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ABSTRACT

In triphone-based acoustic modeling, it is difficult to robustly model infrequent

triphones due to their lack of training samples. Naive maximum-likelihood (ML) es-

timation of infrequent triphone models produces poor triphone models and eventu-

ally affects the overall performance of an automatic speech recognition (ASR) system.

Among different techniques proposed to solve the infrequent triphone problem, the

most widely used method in current ASR systems is state tying because of its effec-

tiveness in reducing model size and achieving good recognition results. However, state

tying inevitably introduces quantization errors since triphones tied to the same state are

not distinguishable in that state. This thesis addresses the problem by the use of dis-

tinct acoustic modeling where every modeling unit has a unique model and a distinct

acoustic score.

The main contribution of this thesis is the formulation of the estimation of tri-

phone models as an adaptation problem through our proposed distinct acoustic mod-

eling framework named eigentriphone modeling. The rational behind eigentriphone

modeling is that a basis is derived from the frequent triphones and then each triphone

is modeled as a point in the space spanned by the basis. The eigenvectors in the basis

represent the most important context-dependent characteristics among the triphones

xi



and thus the infrequent triphones can be robustly modeled with few training samples.

Furthermore, the proposed framework is very flexible and can be applied to other mod-

eling units. Since grapheme-based modeling is useful in automatic speech recognition

of under-resourced languages, we further apply our distinct acoustic modeling frame-

work to estimate context-dependent grapheme models and we call our new method

eigentrigrapheme modeling. Experimental evaluation of eigentriphone modeling was

carried out on the Wall Street Journal word recognition task and the TIMIT phoneme

recognition task. Experimental evaluation of eigentrigrapheme modeling was carried

out on four official South African under-resourced languages. It is shown that distinct

acoustic modeling using the proposed eigentriphone framework consistently performs

better than the conventional tied-state HMMs.
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CHAPTER 1

INTRODUCTION

1.1 Automatic Speech Recognition

When we listen to someone talking, we not only receive the speech content, but also

identify the language, identity and emotional state of the speaker. Among all these

kinds of information, automatic speech recognition (ASR) is aimed at extracting the

word sequences transmitted in human speech signals. Fig. 1.1 shows a general struc-

ture of an ASR system.

Figure 1.1: General structure of an automatic speech recognition system

First of all, speech signals are converted into sequences of acoustic feature vectors

through feature extraction. Feature extraction algorithms are designed to eliminate

most of the non-speech variabilities caused by the acoustic conditions such as speakers,

recording environment and channels. Then statistical approaches are employed to deal

with the speech variabilities in the extracted feature vectors.

Recognition is a search for the word sequence which can best fit the speech data.

From a statistical point of view, it is to find a sequence of M words Ŵ = w1, w2, . . . , wM

that maximizes the posterior probability P (W |X) where X = x1, x2, . . . , xT is a se-

quence of T acoustic feature vectors. From the Bayes’ rule, we have

Ŵ = arg max
W

P (W |X) = arg max
W

P (W )P (X|W )

P (X)
.
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Since P (X) is independent of W , we have

Ŵ = arg max
W

P (X|W )P (W )

= arg max
W

ln P (X|W )︸ ︷︷ ︸
acoustic score

+ ln P (W )︸ ︷︷ ︸
language score

. (1.1)

Thus, an automatic speech recognition task is formally defined by Eq. (1.1).

From Eq. (1.1), two major components in an ASR system are introduced:

• Acoustic model (AM) : The acoustic score is computed from a set of acoustic

models which describe the statistical behavior of speech in the feature space.

The acoustic models consist of a set of hidden Markov models representing each

of the basic speech units.

• Language model (LM) : The language score is computed from the language

model which describes the relationship among the co-occurrences of words. The

language models normally encapsulate the English grammar information. For

example, “IN ORDER” is usually followed by the word “TO”. For large vo-

cabulary continuous speech recognition (LVCSR), the language models usually

consist of n-grams.

The AM and LM have to be trained before they can be used. Acoustic modeling and

language modeling are usually done separately. In this thesis, we focus on acoustic

modeling in ASR.

Table 1.1: An example of dictionary used in phone-based ASR systems. The pronun-
ciation of the whole phone set is listed in Table A.1 in Appendix A.

Word Phonetic Transcription
ABOUT ah b aw t

CONSIDER k ah n s ih d er
CAT k ae t
DOG d ao g
EAT iy t

GREEN g r iy n
HUNDRED hh ah n d r ah d

2



If a user wants an ASR system to recognize a particular sentence, he has to define

the words appearing in the sentence. For an ASR system, the lexicon and the pronun-

ciation of each word are defined in a dictionary. The pronunciation of each word is

defined by listing out its transcription using the basic modeling units. An example of a

dictionary used in phone-based ASR systems is shown in Table 1.1.

Phone-based ASR systems refer to using phones as the basic modeling units. In

speech science, phonemes are defined as the minimal phonetic units in a language

that can distinguish words. For example, there is a phoneme difference in the word

pair “DOG” and “FOG” which makes them different. Phones are the acoustic real-

ization of phonemes. In context-independent phone-based modeling, each phone is

independently modeled. These phone models are called monophone models. In a

typical English ASR system, there are about 40-60 monophones. Although there are

other choices of basic units like syllables or words, phone-based modeling is the most

popular choice for common ASR systems.

It is observed that the acoustic behavior of a phoneme is highly influenced by its

neighbouring phonemes due to coarticulation. For example, the phoneme /t/ sounds

differently in the word “UNTAR” (/ah n t aa r/ and “STAR” (/s t aa r/). The phoneme

/t/ in the word “STAR” sounds more like the phoneme /d/ because of the influence of

its preceding phoneme. Thus, using context-independent models might not enough to

cover all the acoustic variations of the phonemes. In 1980, context-dependent phonetic

models were proposed [4] and the idea was to replace a single phonetic model by a

number of detailed models which are different from one other with different neigh-

bouring units. Context-dependent modeling is much better than context-independent

modeling in recognition performance because it covers more acoustic variation by in-

creasing the number of modeling units.

Triphones [82] are the most successful and popular context-dependent modeling

units. They are developed from monophones by taking the preceding and following

phones into consideration 1. For example, both models “p-er+t” and “b-er+m” are

modeling the phone [er], but they differ from each other with their preceding and fol-

lowing phones. Here, the phone before ‘-’ is the preceding phone and the phone after

1For the sake of completeness, there are other context-dependent phone units like biphones and quin-
phones. The context of a biphone refers its preceding or following phone whereas a quinphone take
its neighbouring three phones into consideration

3



‘+’ is the following phone.

