaussian mean
µg of the new speaker model (that belongs to the hth re-
gression class as h = H(g)) can be found by combining
Eqns.(1,4,5) as follows:

µg = Y′
hξ(si)

g

⇒ µgr = y′hrξ
(si)
g

= (ȳhr + C
1
2
yhrŷhr)′ξ(si)

g

= ȳ′hrξ
(si)
g +

M∑
m=1

wm(v(emllr)′

mhr C
1
2
yhrξ

(si)
g ) . (6)

Given the adaptation data O = {o1,o2, . . . ,oT } from
the new speaker, his eigenmatrix weights can be estimated
by maximizing the likelihood of O, or, equivalently the fol-
lowing Q(w) function (where irrelevant terms are dropped
for simplicity):

Q(w) = −
Ng∑
g=1

T∑
t=1

γt(g)(ot − µg(w))′C−1
g (ot − µg(w)) (7)

where γt(g) is the posterior probability of the observation
sequence being at the gth Gaussian at time t, and Cg is

the covariance matrix of the gth Gaussian. Differentiating
Q(w) w.r.t. each weight, wm,m = 1, . . . ,M , we get

∂Q(w)
∂wm

= 2
Ng∑
g=1

T∑
t=1

γt(g)(ot − µg(w))′C−1
g

∂µg(w)
∂wm

. (8)

By setting the M derivatives to zero, the optimal weights
are obtained by solving a system of M linear equations [1],
[2].

III. Kernel Eigenspace-based MLLR (KEMLLR)
Adaptation

In KEMLLR adaptation, we try to improve the perfor-
mance of eigenspace-based MLLR (EMLLR) adaptation by
exploiting possible non-linearity in the speaker transfor-
mation supervector space. This is achieved by kernelizing
EMLLR in a way analogous to the use of kernel methods
in kernel eigenvoice (KEV) adaptation [18] to improve the
performance of eigenvoice adaptation [1]. That is, linear
PCA used in EV or EMLLR is replaced by kernel PCA to
derive a nonlinear eigenbasis. However, while KEV adap-
tation only results in an implicit speaker supervector in the
kernel-induced feature space for the new speaker and thus
suffers from slow recognition speed, explicit HMM Gaus-
sian mean vectors can be obtained using KEMLLR adap-
tation.

To help readers, who are not familiar with kernel meth-
ods, understand the theoretical formulation of KEMLLR
adaptation, its basic procedure is first summarized below:
Step 1: Map the speaker transformation supervectors
(STSVs) to a high-dimensional feature space. Let’s assume
that the mapping function is ϕ.
Step 2: Find out the principal components (eigenmatrices
in our case) in the kernel-induced feature space assuming
that we know the kernel function k(·, ·). As in all kernel
methods, the eigenmatrices are expressed in terms of the
mapped training data.
Step 3: Express the new speaker’s transformation super-
vector in the feature space in terms of the unknown eigen-
matrix weights w.
Step 4: Express the similarity between the new speaker’s
STSV and any Gaussian mean vector of the SI model in
the feature space, again, in terms of w.
Step 5: Design a kernel function so that the result of Step
4 may be used to compute the adapted mean vectors for
the new speaker, and hence the Q function of Eqn. (7).
Step 6: Define an optimization criterion, and estimate the
eigenmatrix weights w. Maximum-likelihood approach is
used in this paper.

Details of the formulation are elaborated below.

A. Kernel Eigenmatrices in the Feature Space

The basic idea of kernel methods is to map data in the in-
put space to a high-dimensional feature space via some non-
linear map ϕ, and then apply a linear method there. It is
now well-known that the computational procedure depends
only on the inner products in the feature space, which can
be obtained efficiently with a suitable kernel function [16].
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Thus, the use of kernels provides elegant nonlinear general-
izations of many existing linear algorithms. A well-known
example in supervised learning is the support vector ma-
chines (SVMs) [15]. In unsupervised learning, the kernel
idea has also led to methods such as kernel-based clustering
algorithms [27], kernel principal component analysis [19],
kernel independent component analysis [28], and kernel lin-
ear discriminant analysis [29].

Suppose there are a set of N speaker transforma-
tion supervectors (STSVs), {y(1),y(2), . . . ,y(N)}. To ap-
ply kernel PCA in KEMLLR adaptation, all STSVs are
first centered and variance-normalized by Eqn. (2) as
{ŷ(1), ŷ(2), . . . , ŷ(N)}. Then a suitable kernel function
k(·, ·) is chosen which, conceptually, is associated with a
mapping ϕ that maps a speaker’s transformation supervec-
tor ŷ(i), i = 1, . . . , N , in the input STSV space to ϕ(ŷ(i))
in the kernel-induced high-dimensional feature space. Let
K̃ be the N × N centered kernel matrix with K̃ij ≡
k̃(ŷ(i), ŷ(j)) = ϕ̃(ŷ(i))′ϕ̃(ŷ(j)), where ϕ̃(ŷ) = ϕ(ŷ) − ϕ̄

and ϕ̄ = 1
N

∑N
i=1 ϕ(ŷ(i)). Notice that K̃ is related to

the non-centered kernel matrix K by K̃ = HKH, where
H = I − 1

N 11′ is the centering matrix, I is the N × N
identity matrix, and 1 = [1, . . . , 1]′ is an N -dimensional
vector.

To perform kernel PCA, instead of directly working on
the covariance matrix in the feature space, one may carry
out eigendecomposition on the centered kernel matrix K̃
as

K̃ = UΛU′,

where U = [α1, . . . ,αN ] with αi = [αi1, . . . , αiN ]′ are the
eigenvectors, and Λ = diag(λ1, . . . , λN ) are the eigenval-
ues of the centered kernel matrix. The mth orthonormal
eigenvector of the covariance matrix in the feature space is
then given by ([19])

v(kemllr)
m =

N∑
i=1

αmi√
λm

ϕ̃(ŷ(i)) . (9)

B. Composite Kernel

Eqn. (6) shows that in order to compute the mean vec-
tors of a new speaker, one will need to access each row of
his transformation matrix. However, the row information,
in general, is lost during the ϕ-mapping of the transfor-
mation vectors to the kernel-induced feature space. To
preserve the row information, a composite kernel is used:
a possibly different kernel function, khr, h = 1, . . . , L and
r = 1, . . . , d, and thus different mapping, ϕhr, is applied to
each row vector of the transformation matrices, and a com-
posite function is then used to combine the dL constituent
inner products. This is analogous to the use of composite
kernels to preserve the state information in kernel eigen-
voice adaptation [20]. The following direct-sum composite
kernel (which has been shown to give good performance in

KEV adaptation) is adopted in this paper:

k(ŷ(i), ŷ(j)) = ϕ(ŷ(i))′ϕ(ŷ(j))

=
L∑

h=1

d∑
r=1

ϕhr(ŷ
(i)
hr )′ϕhr(ŷ

(j)
hr )

=
L∑

h=1

d∑
r=1

khr(ŷ
(i)
hr , ŷ(j)

hr ) (10)

where ŷ(i)
hr is the (centered and normalized) rth row of the

MLLR transformation matrix of the hth regression class.

C. New Speaker’s Transformation Supervector in the Fea-
ture Space

Analogous to the formulation of a new speaker STSV in
the original EMLLR method (Eqn. (3)), the centered STSV
of the new speaker in the kernel-induced feature space7

ϕ̃(kemllr)(ŷ) is assumed to be a linear combination of the
leading M eigenvectors (or eigenmatrices in our case as
given by Eqn. (9)):

ϕ̃(kemllr)(ŷ) =
M∑

m=1

wmv(kemllr)
m =

M∑
m=1

N∑
i=1

wmαmi√
λm

ϕ̃(ŷ(i)) . (11)

With the use of the composite kernel of Eqn. (10), the ϕ̃-
mapping of the rth row of the MLLR transform of the hth
regression class for the new speaker’s STSV ŷhr is given by

ϕ̃
(kemllr)
hr (ŷhr) =

M∑
m=1

N∑
i=1

wmαmi√
λm

ϕ̃hr(ŷ
(i)
hr ) . (12)

D. Similarity and Kernel Evaluation

The similarity between the new speaker’s STSV and the
gth Gaussian mean vector of the SI model in the feature
space, ϕ

(kemllr)
hr (ŷhr)

′
ϕhr(ξ(si)

g ), can be computed using

7The notation of the speaker transformation supervector in the fea-
ture space requires some explanation. In kernel methods, the ex-
istence of an object in the feature space does not necessarily im-
ply the existence of its pre-image in the input space. Here, we use
ϕ̃(kemllr)(ŷ) to represent the image even if the pre-image ŷ may not
exist due to the intuitiveness of the notation. Notice that our KEM-
LLR adaptation does not require the existence of the pre-image ŷ in
the input speaker transformation supervector space.
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Eqn. (12) as follows:

k
(kemllr)
hr (ŷhr, ξ

(si)
g )

≡ ϕ
(kemllr)
hr (ŷhr)

′
ϕhr(ξ(si)

g )

=

[
ϕ̄hr +

(
M∑

m=1

N∑
i=1

wmαmi√
λm

ϕ̃hr(ŷ
(i)
hr )

)]′
ϕhr(ξ(si)

g )

=

[
ϕ̄hr +

(
M∑

m=1

N∑
i=1

wmαmi√
λm

(ϕhr(ŷ
(i)
hr )− ϕ̄hr)

)]′
ϕhr(ξ(si)

g )

= ϕ̄′hrϕhr(ξ(si)
g ) +[

M∑
m=1

N∑
i=1

wmαmi√
λm

(
khr(ŷ

(i)
hr , ξ(si)

g )− ϕ̄′hrϕhr(ξ(si)
g )

)]

= Ahr(g) +
M∑

m=1

wm√
λm

Bhr(m, g) , (13)

where

Ahr(g) = ϕ̄′hrϕhr(ξ(si)
g ) =

1
N

N∑
i=1

khr(ŷ
(i)
hr , ξ(si)

g ) , (14)

Bhr(m, g) =
N∑

i=1

αmi

(
khr(ŷ

(i)
hr , ξ(si)

g )−Ahr(g)
)

, (15)

and ϕ̄hr = 1
N

∑N
i=1 ϕhr(ŷ

(i)
hr ). Notice that all the kernel

values in Eqns. (14, 15) may be computed offline prior to
adaptation.

Furthermore, the derivative of k
(kemllr)
hr (ŷhr, ξ

(si)
g ) w.r.t.

each eigenmatrix weight wm, m = 1, . . . ,M , is given by

∂
∂wm

(
k

(kemllr)
hr (ŷhr, ξ

(si)
g )

)
=

Bhr(m, g)√
λm

. (16)

E. Adapted Gaussian Mean Vectors

The computation of the Q(w) function of Eqn. (7) re-
quires the knowledge of the Gaussian mean vectors, µg, g =
1, . . . , Ng, of the new speaker in terms of the eigenmatrix
weights w. From Eqn. (6), we know that a Gaussian mean
vector µg can be computed component-wise from the nor-

malized inner product ŷ′hrC
1
2
yhrξ

(si)
g if we may obtain the

latter from the kernel values k
(kemllr)
hr (ŷhr, ξ

(si)
g ). This can

be done if we have an invertible kernel function that is
a function of the inner product of its inputs. That is,
we need a kernel function khr(·, ·) of the following form:
khr(u,v) = F (u′Av), where A is a normalizing matrix,
and F is invertible. Then,

ŷ′hrC
1
2
yhrξ

(si)
g = F−1(k(kemllr)

hr (ŷhr, ξ
(si)
g )) (17)

which, in turn, is a function of w as given by Eqn. (13).
Quite a few common kernels have such properties. For

example, the polynomial kernel k(u,v) = (1+u′v)p where
p is the polynomial order, or the sigmoid kernel k(u,v) =
tanh(au′v−b) where a, b ∈ R. Below, we explore the use of
the isotropic Gaussian kernel for KEMLLR adaptation as
it has been proven to be successful for other kernel-based
adaptation methods [18], [23].