1.2 Problem of Context-dependent Modeling

During acoustic modeling, since we do not know the sequence of phones in the testing

utterances, we have to consider every possible triphone. Thus, if there are N mono-

phones, there will be N3 triphones altogether. The generation of all possible triphones

is called tri-unit expansion. Typically, there are 60,000 - 80,000 triphones. Although

using triphones as modeling units can greatly improve the resolution of the acous-

tic model, the exponential growth of the number of models in the tri-unit expansion

brings several drawbacks.
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Figure 1.2: Cumulative triphones coverage in the training set of HUB2. The triphones
are sorted in descending order of their occurrence count.

First of all, many context-dependent units have insufficient training samples as the

amount of training speech data is usually limited. Due to the nature of human speech,

the triphones usually distribute very unevenly and most of them do not even appear in

the training corpus. For example, Fig. 1.2 depicts the triphone coverage in the HUB2

WSJ0/WSJ1 training corpus [75]. There are 18,991 triphones, and only 3,510 of them

have more than 200 samples. That is, about 80% of the training data concentrate on the

most common 20% of all seen triphones2. Thus a major challenge in context-dependent
2Seen triphones are the triphones appearing in the training data. Unseen triphones are the triphones
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modeling is to estimate the less frequent context-dependent units reliably, otherwise

the poorly trained models may affect the overall performance of an ASR system. On

the other hand, a huge increase in model parameters makes heavy demands on the CPU

speed and memory size. This made real-time recognition infeasible on many devices,

especially embedded devices in the past decades.

Parameter tying has been a common technique used to solve the above problems.

The idea is to group the acoustic units of interest into disjoint classes so that mem-

bers of the same class share the same model parameters and thus their training data.

Various parameter tying units have been tried resulting in, for example, generalized

triphones [62, 61], tied states [97], shared mixtures [44], and tied subspace Gaussian

distributions [8]. However, parameter tying inevitably introduces a quantization error:

if two acoustic units are tied together, they become acoustically identical to the speech

recognizer. Thus, it has to rely on other constraints such as lexicon or language models

to identify the clustered acoustic units and this can potentially harm the discriminative

power of the acoustic model.

Since the constraints on CPU speed and memory size are gradually relaxed in the

current decade, it is desirable to use more model parameters to achieve better recog-

nition accuracy. If each of the acoustic units is represented by a distinct model, they

should be more discriminative. In this thesis, we would like to solve the estimation

problem of infrequent triphones by a new distinct acoustic modeling method.

1.3 Distinct Acoustic Modeling

Our investigation on distinct acoustic modeling is motivated by the following two par-

allel aspects:

• In order to solve the quantization error induced by parameter sharing, we would

like to investigate the use of distinct acoustic modeling where every seen tri-

phone has a unique model and a generally distinct acoustic score. The research

on distinct acoustic modeling has not been pursued in the past because of limited

computing resources but this constraint can be relaxed nowadays.

not appearing in the training data.
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• Speaker adaptation techniques [94] have been well developed over the past few

decades. Speaker adaptation aims at adapting acoustic models to the characteris-

tics of a particular speaker with a limited amount of speaker specific data. With

the success of various speaker adaptation techniques [36, 55, 63], we are moti-

vated to solve the estimation problem of infrequent triphones from an adaptation

point of view.

In the past, only a few attempts on distinct acoustic modeling have been made as pa-

rameter tying is the mainstream of acoustic modeling. In this thesis, we propose a new

distinct acoustic modeling method called eigentriphone modeling [52]. Eigentriphone

modeling generalizes the idea of eigenvoice speaker adaptation [55] and treats the es-

timation of infrequent triphones as an adaptation problem. In eigentriphone modeling,

a basis is derived over the frequent triphones and each infrequent triphone is modeled

as a point in the space spanned by the basis vectors. The eigenvectors in the basis rep-

resent the most important context-dependent characteristics among the triphones. By

choosing an appropriate number of eigenvectors infrequent triphones can be robustly

modeled with few training samples. In contrast to common parameter tying methods,

all triphone models are distinct from each other and thus they should be more distin-

guishable. Experimental evaluations show that using distinct acoustic modeling with

our proposed method outperforms the classical state tying method.

We also evaluate another distinct acoustic modeling method named reference model

weighting [12]. In contrast to eigentriphone modeling, reference model weighting di-

rectly uses a set of reference models as the basis. Thus, no eigen-decomposition is

required and the training process is faster. Experimental evaluations show that refer-

ence model weighting performs as well as eigentriphone modeling and its performance

gain is supplementary to the performance of existing state-of-the-art ASR techniques.

Although phone-based modeling is the mainstream in ASR, grapheme-based mod-

eling is popular in under-resourced language ASR [89]. Under-resourced languages

refer to languages of which the phonetics and linguistics are not well studied. In this

thesis, we also investigate the use of distinct acoustic modeling on grapheme-based

ASR systems. We further generalize the eigentriphone modeling framework and apply

it to grapheme-based ASR systems. The new method, which we call eigentrigrapheme

acoustic modeling [51], outperforms the classical grapheme-based modeling method

6



in several under resourced language recognition tasks.

1.4 Thesis Outline

The organization of this thesis is as follows.

Chapter 2 reviews the fundamental issues of acoustic modeling in ASR with the

use of the hidden Markov model, existing parameter reduction techniques, different

speaker adaptation schemes and a summary of the past attempts on distinct acoustic

modeling.

Chapter 3 is the main part of this thesis. It presents our proposed eigentriphone

modeling in detail including the motivation, framework, training procedures and var-

ious extensions of our method. Experimental evaluations on both TIMIT and Wall

Street Journal corpus are given to show the performance gain of our method over the

classical state tying method.

In chapter 4, we investigate the use of distinct acoustic modeling on under-resourced

language ASR. We first introduce what under-resourced languages are and then the

traditional grapheme-based modeling and our new eigentrigrapheme modeling frame-

work. Experimental evaluation on several under-resourced language recognition tasks

are given in this chapter to show the performance gain of our method over the classical

grapheme-based modeling.

In chapter 5, we investigate another distinct acoustic modeling method named ref-

erence model weighting. Experiments of reference model weighting on Wall Street

Journal corpus are implemented to compare its performance with eigentriphone mod-

eling. Then experiments on Switchboard corpus are given to show that the performance

gain is supplementary to the performance of existing state-of-the-art ASR techniques.

Chapter 6 concludes the thesis with a summary of contributions and suggestions

for future work.
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CHAPTER 2

ACOUSTIC MODELING IN SPEECH
RECOGNITION

This chapter first gives an introduction to the use of hidden Markov models (HMM)

in acoustic modeling in ASR. Then various issues related to acoustic modeling are re-

viewed including existing parameter reduction techniques, different speaker adaptation

schemes and a summary of past attempts in distinct acoustic modeling.

2.1 Hidden Markov Model in ASR

In this section, a review of hidden Markov model (HMM) and phone-based acoustic

modeling is given.