E.1 Isotropic Gaussian Kernels

Let’s consider the following isotropic Gaussian kernel

khr(u,v) = exp(−βhr‖u− v‖2A) , (18)

where βhr controls the width of a Gaussian kernel, and
‖u−v‖2A = (u−v)′A−1(u−v) is the Mahalanobis distance
between u and v normalized by A, which is any symmetric
and positive-definite matrix. Thus, we have

‖u− v‖2A = − 1
βhr

log khr(u,v) . (19)

Because of the following identity:

‖u− v‖2A = ‖u‖2A + ‖v‖2A − 2u′A−1v
⇒ 2u′A−1v = ‖u‖2A + ‖v‖2A − ‖u− v‖2A , (20)

if we substitute u = ŷhr, v = ξ(si)
g , and A = C− 1

2
yhr into

Eqn. (20), and make use of Eqns. (17, 19), we will have

2ŷ′hrC
1
2
yhrξ

(si)
g = − 1

βhr
log
(
k

(kemllr)
hr (ŷhr,0)

)
+‖ξ(si)

g ‖2
C
− 1

2
yhr

+
1

βhr
log
(
k

(kemllr)
hr (ŷhr, ξ

(si)
g )

)
.(21)

Hence, from Eqn. (6), each Gaussian component is given
by

µ
(kemllr)
gr = ȳ′hrξ

(si)
g + ŷ′hrC

1
2
yhrξ

(si)
g

= ȳ′hrξ
(si)
g +

1
2

[
‖ξ(si)

g ‖2
C
− 1

2
yhr

+

1
βhr

log

(
k

(kemllr)
hr (ŷhr, ξ

(si)
g )

k
(kemllr)
hr (ŷhr,0)

)]
. (22)

F. ML Estimation of Eigenmatrix Weights

Substituting Eqns. (13, 14, 15) into Eqn. (22), differen-
tiating the result w.r.t. each eigenmatrix weight wm,m =
1, . . . ,M , and making use of the kernel function gradient
of Eqn.(16), we get

∂µ
(kemllr)
gr

∂wm
=

1
2βhr

√
λm

[
Bhr(m, g)

k
(kemllr)
hr (ŷhr, ξ

(si)
g )

−

Bhr(m,−1)

k
(kemllr)
hr (ŷhr,0)

]
(23)

where we use the index g = −1 to represent a special
augmented vector ξ

(si)
−1 which is the zero vector 0. Using

Eqn. (23), the derivatives of Q(w) of Eqn. (8) w.r.t. each
eigenmatrix weights wm, can be easily obtained.

Due to the non-linearity of the kernel functions, there is
no closed form solution for the optimal w. Instead, gener-
alized EM algorithm [30] is used in which, gradient-based
numerical methods, such as the gradient ascent method,
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is employed to improve the Q function during each maxi-
mization step. In order to improve convergence of the esti-
mation, quasi-Newton optimization algorithm is employed
in this paper. The quasi-Newton method is similar to the
traditional Newton’s method and makes use of the Hessian
to retrieve the Newton’s direction. However, it approx-
imates the Hessian with an estimate that can be derived
solely from the gradient. As a result, it is more efficient and
it can enforce the Hessian estimate to be strictly positive-
definite.

In the quasi-Newton method, the inverse of the Hessian
matrix A−1 is approximated by Hi in an iterative proce-
dure so that limi→∞Hi = A−1, where Hi is the Hessian
inverse in the ith iteration, and it has to be positive definite
and symmetric. We update Hi by the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm as follows:

Hi+1 = (I− aib
′

i

b′
iai

)Hi(I−
bia

′

i

b′
iai

) +
aia

′

i

b′
iai

,

where

ai = wi+1 −wi ,

and bi = 5Q(wi+1)−5Q(wi)

Detailed description and proof of these formulas can be
found in [31].

Finally, the optimal eigenmatrix weights can be opti-
mized iteratively by the following updating formula:

wi+1 = wi − ηiHi 5Q(w)|wi
,

where i is the iteration index, ηi is a learning rate to be
determined by a line search algorithm at the ith iteration,
and the gradient can be computed from Eqns. (8, 23).

G. Robust KEMLLR

When the amount of adaptation data is really small, the
MLLR transformation found by KEMLLR adaptation may
not be reliable. Here, we linearly interpolate the transfor-
mations found by KEMLLR with the identity matrix to get
a more robust estimate of the transformations8. Equiva-
lently, a mean vector found by KEMLLR µ

(kemllr)
gr is in-

terpolated with the corresponding SI mean vector µ
(si)
gr to

get its robust estimate µ
(rkemllr)
gr in our robust KEMLLR

adaptation as follows:

µ
(rkemllr)
gr = w0µ

(si)
gr + (1− w0)µ

(kemllr)
gr , 0.0 ≤ w0 ≤ 1.0 . (24)

The gradient of the Gaussian means is modified accord-
ingly as below:

∂µ
(rkemllr)
gr

∂w0
= µ

(si)
gr − µ

(kemllr)
gr (25)

8The technique is commonly used to smooth a detailed model that
is less well trained with a well-trained general model, and it has been
proven to be successful in KEV and eKEV adaptation.

and

∂µ
(rkemllr)
gr

∂wm
= (1− w0)

∂µ
(kemllr)
gr

∂wm
, m = 1, . . . ,M. (26)

And w0 can be optimized jointly with the other M eigen-
matrix weights wm,m = 1, . . . ,M .

IV. Experimental Evaluation

The proposed kernel eigenspace-based MLLR (KEM-
LLR) speaker adaptation method was first evaluated us-
ing context-independent acoustic models on the DARPA
Resource Management (RM) continuous speech recogni-
tion task [33], which has a vocabulary of 1,000 words.
The simpler database allows us to conduct many experi-
ments to investigate various aspects of our new adaptation
method. Then, KEMLLR adaptation was tested again us-
ing context-dependent acoustic models on the Wall Street
Journal (WSJ) task [34] with a larger vocabulary of 5,000
words. In each task, some or all of the following models or
adaptation methods were compared:
SI: the baseline speaker-independent model.
GD: the gender-dependent model.
MAP: the speaker-adapted (SA) model found by MAP
adaptation [5].
MLLR: the SA model found by MLLR adaptation [6].
(robust) EV: the SA model found by eigenvoice adapta-
tion [1].
(robust) eKEV: the SA model found by embedded ker-
nel eigenvoice adaptation [35].
(robust) EMLLR: the SA model found by eigenspace-
based MLLR adaptation [2].
(robust) KEMLLR: the SA model found by kernel EM-
LLR adaptation.

For each adaptation method, we tried to find the best
setup for the method so as to obtain its best results for
comparison. Both MAP and MLLR adaptation were done
using the HTK software; thus, only their basic algorithms
were employed9. For MAP adaptation, scaling factors in
the range of 3–30 were tried. For MLLR adaptation, it was
performed with a regression tree of 32 classes; the mini-
mum occupation count threshold for a regression class was
also adjusted. It was found that only 1 regression class
was actually used in 5s adaptation, and 1 or 2 regression
classes were used in 10s adaptation. In addition, the better
results of MLLR adaptation using diagonal and full trans-
formation matrix are reported. For EV, eKEV, and EM-
LLR adaptation, the SD models for the training speakers
were created by MLLR adaptation using the same 32-class
regression tree. SA models were created by interpolation
with the SI model in the same way as robust KEMLLR
adaptation. For EV, simple linear PCA was used to derive
the eigenspace; for eKEV and KEMLLR, kernel PCA was
used instead. Furthermore, EMLLR adaptation was im-
plemented as a special case of KEMLLR adaptation using
linear kernel.

9One may perhaps get better performance with their variants such
as structural MAP [36] and MAPLR [37].
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Lastly, all adaptations were carried out in the super-
vised mode in both tasks: the contents of all adaptation
utterances were assumed to be known, and the SI model
was used to compute the initial Gaussian mixture posteri-
ors. Several adaptation iterations were attempted for each
method, but, except for EV adaptation, one or two iter-
ations were usually found enough. In particular, it was
found that KEMLLR adaptation converged in one adapta-
tion iteration10. When several adaptation iterations were
run, the posteriors were updated with the new adapted
model found at each iteration.

Parameter initialization and settings

System parameters of the various adaptation methods
(other than MLLR and MAP adaptation) were tuned and
set using the RM corpus; they were then simply adopted
by the WSJ evaluation without modification. Their values
were listed below:
• Parameters for KEMLLR adaptation:
– initial learning rate = 0.00001.
– βr = β = 0.001 for r = 1, . . . , R. That is, all con-

stituent Gaussian kernels have the same global β value.
– The eigenmatrix weights wm,m = 1, . . . ,M, were ini-

tialized by projecting the following transformation,

Y(si) =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

... 0
0 0 0 1 0

 (27)

onto each of the M kernel eigenmatrices after it was nor-
malized and ϕ-mapped to the kernel-induced feature space.
• Parameters for eKEV adaptation:
– initial learning rate = 0.1.
– βr = β = 0.005 for r = 1, . . . , R.
– number of maximum-likelihood reference speakers = 5.
– number of kernel eigenvoices = 7.
• Parameters for the quasi-Newton BFGS optimization al-
gorithm:
– It stopped when either the relative improvement on the

likelihood of the adaptation data was smaller than 0.00015,
or 30 iterations was reached.
– Learning rates were changed dynamically during the

heuristic line search as mentioned in Section III-F.
Furthermore, for all robust adaptation methods that in-

terpolate the adapted model with the SI model, the inter-
polation weight w0 was initialized to 0.5. Rigorously speak-
ing, one has to enforce the constraint that 0.0 ≤ w0 ≤ 1.0,
but that will turn those nonlinear adaptation algorithms,
namely, eKEV and KEMLLR, into nonlinear programming
problems. In our current implementation of eKEV and
KEMLLR, we did not do that. In our experience, if we
started with w0 = 0.5, we never got into the trouble that
w0 gets out of the required range. In case that this be-
comes an issue, a simple (though sub-optimal) solution is

10Note that within one KEMLLR iteration, there can be many
BFGS iterations, during which the posteriors are not modified.

to optimize w0 and the other weights separately as follows:
first find the non-robust solution, then interpolate it with
the SI solution as described in Eqn.(24). The ensuing Q
function is quadratic in w0 and can be easily solved.

A. Evaluation on Medium-vocabulary Continuous Speech
Recognition

In this part, we would use simple context-independent
models to investigate the behavior of KEMLLR adapta-
tion on the simpler RM1 corpus. In addition, the acoustic
vector consists of the static cepstra only. The simpler task
allows us to run many experiments to investigate the be-
haviour of KEMLLR adaptation which was new to us.

A.1 RM Corpus

The Resource Management corpus RM1 consists of clean
read speech that represents queries about the naval re-
sources. The utterances were recorded using a headset mi-
crophone at 16kHz with 16-bit resolution. The corpus com-
prises a speaker-independent (SI) section and a speaker-
dependent (SD) section. The SI section consists of 3990
training utterances from 109 speakers. On the other hand,
there are 12 speakers in the SD section, each having 600 ut-
terances for training, 100 utterances for development, and
100 utterances for evaluation. The corpus has a vocabulary
size of 1000 words.