For ease of description, let us define:

λ: an HMM model (normally means all the parameters in the model),

aij: the transition probability from state i to state j,

J : the total number of states in the HMM λ,

T : the total number of frames in an observation vector sequence O.

ot: an observation vector at time t,

O: a sequence of T observation vectors, [o1, o2, . . . , oT ],

qt: the state of ot at time t,

z: the state sequence, [q1, q2, . . . , qT ] of O.

The hidden Markov model is a finite state machine. In the case of a continuous

HMM, each state is associated with a probability density function (pdf), which is usu-

ally a mixture of Gaussians. Transitions among the states are associated with a prob-

ability aij representing the transition probability from state i to state j. HMM is a

generative statistical model. In each time step t, the model transits from a source state

qt−1 to a destination state qt and an observation vector ot is emitted. The distribution of

8



Figure 2.1: An example of HMM with 3 states.

this emitted ot is governed by the probability density function in the destination state.

The model parameters are the initial probabilities, transition probabilities and the pa-

rameters of the set of probability density functions. An example of a first-order HMM

is shown in Fig. 2.1.

In a hidden Markov model, the state sequence is not observable whereas only the

observations generated by the model are directly visible. The “hidden” Markov model

is so named because of the hidden underlying state sequence.

There are three major issues in hidden Markov modeling:

• The Evaluation issue : From a generative perspective, any sequence of obser-

vations of a specified time duration can be generated by a model. Given the

HMM parameters λ, it is possible to determine the probability P (O|λ) that a

particular sequence of observation vectors O is generated by the model. In this

case, the model parameters λ and the observation vector O are the inputs, and

the corresponding probability is the output.

• The Training issue : From a training/learning perspective, the sequence of ob-

servation vectors O is given whereas the model parameters λ are unknown. The

observed data gives us some information about the model and we can use them

to estimate the model parameters λ. The given data used for estimation are re-

garded as the training data. In this case, the observed data O is the input, and the

estimated model parameters λ are the outputs.

9



• The Decoding issue : In the decoding process, the model parameters λ and the

sequence of observation vectors O is given where the sequence of states z is

unknown. The goal is to look for the most likely sequence of underlying states

z which maximizes P (z|O, λ). In this case, the model λ and the observation

vectors O are the inputs, and the decoded sequence of states z is the output.

2.1.1 Assumptions in the Theory of HMM

There are two major assumptions made in the theory of first-order HMMs:

• The Markov assumption: It is assumed that in first-order HMMs the transition

probabilities to the next state depend only on the current state and not on the past

state history. Given the past k states,

P (qt+1 = j|qt = i1, qt−1 = i2, . . . , qt−k+1 = ik) = P (qt+1 = j|qt = i1), (2.1)

where 1 ≤ i1, i2, . . . , ik, j ≤ J.

On the other hand, the transition probabilities of a kth-order HMM depend on

the past k states.

• The output independence assumption: It is assumed that given its emitting state

the observation vector is conditionally independent of the past observations as

well as the neighbouring states. Hence, we have

P (O|z, λ) =
T∏

t=1

P (ot|qt, λ). (2.2)

If the states are stationary, the observations in a given state are assumed to be

independently and identically distributed (i.i.d.).

2.1.2 The Use of HMM as a Phone Model

In phone-based acoustic modeling, the basic modeling units are phones. Each distinct

phone in the phone set is modeled by an HMM. The acoustic model consists of a set of

phone HMMs. HMMs are used because a speech signal can be viewed as a piecewise

stationary signal or a short-time stationary signal.

10



Figure 2.2: An example of a 3-state strictly left-to-right HMM with no skip arcs.

An example of the HMM which is most commonly used to model a phone is shown

in Fig. 2.2. and can be treated as a special form derived from the general form in

Fig. 2.1 by setting {a13, a21, a31, a32} to zero. It is a 3-state strictly left-to-right HMM

in which only straight left-to-right transitions are allowed in order to capture the se-

quential nature of speech. This specific structure makes it easy to connect with another

HMM to form a longer HMM. For example, several phone HMMs may connect with

each other to form a syllable HMM or a word HMM.

2.1.3 The Choice of Probability Density Function

In Fig. 2.2, the rectangular blocks are the acoustic observations emitted by the HMM

state. The statistical behaviour of the emissions is governed by the probability density

function (pdf) associated with the states. For the model form of the probability den-

sity functions, the Gaussian mixture model (GMM) has been the most common choice

in the history of ASR due to its simplicity and trainability. A GMM is a parametric

pdf represented as a weighted sum of Gaussian component densities. Given a suf-

ficient number of Gaussian mixtures, GMM could closely approximate any arbitrary

continuous density function. With the help of some decorrelating methods [40, 35],

diagonal covariance matrices are often used because of their low computational cost.
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In this thesis, diagonal covariance matrices are used for every Gaussian component in

the acoustic models.

Since the early 90s, the use of artificial neural networks (ANN) [69, 70] to model

the emission distributions in HMMs have been proposed. However, compared with the

traditional GMM-HMM, little improvement has been made by this ANN-HMM. Due

to the limited computing resources in the past, the research on ANN-HMM has not

been pursued.

Recently, deep neural network (DNN) [84, 83, 74] is proposed again to model the

emission distribution in the HMMs. DNN is conceptually the same as the ANN but

differ mainly in the model complexity. The recent DNN is larger in scale than the

classical ANN in the following two aspects.

• More output nodes: the number of output nodes is increased from a small num-

ber of monophones in ANN to a large number of triphone states in DNN.

• More layers: the number of layers is increased from not more than three layers

in ANN to about seven layers in DNN.

Nevertheless, most of the state-of-the-art ASR techniques are developed on the

GMM-HMM framework and whether they are feasible on the DNN-HMM framework

still needs further investigation. As we would like to compare our proposed method

against other ASR techniques, in this thesis we demonstrate our work with implmen-

tations on the GMM-HMM framework.

2.1.4 Training Criteria of HMMs

The HMM parameters are estimated with respect to some objective functions. Maxi-

mum likelihood (ML) is the most widely used criterion in HMM training because an

efficient training algorithm can be derived. The objective is to find the model param-

eters that maximise the likelihood of the training data given the correct transcriptions.

The standard objective function used in ML training is expressed as

FML(λ) =
∑

r

logP (O(r)|ĥ(r), λ) (2.3)
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where O(r) and ĥ(r) are the observation vector sequence and the correct hypothesis of

the rth utterance respectively. Maximizing the likelihood objective function FML can

be done by the Baum-Welch (BW) algorithm [6, 93] which utilizes the Expectation-

Maximization (EM) algorithm.