A.2 Feature Extraction and Acoustic Modeling

All training and testing data were processed to extract 12
static mel-frequency cepstral coefficients (MFCCs) and the
normalized frame energy from each speech frame of 25 ms
at every 10 ms. Thus, the dimension of acoustic vectors
in RM1 is d = 13. Forty-seven context-independent and
speaker-independent (SI) phoneme models were trained us-
ing only the acoustic observations from the SI training set.
Each phoneme model is a strictly left-to-right, 3-state hid-
den Markov model (HMM) with a mixture of 10 Gaussian
components per state. All Gaussians have diagonal co-
variances. In addition, there are a 3-state “sil” model to
capture silence and a 1-state “sp” model to capture short
pauses.

A.3 Experimental Procedure

From the SI model, an SD model was constructed for
each of the 109 speakers in the SI training set using MLLR
adaptation with one or two regression classes that were
determined a priori. As a result, we obtained a set of
N = 109 speaker transformation supervectors (STSVs) for
deriving the kernel eigenmatrices. Experiments were per-
formed with about 5s or 10s adaptation data (or, about
4.6s and 9.2s if we exclude the leading and ending silence.)
Only a single GEM iteration was run. To improve the sta-
tistical reliability of the results, for each test speaker, 3
sets of adaptation data were randomly chosen from his 100
development utterances. All reported results are the av-
erages of experiments over the 3 adaptation sets of the 12
test speakers. The adapted models were tested on their
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Fig. 1. Effect of STSV normalization on KEMLLR adaptation on
RM1 using a single regression class.

100 evaluation utterances using word-pair grammar which
has a perplexity of 60.

A.4 Experiment 1: Effect of Normalization on Speaker
Transformation Supervectors

We first investigated if normalizing the MLLR trans-
formation matrices in the input space was helpful
for KEMLLR adaptation. We implemented a ver-
sion of KEMLLR which used the speaker transforma-
tion supervectors (STSVs) {y(1),y(2), . . . ,y(N)} directly
instead of the centered and variance-normalized STSVs,
{ŷ(1), ŷ(2), . . . , ŷ(N)}. Both schemes were tested on RM1
using SD models created by global MLLR adaptation, and
the results are shown in Fig. 1.

From Fig. 1, it is observed that, when the same num-
ber of eigenmatrices are used, KEMLLR adaptation using
normalized speaker transformation supervectors (STSVs)
generally gives better performance. The same phenomenon
is observed for EMLLR adaptation as well, confirming
that it is better to use the correlation matrix to derive
the eigenspace as suggested by Kuhn [1]. Furthermore,
the adaptation performance generally improves with more
eigenmatrices until there are insufficient amount of adap-
tation data to estimate the eigenmatrix weights reliably.
Thus, there is an optimal number of eigenmatrices to use
for a given amount of adaptation speech. In this partic-
ular experiment, the optimal number of eigenmatrices is
found to be 50 and 109 for 5s and 10s of adaptation speech
respectively. In practice, one may determine the optimal
number of eigenmatrices to use by cross-validation. Also
notice that even with 25 eigenmatrices, KEMLLR adapta-
tion reduces the word error rate (WER) of the SI model by
about 8 to 11% with only 5s or 10s of adaptation data.

Hereafter, all experiments were run with normalized
STSVs.

A.5 Experiment 2: EMLLR vs. KEMLLR Adaptation

The performance of EMLLR and KEMLLR adapta-
tion using various numbers of eigenmatrices is compared
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Fig. 2. Effect of kernelization on EMLLR adaptation on RM1 using
a single regression class.
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Fig. 3. Performance of KEMLLR adaptation on RM1 using one or
two regression classes.

in Fig. 2. In both adaptation methods, the speaker-
dependent models were created by global MLLR transfor-
mation. From Fig. 2, we observe that KEMLLR generally
outperforms EMLLR adaptation when the same number
of eigenmatrices are employed using the same amount of
adaptation speech. For example, when there were suf-
ficient adaptation data, KEMLLR outperforms EMLLR
by ∼1.5% for the 10s adaptation, and ∼1.0% for the 5s
adaptation. Or, equivalently speaking, KEMLLR may
achieve the same adaptation performance of EMLLR by
using fewer eigenmatrices. This shows that the KEMLLR
can derive more effective leading eigenmatrices using kernel
PCA to capture useful speaker characteristics than EM-
LLR. Moreover, the adaptation performance of EMLLR
saturates quickly and there is little difference between its
adaptation performance using 5s or 10s adaptation speech.
On the contrary, although KEMLLR already performs well
with only 5s of adaptation speech, there is substantial gain
when another 5s of adaptation speech is available.
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A.6 Experiment 3: Effect of Multiple Regression Classes

EMLLR and KEMLLR require MLLR adaptation to cre-
ate the speaker-dependent (SD) models. Depending on the
amount of speaker-specific data, one may generally improve
the SD models by using multiple MLLR transforms, one
for each regression class. On the other hand, in [26], we
found that when multiple regression classes are used, better
adaptation performance may be obtained when each regres-
sion class has its own separate eigenmatrices and weights.
Hence, the use of multiple regression classes will increase
the number of eigenmatrix weights to estimate, and more
adaptation speech will be needed. Fig. 3 shows the adap-
tation performance of KEMLLR when the SD models are
created using 1 or 2 regression classes determined a pri-
ori. We may see that when there are enough adaptation
speech to estimate the eigenmatrix weights, more regres-
sion classes will improve the adaptation performance as
evidenced in the 10s case. Or, in other words, when there
are enough adaptation data, fewer eigenmatrices are re-
quired with multiple regression classes. For instance, in
the 5s case, KEMLLR adaptation with one regression class
reaches its best performance using 50 kernel eigenmatrices,
whereas KEMLLR adaptation with two regression classes
requires only 25 kernel eigenmatrices to do so with very
comparable results (80.5%).

TABLE I

Performance comparison between KEMLLR adaptation and

other adaptation methods on RM1. (Figures in parentheses

are the WER reductions in %.)

Model/Adaptation Word Accuracy (%)
5s 10s

SI 78.27 78.27
MLLR 78.43 (0.74) 82.10 (17.6)

EMLLR 79.92 (7.59) 80.51 (10.3)
eKEV 80.58 (10.6) 80.70 (11.2)

KEMLLR 80.57 (10.6) 82.62 (20.0)

A.7 Experiment 4: Comparison with Other Adaptation
Methods

In this experiment, the performance of KEMLLR adap-
tation is compared with that of the SI model, eKEV adap-
tation, MLLR adaptation, and EMLLR adaptation at their
best settings. The results are listed in Table I in the order
of ascending performance. We have the following observa-
tions:
• MLLR adaptation barely improves over the SI model.
• Both EMLLR adaptation and eKEV adaptation saturate
quickly with 5s of adaptation data.
• The best results of EMLLR and KEMLLR both used
one regression class for 5s adaptation, and two regression
classes for 10s adaptation.
• All the eigenspace-based adaptation methods — namely,
EMLLR, eKEV, and KEMLLR — perform well even with
only 5s of adaptation speech.

• The two kernel-method-based adaptation methods per-
form equally well and the best when there are only 5s of
adaptation data. However, KEMLLR adaptation seems to
be more scalable and its performance improves with more
adaptation data. In our experiments, it doubles the WER
reduction when the amount of adaptation speech doubles
from 5s to 10s.
• In summary, the order of adaptation performance of the
various methods using 5s adaptation speech is: SI 'MLLR
< EMLLR < eKEV < KEMLLR.

B. Evaluation on Large-vocabulary Continuous Speech
Recognition (LVCSR)

In the previous medium-vocabulary evaluation, only sim-
ple context-independent models were tried. The simple
task allows us to get familiarized more easily with the new
KEMLLR adaptation method. In this section, we would
like to check if KEMLLR adaptation is also effective on a
relatively large-vocabulary recognition task using triphone
HMMs with the common 39-dimensional MFCC acoustic
vectors.

B.1 WSJ0 Corpus

The Wall Street Journal corpus WSJ0 [34] with 5K vo-
cabulary was chosen. The standard SI-84 training set was
used for training the speaker-independent (SI) model. It
consists of 83 speakers and 7138 utterances for a total of
about 14 hours of training speech (after discarding the
problematic data from one speaker as in the Aurora4 cor-
pus [38]). The standard nov’92 5K non-verbalized test set
was used for evaluation. It consists of 8 speakers, each with
about 40 utterances.

B.2 Feature Extraction and Acoustic Modeling

The traditional 39-dimensional MFCC vectors were ex-
tracted at every 10ms over a window of 25ms from the
training and testing data. The speaker-independent (SI)
model consists of 15,449 cross-word triphones based on 39
base phonemes. Each triphone was modeled as a contin-
uous density HMM which is strictly left-to-right and has
three states with a Gaussian mixture density of 16 com-
ponents per state. State tying was performed to give 3131
tied states in the final SI model. In addition, the same
type of “sil” and “sp” models were trained as in the last
RM evaluation.

Gender-dependent (GD) models were also trained by
performing MAP adaptation on the SI models with the
gender-specific data from the training speakers.

B.3 Experimental Procedure

For each of the 8 testing speakers, 1–3 utterances of his
speech were randomly selected so that the amount of adap-
tation speech is about 5s or 10s (or, about 4s and 8s re-
spectively if one excludes the silence portions). His adapted
model was tested on his remaining speech in the test set us-
ing a bigram language model of perplexity 147. The adap-
tation procedure was repeated three times and the three
adaptation results are averaged before they are reported.
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Learning from the results of the RM evaluation, all EM-
LLR and KEMLLR adaptation experiments on WSJ0 em-
ployed the normalized STSVs, and a global regression class
for 5s adaptation and two regression classes for 10s adap-
tation. In addition, both EMLLR and KEMLLR adapta-
tions used all 83 eigenmatrices as they gave the best per-
formance.

TABLE II

Performance comparison between KEMLLR adaptation and

other adaptation methods on WSJ0. (Figures in parentheses

are the WER reductions in %.)

Model/Adaptation Method 5s 10s

SI 92.19 92.19
GD 92.60 (5.25) 92.60 (5.25)

MLLR 92.32 (1.66) 92.98 (10.1)
EV 92.46 (3.46) 92.51 (4.10)

MAP 92.48 (3.71) 92.47 (3.59)
EMLLR 92.73 (6.91) 92.81 (7.94)
eKEV 92.86 (8.58) 92.92 (9.35)

KEMLLR 93.18 (12.7) 93.41 (15.6)

B.4 Experiment 5: Comparison with Other Adaptation
Methods

KEMLLR adaptation was compared with traditional
adaptation methods (MAP and MLLR) and eigenspace-
based methods (EV, EMLLR, and eKEV) as well as the
GD models on the WSJ0 corpus. Again efforts were made
to find the best setup for each method as mentioned in the
beginning of Section IV, and the system parameters for the
various methods were simply adopted from those tuned in
the RM evaluation without modification. The evaluation
of GD models assumes perfect gender detection. Thus, ut-
terances from a test speaker was decoded with a GD model
of the speaker’s gender.