As mentioned previously, there are several assumptions made in HMM for model-

ing human speech. These assumptions implies imperfectness of the models and cause

the ML training to be suboptimal in terms of recognition accuracy. To address this

problem, discriminative training criteria have been proposed as an alternative to the

ML criterion. Discriminative training aims to optimize the model parameters such

that the recognition error is minimized on the training data. The recognition error is

often expressed as different forms of objective functions that involve the correct and

the competing hypotheses. Discriminative training has been found to outperform ML

training and is widely used in state-of-the-art speech recognition systems. Here, two

commonly used discriminative criteria are reviewed.

2.1.4.1 Maximum Mutual Information (MMI)

Maximum mutual information (MMI) [76] criterion aims to optimize the posterior

probability, P (ĥ|O, λ), of the correct transcription given the observation sequence.

By applying the Bayes rule, the MMI objective function is expressed as

FMMI(λ) =
∑

r

log
P k(O(r)|ĥ(r), λ)P k(ĥ(r))∑
h P k(O(r)|h(r), λ)P k(h(r))

(2.4)

where O(r) and ĥ(r) are the observation vector sequence and the correct hypothesis of

the rth utterance respectively; h(r) in the denominator denotes all possible hypotheses

including both the correct and the competing hypotheses; k is empirically used to scale

the probability. Although the denominator of eq. 2.4 considers all possible competing

hypotheses, in practice, it is approximated by a N-best list [13] which contains the top

N competing hypotheses. It is interesting to note that the term P (ĥ(r)|O(r), λ) in the

numerator of FMMI(λ) is actually the same as FML(λ). Thus, what MMI training is

more than ML training is that MMI training maximize the likelihood given the cor-

rect transcriptions and at the same time minimize the likelihood given the competing

hypotheses.
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2.1.4.2 Minimum Phone Error (MPE)

In the MMI objective function, all the competing hypotheses are considered “equal”

even though some are better than the others in terms of word error rate (WER) or phone

error rate (PER). Thus, it is desirable to incorporate some notion of hypothesis weight-

ing in the discriminative training. Minimum phone error (MPE) [77] is developed to

address this problem. The MPE objective function is expressed as

FMPE(λ) =
∑

r

log

∑
h P k(O(r)|h(r), λ)P k(h(r))A(h(r))∑

h P k(O(r)|h(r), λ)P k(h(r))
(2.5)

where A(h(r)) represents the weight of hypothesis h(r); O(r) and ĥ(r) are the observa-

tion vector sequence and the correct hypothesis of the rth utterance respectively; the

index h(r) denotes all possible hypotheses including both the correct and the competing

hypotheses or the rth utterance; k is empirically used to scale the probability. From

eq. 2.5, we can see that MPE generalize the MMI objective function by replacing the

numerator to a sum of all possible hypotheses with A(h(r)) associated. If A(ĥ(r)) = 1

and A(h(r)) = 0 ∀ h(r) 6= ĥ(r), the MPE objective is converted back to the MMI ob-

jective. In practice, A(h(r)) is often rewritten as A(h(r), ĥ(r)) to represent a raw phone

accuracy for the competing hypothesis h(r) with respect to the correct hypothesis ĥ(r).

2.2 Parameter Reduction Techniques

As discussed previously, using context-dependent units can significantly improve the

resolution of the acoustic model. The only problem is that trainability becomes a chal-

lenge as the number of total units usually grows exponentially. Thus, parameter reduc-

tion techniques are proposed to reduce the number of free parameters in the acoustic

models. In this section, parameter tying and the most recent canonical state models are

reviewed.

2.2.1 Parameter Tying

In the past, different parameter sharing techniques were proposed which could be clas-

sified into several categories according to their level of parameter tying [90]. In this
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thesis, two typical parameter tying techniques including generalized triphones and state

tying are reviewed.

2.2.1.1 Generalized Triphones

As mentioned before, triphones are powerful because they model the most important

coarticulatory effects. In the evaluation of triphones, it is observed that some phones

have the same effect on their neighboring phones. For example, [b] and [f] have similar

effects on the right-neighboring vowel, while [r] and [w] have similar effects on their

right-neighboring vowel. Thus, the acoustic behaviour of “b-ae+t” should be similar

to “f-ae+t”. If these similar triphones can be identified and merged, the number of

triphones can be reduced and each model get more training data.

To serve this purpose, generalized triphones [62] were proposed by Kai-Fu Lee. It

is a model-based parameter tying method as the whole model, including all the states,

is tied to the same cluster. In his paper, he proposed a context merging procedure to

identify and merge similar triphone HMMs using the following steps:

Step 1 Generate an HMM for every triphone and train them individually.

Step 2 Create clusters of triphones, with each cluster consisting of one triphone initially.

Step 3 Find the two most similar clusters, and then merge them into one.

Step 4 Go back to Step 3 if the convergence criterion is not met.

One important issue is to define the similarity between two HMMs in step 3. Many

similarity measures could be used like cross entropy, divergence and maximum mutual

information. In [62], the similarity between two HMMs after merging is defined to be

the reciprocal of increased entropy. The more the entropy is increased, the less similar

the two HMMs are. The entropy of triphone HMM a is defined as

Ha = −
Na∑
i=1

Pa(oi)log(Pa(oi)),

where Pa(oi) is the output probability given the observation vector oi. If we want to

merge triphone HMM a and b into HMM m, the increased entropy can be computed as

I(a, b) = (Na + Nb)Hm − NaHa − NbHb,
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where Na and Nb are the number of training data for model a and model b respectively;

Hm is the entropy of the merged model m computed using all the training data of

triphone a and b. Experimental results on a 1000-word vocabulary task show that

the word accuracy is improved from 95.1% to 95.4% after merging the original 2381

triphones into 1000 generalized triphones.

2.2.1.2 State Tying

Model-based parameter tying is limited in that the left and right contexts cannot be

treated independently and hence this inevitably leads to sub-optimal use of the avail-

able data. Since coarticulatory effects are more prominent at the onset and ending of

a phone than at its center, it will be more flexible if local HMM states can be tied in-

dividually instead of the whole triphone HMM. Thus, tied-state HMM (TSHMM) is

investigated [97, 96, 79] and experiment results show that state-based clustering con-

sistently out-performed the model-based clustering.

Figure 2.3: The tied-state HMM system building procedure.

A standard procedure of building a tied-state HMM system is illustrated by Fig. 2.3.

There are 3 main steps:

Step 1 An initial set of 3-state left to right monophone models is created and trained.

Step 2 These monophone models are then cloned to initialise their corresponding tri-

phone models. Then these triphone models are trained individually.
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Step 3 For each set of triphones derived from the same monophone, corresponding

states are clustered. For each resulting cluster, its cluster members are tied to

the same state and all their training data are used to train that state.

Here, one important issue is to decide upon the clustering mechanism in step 3.

There are two common approaches in doing this: the first is a data-driven approach

which measure the similarity between states from the training data; the second is a

knowledge-based approach which makes use of phonetic knowledge.

2.2.1.3 Data-driven Clustering

The data-driven clustering procedure in state tying is similar to the one used to create

generalized triphones. A typical example is senones [45]. Initially all states are placed

in individual clusters. The pair of clusters which when combined would form the

smallest resultant cluster are merged. This process repeats until either the size of the

largest cluster reaches a upper bound or the total number of clusters has fallen below

a lower bound. The size of cluster is defined as the greatest distance between any two

states. Much the same as in the case of creating generalized triphones, various distance

metrics can be used in defining the similarity between states. Practically, the Euclidean

distance between the state means scaled by the state variances is usually used [96].

2.2.1.4 Knowledge-based Clustering

One limitation of the data-driven clustering procedure described above is that it does

not deal with unseen triphones for which there are no examples in the training data.

In 1994, a phonetic knowledge-based clustering method was proposed [79] by Steve

Young. In his work, a decision tree which asks phonetic questions about the left and

right contexts of each triphone is used. It is shown that tree-based clustering can obtain

similar modeling accuracy to that using the data-driven approach but has the additional

advantage of providing a mapping for unseen triphones.

A phonetic decision tree is a binary tree in which a yes/no phonetic question is

attached to each node. The questions relate to the phonetic context of the triphones.

For example, in Fig. 2.4, the question “Is the left neighboring phone of the current

triphone a consonant?” is associated with the root node of the tree. Initially all states
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Figure 2.4: Phonetic decision tree-based state tying.

in a given list (typically a specific state position of triphones of the same base phone)

are placed at the root node of a tree. Depending on each answer, the pool of states is

successively split and this continues until the states have reached the leaf nodes. All

states in the same leaf node are then tied. For example, the tree shown in Fig. 2.4

will partition its states into five subsets corresponding to the five terminal nodes. One

tree is constructed for each state position of each base phone. The tree topology and

questions at each node are chosen to locally maximize the likelihood of the training

data and ensure that sufficient data is associated with each tied state. Once all trees

have been constructed, unseen triphones can be synthesised by finding the appropriate

terminal tree nodes and then using the tied-states associated with those nodes.

Phonetic decision tree-based tying has been the most popular approach in creating

acoustic models until now.

2.2.2 Canonical State Models

Among various ways of parameter tying, state tying has been the most popular method

for its simplicity and effectiveness. The standard approach for tying the states is to
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use phonetic decision trees to determine the sets of tied context-dependent states. Al-

though good performance has been achieved with state tying, the underlying relation-

ship/factor between the context dependent states is not exploited. This motivates the

use of a different form of model that attempts to take advantage of this underlying

factor. This way of creating context-dependent acoustic models has drawn much at-

tention after the subspace Gaussian Mixture Model (SGMM) [24] was proposed by

Daniel Povey in 2010. Afterwards, Mark Gales try to summarize this kind of method

by a general framework called the canonical state model (CSM) [33]. To simplify the

presentation on SGMM, we first describe the rational behind CSM then the choice of

transformation functions that makes SGMM a special case of CSM.

It is assumed in CSMs that every context-dependent states in the system can be

transformed from some canonical states. These canonical states represent the un-

derlying factor between the context-dependent states. In standard tying schemes, the

model parameters are either independent or identical. In contrast, for a canonical state

model, the model parameters are “related” to each other. In other words, a soft tying

scheme [31] is being used in CSMs.

In the CSM framework, a canonical state has the form of a standard Gaussian

mixture model. Given a canonical state sg, the likelihood of an observation ot at time

t is

p(ot|sg) =
∑
m∈sg

c(m)
g N (ot; µ

(m)
g , Σ(m)

g ),

where c
(m)
g , µ

(m)
g , Σ

(m)
g are the weight, mean vector and covariance matrix of the mth

Gaussian in sg respectively. Then the context-dependent state s is composed of a

mixture of canonical states. The likelihood for context-dependent state s in the CSM

framework is given by

p(ot|s) =
N∑

n=1

w(n)
s

∑
m∈sg

c(mn)
s N (ot; µ

(mn)
s , Σ(mn)

s )

 ,

where N is the number of canonical states and w
(n)
s is the weight associated with the

nth canonical state. The parameters of state s is generated from the canonical state

with the following function:

c(mn)
s = Fc(sg, m; θ(n)

s ),
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µ(mn)
s = Fµ(sg, m; θ(n)

s ),

Σ(mn)
s = FΣ(sg, m; θ(n)

s ),

where θ
(n)
s is the set of transform parameters for component n. Here, it is flexible to

define specific transformation functions: Fc, Fµ, and FΣ for corresponding parameter

types.

Canonical state models comprise two sets of parameters: a set of canonical states

and a set of transformations. Given that both the canonical state and the transform

parameters need to be estimated, the general training process is split into two stages.

First the transform parameters are updated given the current canonical state parameters.

Second the canonical state parameters are updated given the current transformations.

2.2.2.1 Semi-continuous HMM

Semi-continuous HMM [44] is a special case of CSM. It is the simplest form of CSM as

only one single transform component is used. The context-dependent state distribution

is given by

p(ot|s) =
∑
m∈sg

c(m)
s N (ot; µ

(m)
s , Σ(m)

s ).

The transformations are defined as

Fc(sg, m; θ(n)
s ) =

∑
t γ

(m)
st∑

m̃∈sg

∑
t γ

(m̃)
st

,

Fµ(sg, m; θ(n)
s ) = µ(m)

g ,

FΣ(sg, m; θ(n)
s ) = Σ(m)

g ,

where γ
(m)
st is the posterior probability of the mth Gaussian of context-dependent state

s generating the observation at time t. We can see from the transformations that the

context-dependent state is composed linearly of the Gaussians in the canonical state.

2.2.2.2 Subspace Gaussian Mixture Model (SGMM)

SGMM [24, 22] is a special case of CSM when the transformations are defined as

Fc(sg, m; θ(n)
s ) =

exp(v
(m)T
g θ

(n)
s )∑

m̃∈sg
exp(v

(m̃)T
g θ

(n)
s )

,
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Fµ(sg, m; θ(n)
s ) = [µ(m1)

g . . . µ(mP )
g ]θ(n)

s ,

FΣ(sg, m; θ(n)
s ) = Σ(m)

g ,

where v
(m)
g is the P -dimensional subspace prior vector for component m and θ

(n)
s is a

P -dimensional state-specific vector. The reason it is called a “subspace” model is that

the state-specific parameters θ
(n)
s determine the means and weights for all M Gaussian

mixtures, which is M(D + 1) parameters per state, but the dimension of P will be

much less than M(D + 1). Thus, the model spans a subspace of the total parameter

space. In [24], it is reported that a well-tuned SGMM system will typically have fewer

parameters than a well-tuned GMM system, by a factor of two to four. With such a

compact model, a smaller amount of training data is sufficient for the training of the

state-specific parameters θ
(n)
s . This introduces the possibility of training the shared pa-

rameters on out-of-domain data and training the state-specific parameters on a smaller

amount of in-domain data. With this nice property, SGMM has drawn much attention

from the community as now there is a great need of creating ASR systems for new

languages (e.g. Arabic). Since collection of training data of a new language usually

takes a long time, SGMM can solve the problem by training the shared parameters with

existing data (e.g. English training corpus) and training the state-specific parameters

with newly collected data. A substantial improvement with the use of SGMM has been

reported in a multilingual task [22].