Table II summarizes the performance of the various
adaptation methods. Compared with the results in the
RM evaluation, we have the following observations:
• The performance gains (in terms of WER reduction)
of various methods on WSJ0 5s-adaptation are similar to
those on RM 5s-adaptation, but were smaller in the 10s
adaptations. For example, MLLR may obtain 17.6% WER
reduction on the RM1 10s-adaptation, but only 10.1%
on the WSJ0 10s-adaptation; the gain is cut almost by
half. The corresponding figures for KEMLLR are 20.0%
and 15.6%; the gain reduction for KEMLLR adaptation is
smaller.
• MAP and EV have similar performance and give the least
improvement.
• Between the two basic eigenspace-based methods, EM-
LLR is more effective than EV.
• Both EV and EMLLR are outperformed by their ker-
nelized counterparts, namely, eKEV and KEMLLR respec-
tively.

• MLLR again does not work well with only 5s of adapta-
tion data even when a single global transformation is used.
However, it is still proved to be effective when sufficient
adaptation data, as little as 10s of speech, are available.
• The adaptation performance of MLLR (10s adaptation),
EMLLR, eKEV and KEMLLR is better than the GD
model. This shows that these adaptation methods should
be doing more than simple gender adaptation.
• All in all, both kernelized eigenspace-based adaptation
methods, eKEV and KEMLLR, perform very well in both
5s and 10s adaptations. In fact, KEMLLR performs the
best among all the tested methods. On the other hand,
eKEV adaptation requires only 7 kernel eigenvoices to ob-
tain the good performance whereas it requires KEMLLR
to use all (83) kernel eigenmatrices to beat the other adap-
tation methods. Since both kernel-based adaptation meth-
ods find the eigenvoice/eigenmatrix weights by the same
gradient-based BFGS algorithm, and their computation
mainly consists of evaluating the gradients of each weight,
their algorithmic complexities are roughly proportional to
the number of weights they use11. Consequently, eKEV
runs faster than KEMLLR.

V. Analysis of Eigenmatrix Weights

In this section, we would like to compare EMLLR
and KEMLLR adaptation methods by examining the
eigenspaces that they derive. Since there are too few test
speakers in both RM1 and WSJ0 corpora, we instead turn
to the TIDIGITS corpus [39] for the analysis. The corpus is
consisted of 163 speakers in both of its training and testing
sets. The whole training set is used to derive the eigenspace
spanned by the leading 40 or 163 eigenmatrices found by
EMLLR or KEMLLR. Then EMLLR or KEMLLR adap-
tation is performed on the 56 men and 57 women in the
testing set to find their coordinates in the eigenspace. To
visualize their locations in the high-dimensional eigenspace,
they are projected onto a 2-dimensional plot by the tech-
nique of classical (metric) multi-dimensional scaling pro-
vided by the Matlab software (which is also known as prin-
cipal coordinates analysis) as shown in Fig. 4–7. From the
plots, it is clear that the kernel eigenspace derived by KEM-
LLR is more effective than EMLLR in separating the men
speakers from the women speakers, even using as little as 40
kernel eigenmatrices. Although our task at hand is adap-
tation and not gender detection, the more discriminative
eigenspace derived by KEMLLR should indicate that more
informative eigenvectors are extracted by kernel PCA used
in KEMLLR, which lead to better performance of the adap-
tation method.

VI. Conclusions

In this paper, we proposed another application of kernel
methods to improve the performance of eigenspace-based

11It is hard to make a vigorous comparison between the speed of
eKEV and KEMLLR algorithms as their actual computational re-
quirements depends on the amount of computations involved in each
BFGS iteration and how many BFGS iterations are needed to reach
convergence.



MAK AND HSIAO: KERNEL EIGENSPACE-BASED MLLR ADAPTATION 11

283 284 285 286 287 288 289 290
−30

−25

−20

−15

−10

−5

0

5

10
man
woman
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space spanned by the top 40 eigenmatrices found by EMLLR adap-
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Fig. 5. Distribution of the adult TIDIGITS test speakers on the
subspace spanned by the top 163 eigenmatrices found by EMLLR
adaptation.

MLLR (EMLLR) adaptation. The new method, which we
call “kernel eigenspace-based MLLR” (KEMLLR) adapta-
tion performs kernel PCA on speaker (MLLR) transforma-
tion supervectors, and extracts eigenmatrices on the kernel-
induced high-dimensional feature space. Unlike our first
proposed kernel eigenvoice (KEV) adaptation method, at
the end of KEMLLR adaptation, one gets back a real model
for the new speaker; subsequent recognition is as fast as
normal HMM decoding.

The new adaptation method was tested and compared
with eKEV, EV, EMLLR, MLLR, and MAP adaptation
on the medium-vocabulary RM task as well as the large-
vocabulary WSJ task using only 5s and 10s of adapta-
tion data. In both tasks and for both adaptation data
lengths, KEMLLR outperforms EMLLR. Since the two
methods only differ in the use of kernel methods, we believe
that kernel PCA in KEMLLR helps extract more effective
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Fig. 6. Distribution of the adult TIDIGITS test speakers on the sub-
space spanned by the top 40 kernel eigenmatrices found by KEMLLR
adaptation.
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Fig. 7. Distribution of the adult TIDIGITS test speakers on the sub-
space spanned by the top 163 kernel eigenmatrices found by KEMLLR
adaptation.

non-linear eigenvoices (or eigenmatrices) from the speak-
ers. The analysis of the eigenspaces derived by EMLLR
and KEMLLR on TIDIGITS also suggests that the (kernel)
eigenspace found by KEMLLR is more informative. In fact,
KEMLLR outperforms all the other methods in all cases
(when they are run in their optimal settings). More specif-
ically, for 5s adaptation, the performance of the various
adaptation methods on WSJ0 are in the following order:
SI ' MLLR < EV ' MAP < GD < EMLLR < eKEV <
KEMLLR; and for 10s adaptation, the order is: SI < MAP
' EV < GD < EMLLR < eKEV ' MLLR < KEMLLR. In
terms of computation, KEMLLR is more complex than the
traditional methods like MLLR and MAP, but fortunately,
all kernel evaluations can be pre-computed offline. More
importantly, subsequent recognition speed using KEMLLR
adaptation is as fast as normal HMM decoding.