2.3 Speaker Adaptation Techniques

For the training of a large context-dependent acoustic model, speech training data are

usually collected from multiple speakers. As a result, the model captures the acoustic

variations of different speakers and is known as a speaker-independent (SI) model. An

acoustic model that is trained using only speech data from a specific speaker captures

only the characteristics of that particular speaker and is known as speaker-dependent

(SD) model. Typically, error rates of SI models are two to three times higher than

equivalent SD models [60]. However, it is difficult, or sometimes infeasible, to collect

a sufficient amount of data from the target speaker. Thus, various speaker adaptation

techniques are proposed to adjust the SI models to the characteristics of a target speaker

with a limited amount of data. The speaker-adapted (SA) model perform much better
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than the SI models for the target speaker.

Existing speaker adaptation techniques can be classified into two main categories:

feature-based schemes and model-based schemes. Feature-based schemes aim at trans-

forming the feature vectors whereas model-based schemes aim at modifying the HMM

parameters. Since our ultimate goal is to apply these methods to the estimation of in-

frequent triphones in context-dependent modeling, we focus on the review of model-

based adaptation schemes. The most popular model-based adaptation schemes can be

categorized into three major families: maximum a posteriori (MAP), linear parameter

transformation and speaker-space methods. In this section, the most typical adaptation

scheme in each of the above families are introduced. From the literature, most of the

error reduction in speaker adaptation came from adapting the mean vector [43]. Thus,

in the following we assume that only Gaussian means are adapted.

2.3.1 Maximum A Posteriori (MAP)

MAP adaptation [36, 59, 37] is a Bayesian-based method. It takes advantage of some

prior information and adjusts the model parameters based on that information. Let λ

be the model parameters and p(λ) is the prior probability density function. With the

observation data O , the MAP estimate in general is expressed as follows:

λ̂ = arg max
λ

P (λ|O)

= arg max
λ

P (O|λ)P (λ)

= arg max
λ

logP (O|λ) + logP (λ) (2.6)

If there is no prior information about the model parameters, P (λ) becomes a uni-

form distribution and the MAP estimate becomes identical to the maximum likelihood

(ML) estimate.

In fact, the density function P (λ) has to be carefully selected so that the maximum

a posteriori can be effectively evaluated. If the state observation density is a mixture

of Gaussians (GMM), we have 1

P (O|λ) =
R∑

r=1

wrN (O|ur, σr) (2.7)

1To simplify our presentation here, we assume a mixture of univariate normal densities.
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where R is the number of Gaussians; wr, ur and σr are the mixture weight, mean and

variance of the rth Gaussian respectively. As we are going to adapt the Gaussian means

only, the prior density is selected as a product of Gaussian distribution by the fact that

it is the conjugate distribution of the GMM. Thus, we have

P (λ) ∝
R∏

r=1

exp[−1

2
(
ur − u0r

σ0r

)2] (2.8)

where u0r and σ0r are the mode and variance of prior density of ur respectively.

Applying the EM algorithm, we can write the auxiliary function as follows:

Q(λ) =
R∑

r=1

T∑
t=1

γr(t)(
ot − ur

σr

)2 +
R∑

r=1

(
ur − u0r

σ0r

)2 (2.9)

Take the derivative of each ur and we arrive at the following solution:

ûr =
τru0r +

∑T
t=1 γr(t)ot

τr +
∑T

t=1 γr(t)
(2.10)

where τr = σr

σr0
and γr(t) is the occupation probability of the rth Gaussian given

observation xt.

From eq. (2.10), we can see that the MAP estimate mean ûr is actually a weighted

sum of the mode of the prior density with the ML estimate mean
PT

t=1 γr(t)xtPT
t=1 γr(t)

. For a

speaker adaptation task, the mode of the prior density u0r can be obtained from the

equivalent SI model.

MAP has an advantage that it converges to an SD model when the adaptation data

increases. However, its limitation is that only Gaussians that occur in the adaptation

data can be modified from the prior SI model. The correlations between model param-

eters are also not fully utilized.

2.3.2 Maximum Likelihood Linear Regression (MLLR)

MLLR [63] is a transformation-based adaptation method. The mean vector µ̂r of the

rth Gaussian of the SA model is adapted from the mean vector µr of the equivalent SI

model as follows:

µ̂r = Aµr + b (2.11)
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where A is a transformation matrix and b is a bias. If A and b are used to transform the

mean vectors of every Gaussian, they are called a global transform. In fact, the MLLR

adaptation usually groups the Gaussians into several regression classes. The Gaussians

in the same regression class share the same transformation matrix and bias. Thus, eq.

(2.11) can be generalized into

µ̂r = Acµr + bc (2.12)

where Ac is the transformation matrix and bc is the bias of regression class c which µr

belongs. The transformation parameters are estimated with an ML approach.

The number of free parameters of the MLLR transform can be controlled by the

number or regression classes and the choice of transformation matrix such as diagonal

matrix, block diagonal matrix or full matrix, usually decided by the amount of adapta-

tion data. With more adaptation data, a more precise transformation can be achieved.

MLLR works well when a certain amount of adaptation data is available. In [65],

MLLR outperforms all other methods when it is given 10 seconds of adaptation data.

2.3.2.1 Constrained MLLR

The MLLR transform described previously is also called unconstrained MLLR where

the mean vectors and covariance matrices of the Gaussian components are transformed

separately or, as described, the covariance matrices remain unchanged. In contrast,

applying the same transform to a pair of corresponding mean vector and covariance

matrix is referred to as constrained MLLR (CMLLR) [20, 30]. The mean vector µ̂r

and covariance matrix Σ̂r of the rth Gaussian of the SA model is adapted from the µr

and Σr of equivalent SI model as follows:

µ̂r = A′µr + b′ (2.13)

Σ̂r = A′ΣrA′T (2.14)

where A′ is the constrained linear transform and b′ is the bias on the mean vector.

One disadvantage of the above model-based formulation is that the adapted covari-

ance matrix Σ̂r is non-diagonal if A′ is non-diagonal and becomes computationally

expensive to calculate the likelihood with a non-diagonal covariance matrix. Luckily,
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Figure 2.5: Illustration of speaker adaptive training.

this problem can be avoided by rewriting the above formulation into a feature trans-

form. An equivalent log likelihood of an observation ot given the adapted parameters

is computed by:

logN (ot; µ̂r, Σ̂r) = logN (ôt; µr,Σr) + log|F| (2.15)

where

ôt = A′−1ot − A′−1b′ = Fot − g, (2.16)

F = A′−1 is the feature transform matrix and g = A′−1b′ is the bias. Once the feature

is transformed, the likelihood can be computed by the original diagonal covariance

matrix. Thus, in practice, CMLLR is usually implemented as a feature transform and

is also known as feature MLLR (FMLLR).

2.3.2.2 Speaker Adaptive Training (SAT)

In the MLLR adaptation scheme described previously, the SA model for a target

speaker is adapted from an SI model where the SI model is estimated by mixing the

data from all the training speakers. This common SI training paradigm does not make

use of the characteristics of the individual training speaker and the resulting SI model

might not be fitted to the source of adaptation. Speaker adaptive training (SAT) [1] is

a framework proposed to improve the quality of the source model.

The SAT framework is illustrated in Fig. 2.5. It is assumed that every SA model,

including the training and testing speakers, are transformed from a canonical model. In

the training phase, the canonical model and the transforms are estimated to maximize

the likelihood of training data given the SA model for each training speaker. Then only
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the canonical model is needed to be the source of adaptation during recognition. For

the transforms, usually either MLLR or CMLLR is used.

2.3.3 Eigenvoice (EV)

Eigenvoice [55, 27, 57, 56] is an eigenspace-based adaptation method which targets

adaptation when the amount of adaptation data is very limited. In the EV approach, a

set of T SD models are trained from T training speakers. Then from each SD model,

a supervector of dimension D is constructed by concatenating all the Gaussian means

in that SD model. After collecting the T supervectors, PCA is applied and only the

first K eigenvectors are used. These K eigenvectors, which we called “eigenvoices”,

capture the most important speaker characteristics from the training speaker. Here, the

dimension is greatly reduced as K < T << D. The new speaker’s supervector, s,

is assumed to lie in the speaker-space spanned by these K eigenvoices. Thus, it is

represented by a weighted sum of the eigenvoices as follows:

s = e0 +
K∑

k=1

wkek (2.17)

where e0 is the mean of all supervectors; ek and wk are the kth eigenvoice and its

weight. The weights are estimated using the new speaker’s adaptation data with an

ML approach called maximum likelihood eigen decomposition (MLED).

The main advantage of EV is that it works better than other adaptation methods un-

der a very limited amount of adaptation data. In [65], EV outperforms MLLR when the

amount of adaptation data is less than 5 seconds. In an alphabet recognition task [57],

EV works better than both MAP and MLLR with only a few letters of adaptation data.

The drawback of EV is that its gain with increasing data is limited and in such cases

MLLR is a better choice.

2.3.3.1 Reference Speaker Weighting (RSW)

Reference speaker weighting [65, 41] is very similar to Eigenvoice adaptation as it also

requires the modeling of a new speaker to lie in a speaker-space. Indeed, they differ

only in how the basis is computed. EV computes a set of orthogonal basis vectors

26



through PCA whereas RSW uses a set of reference speaker vectors as the basis. In [41],

the reference speakers are computed through a hierarchical speaker clustering (HSC)

algorithm. However, it is reported in [65] that simply using the models of all the

training speakers as the reference gives better results.

2.4 Distinct Acoustic Modeling for ASR

While parameter tying has become the main approach in context-dependent acoustic

modeling, it has one potential drawback — if two acoustic units are clustered together,

they become acoustically identical to the speech recognizer. Thus, it has to rely on

other constraints such as lexicon or language models to identify the clustered acous-

tic units. This motivates the use of distinct acoustic modeling where every context-

dependent unit has a unique acoustic score. In this section, we review the past attempts

in distinct acoustic modeling.

2.4.1 Attempts in Distinct Acoustic Modeling

Model interpolation [82, 81, 14] is the earliest example of distinct context-dependent

modeling. It creates trpihone models by a combination of some reference models.

Although these reference models capture weaker contextual information, they are ro-

bustly trained. In [81], the parameters of a triphone model are generated by an interpo-

lation of the model itself with some left-context, right-context or context-independent

models. Each pdf in a model is given a different weight according to its state position

(for example, left-context models have greater weights for pdfs in the leftmost states)

and its number of training samples (for example, if a triphone appears many times,

its weight will dominate). Although interpolation with better trained models makes

triphones usable, the infrequent triphones are still undertrained and lead to a modest

performance.

Recently, another attempt at model interpolation named the back-off acoustic mod-

eling [11] has been proposed. In their work, the acoustic score of a triphone is com-

puted from an interpolation between its native model and models based on broad pho-

netic class contexts. Thus, it can guarantee that every triphone has a distinct acoustic

score.
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Given a sequence of feature vectors O, let a(O, l) be the acoustic score returned by

the model of triphone l. If there are only a few training samples of triphone l, the score

a(O, l) may not be accurate as the model itself is not robustly estimated. The idea of

back-off acoustic models is that they use the back-off score ã(O, l) to replace a(O, l)

so that those inaccurate scores are linearly weighted with some entrusted scores.

Now the triphone label l can generally be replaced by 〈pl|pc|pr〉 where pl, pc and

pr stand for the left phone, current phone and right phone respectively. Let B(p)

denote the broad phonetic class of base phone p , where the mapping function B()

can be constructed according to some acoustic phonetic properties, such as manner

of pronunciation or articulation place. For example, /d/ and /t/ might be assigned to

the same phonetic class so that B(/d/) = B(/t/). Given the broad phonetic class

assignments, the back-off acoustic score ã(O, 〈pl|pc|pr〉) of a triphone 〈pl|pc|pr〉 can

be computed as:

ã(O, 〈pl|pc|pr〉) = w0a(O, 〈pl|pc|pr〉)+wrã(O, 〈pl|pc|B(pr)〉)+wlã(O, 〈B(pl)|pc|pr〉),

where w0, wr and wl are the linear weights for combining the scores and they should

sum up to one. The two back-off scores ã(O, 〈pl|pc|B(pr)〉) and ã(O, 〈B(pl)|pc|pr〉)

can similarly be further decomposed. Here, the weights w0, wr and wl are determined

by the amount of training data. For example, the value of w0 is proportional to the

the occurrences of the triphone 〈pl|pc|pr〉 in the training data. In other words, if the

training data of triphone 〈pl|pc|pr〉 is enough, the value of w0 will get close to one and

thus ã(O, 〈pl|pc|pr〉) = a(O, 〈pl|pc|pr〉).