In our current work, only the derivation of the eigenba-
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sis is kernelized; subsequent estimation of the eigenmatrix
weights still makes use of linear regression of the maximum-
likelihood means. In the future, we would like to kernelize
both the eigenbasis derivation process as well as the regres-
sion process.

VII. Acknowledgments

This research is partially supported by the Research
Grants Council of the Hong Kong SAR under the grant
numbers CA02/03.EG04 and DAG04/05.EG09.

References

[1] R. Kuhn, J.-C. Junqua, P. Nguyen, and N. Niedzielski, “Rapid
speaker adaptation in eigenvoice space,” IEEE Transactions on
Speech and Audio Processing, vol. 8, no. 4, pp. 695–707, Nov
2000.

[2] K. T. Chen, W. W. Liau, H. M. Wang, and L. S. Lee, “Fast
speaker adaptation using eigenspace-based maximum likelihood
linear regression,” in Proceedings of the International Confer-
ence on Spoken Language Processing, 2000, vol. 3, pp. 742–745.

[3] R. Kuhn, F. Perronnin, P. Nguyen, J.-C. Junqua, and L. Rigazio,
“Very fast adaptation with a compact context-dependent eigen-
voice model,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, May 2001,
vol. 1, pp. 373–376.

[4] B. Zhou and J. Hansen, “Rapid discriminative acoustic model
based on eigenspace mapping for fast speaker adaptation,” IEEE
Transactions on Speech and Audio Processing, vol. 13, no. 4, pp.
554–564, July 2005.

[5] J. L. Gauvain and C. H. Lee, “Maximum a posteriori estima-
tion for multivariate Gaussian mixture observations of Markov
chains,” IEEE Transactions on Speech and Audio Processing,
vol. 2, no. 2, pp. 291–298, April 1994.

[6] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear
regression for speaker adaptation of continuous density hidden
Markov models,” Journal of Computer Speech and Language,
vol. 9, pp. 171–185, 1995.

[7] M. Turk and A. Pentland, “Face recognition using eigenfaces,”
in Proceedings of the International Conference on Computer Vi-
sion and Pattern Recognition, 1991, pp. 586–591.

[8] N. Wang, S. Lee, F. Seide, and L. S. Lee, “Rapid speaker adap-
tation using a priori knowledge by eigenspace analysis of MLLR
parameters,” in Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, 2001, pp.
345–348.

[9] H. Botterweck, “Very fast adaptation for large vocabulary con-
tinuous speech recognition using eigenvoices,” in Proceedings of
the International Conference on Spoken Language Processing,
2000, vol. 4, pp. 354–357.

[10] X. L. Aubert, “Eigen-MLLRs applied to unsupervised speaker
enrollment for large vocabulary continuous speech recognition,”
in Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, 2004, vol. I, pp. 349–352.

[11] V. Doumpiotis and Y. Deng, “Eigenspace-based MLLR with
speaker adaptive training in large vocabulary conversational
speech recognition,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2004,
vol. I, pp. 357–360.

[12] P. Nguyen, C. Wellekens, and J.-C. Junqua, “Maximum likeli-
hood eigenspace and MLLR for speech recognition in noisy envi-
ronments,” in Proceedings of the European Conference on Speech
Communication and Technology, 1999, pp. 2519–2522.

[13] M. F. J. Gales, “Cluster adaptive training of hidden Markov
models,” IEEE Transactions on Speech and Audio Processing,
vol. 8, no. 4, pp. 417–428, July 2000.

[14] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul,
“A compact model for speaker-adaptive training,” in Proceedings
of the International Conference on Spoken Language Processing,
1996, pp. 1137–1140.

[15] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines, Cambridge University Press, 2000.

[16] Bernhard Schölkopf and Alexander J. Smola, Learning with Ker-
nels: Support Vector Machines, Regularization, Optimization,
and Beyond, MIT Press, Cambridge, MA, 2002.

[17] V. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
[18] B. Mak, J. T. Kwok, and S. Ho, “Kernel eigenvoice speaker

adaptation,” IEEE Transactions on Speech and Audio Process-
ing, vol. 13, no. 5, pp. 984–992, September 2005.

[19] B. Schölkopf, A. Smola, and K. R. Müller, “Nonlinear compo-
nent analysis as a kernel eigenvalue problem,” Neural Compu-
tation, vol. 10, pp. 1299–1319, 1998.

[20] J. T. Kwok, B. Mak, and S. Ho, “Eigenvoice speaker adaptation
via composite kernel PCA,” in Advances in Neural Information
Processing Systems 16, S. Thrun, L. Saul, and B. Schölkopf,
Eds. MIT Press, Cambridge, MA, 2004.

[21] B. Mak, J. T. Kwok, and S. Ho, “A study of various composite
kernels for kernel eigenvoice speaker adaptation,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and
Signal Processing, Montreal, Canada, May 2004, vol. I, pp. 325–
328.

[22] B. Mak, S. Ho, and J. T. Kwok, “Speedup of kernel eigenvoice
speaker adaptation by embedded kernel PCA,” in Proceedings
of the International Conference on Spoken Language Processing,
Jeju Island, South Korea, October 14–18 2004, vol. IV, pp. 2913–
2916.

[23] B. Mak and S. Ho, “Various reference speakers determination
methods for embedded kernel eigenvoice speaker adaptation,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, Philadelphia, USA, March 18–23
2005, vol. 1, pp. 981–984.

[24] S. Mika, B. Schölkopf, A. Smola, K.R. Müller, M. Scholz, and
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