Although improvements are reported in [11], acoustic-phonetic knowledge is re-

quired to derive the broad phonetic classes. Thus, the method itself is difficult to port

between different phone sets. On the other hand, how to get the “optimal” broad pho-

netic classes for any modeling units requires further investigation.
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CHAPTER 3

EIGENTRIPHONE MODELING

We pointed out the problem of conventional parameter tying methods in Chapter 1

that quantization errors are induced when distinct triphones are tied together and rep-

resented by the same model. To address the problem, we investigate the use of distinct

acoustic modeling with our proposed method called eigentriphone modeling. This

chapter starts with the motivation and then the description of eigentriphone model-

ing. There are three variants of the method, namely the model-based, state-based and

cluster-based eigentriphone modeling. The three variants differ in the modeling unit

(triphones or triphone states) and resolution. For ease of understanding, the basic pro-

cedure of model-based eigentriphone modeling is first given, followed by that of the

other two variants. Two extensions of our modeling framework: derivation of bases us-

ing weighted PCA and estimation of coefficients using penalized maximum likelihood

eigen decomposition (PMLED) are also described. After that, experiments on TIMIT

phoneme recognition and Wall Street Journal continuous speech recognition are given.

3.1 Motivation from Eigenvoice Adaptation

From an adaptation point of view, our eigentriphone modeling is motivated by eigen-

voice adaptation [54] in a way that the estimation of triphones with insufficient training

samples is treated as an adaptation problem. Compared with other speaker adaptation

techniques, the eigenvoice approach is more appropriate for our task. This is because

eigenvoice performs well when the amount of adaptation data is less than 5 seconds

and is better than all other methods when there is only 2 seconds of adaptation data.

Empirically, we define triphones with less than 3 seconds of training data as infrequent

triphones.

The frameworks of eigenvoice adaptation and eigentriphone acoustic modeling are

very similar except for the following differences:
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• Speaker-dependent models in eigenvoice are replaced by triphone models in

eigentriphone modeling. Thus, the dimensionality of the supervectors in eigent-

riphone modeling should be smaller than that in eigenvoice adaptation.

• There are multiple sets of eigenvectors in eigentriphone modeling whereas there

is only one set of eigenvectors in eigenvoice adaptation.

• Usually few speakers are adapted in eigenvoice whereas there are at least thou-

sands of triphones that need to be adapted. In addition, adapted triphones have

to work together as a complete acoustic model.

Figure 3.1: The model-based eigentriphone modeling framework.

3.2 The Basic Procedure of Eigentriphone Modeling

In eigentriphone modeling, a set of eigenvectors is derived from the triphones us-

ing principle component analysis (PCA). These eigenvectors, which we call eigentri-

phones, capture the most important context-dependent characteristics. Each triphone /

triphone state is then modeled as a point in the space spanned by the eigentriphones. By

using only the leading eigentriphones, the dimensionality of the new space is greatly

reduced compared with the original acoustic space, so that even the infrequent tri-

phones / triphone states can be estimated robustly with few training samples. There are
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three variants of the method, namely the model-based, state-based and cluster-based

eigentriphone modeling. The three variants differ in the modeling unit (triphones or

triphone states) and resolution. For the ease of understanding, the basic procedures of

model-based eigentriphone modeling are first given and then the other two variants.

To give an idea of the general framework, Fig. 3.1 shows an overview of model-based

eigentriphone acoustic modeling.

3.2.1 Model-based Eigentriphone Modeling

In model-based eigentriphone modeling, the whole triphone model, including all the

states, is adapted using the same set of eigentriphone coefficients. The supervectors

are constructed by concatenating the Gaussian mean vectors from all the states of each

triphone HMM of a base phone. The eigenvectors generated by the PCA have the same

dimensionality as the supervectors and they construct a “triphone model space”. Each

triphone model is modeled as a point in this space and the eigentriphone coefficients

are estimated by maximum-likelihood eigen-decomposition (MLED) [54].

The basic procedure of model-based eigentriphone modeling is described as below.

The following procedures are repeated for each base phone i using all its triphones that

appeared in the training corpus:

STEP 1 : Monophone hidden Markov model (HMM) of base phone i is first estimated

from the training data. Each monophone is a 3-state strictly left-to-right HMM, and

each state is represented by an M -component Gaussian mixture model (GMM).

STEP 2 : The monophone HMM of base phone i is then cloned to initialize all its Ni

triphones in the training data. Note that (a) unlike common triphone cloning from

an HMM with 1-component GMM states, in our eigentriphone procedure, triphones

are cloned from an monophone HMM with M -component GMM states, and (b) no

state tying is performed.

STEP 3 : Re-estimate only the Gaussian means of the triphones after cloning; their

Gaussian covariances and mixture weights (which are copied from their base phone

HMM) remain unchanged.

STEP 4 : Create a triphone supervector vip for each triphone p of base phone i by
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stacking up all the Gaussian mean vectors from its three states as below.

vip =

[
µip11, µip12, · · · , µip1M ,
µip21, µip22, · · · , µip2M ,
µip31, µip32, · · · , µip3M

] , (3.1)

where µipjm, j = 1, 2, 3, and m = 1, 2, . . . ,M is the mean vector of the mth

Gaussian component at the jth state of triphone p of base phone i. Similarly, a

monophone supervector mi is created from the monophone model of the base phone

i.

STEP 5 : Let Ni be the number of triphones of base phone i. Collect all triphone super-

vectors vi1, vi2, . . ., viNi
as well as the monophone supervector mi of base phone i,

and derive an eigenbasis from their correlation or covariance matrix using principal

component analysis (PCA). The covariance matrix is computed as follows:

1

Ni

∑
p

(vip − mi)(vip − mi)
′ . (3.2)

Notice that the monophone supervector mi, instead of the mean of triphone super-

vectors, is used to “center” triphone supervectors so that in the worst case the poor

triphones may fall back to the monophone HMM1.

STEP 6 : Arrange the eigenvectors {eik, k = 1, 2, . . . , Ni} in descending order of their

eigenvalues λik, and pick the top Ki (where Ki ≤ Ni) eigenvectors to represent the

eigenspace of base phone i. These Ki eigenvectors are now called eigentriphones of

phone i. In general, different base phones have different numbers of eigentriphones,

depending on the criterion used to decide the value of Ki.

STEP 7 : Now the supervector vip of any triphone p of base phone i is assumed to lie

in the space spanned by the Ki eigentriphones. Thus, we have

vip = mi +

Ki∑
k=1

wipkeik , (3.3)

where wip = [wip1, wip2, . . . , wipKi
] is the eigentriphone coefficient vector of tri-

phone p in the “triphone space” of base phone i.

1Empirically, we find that centering by the monophone supervector gives slightly better performance
than if the mean of the triphone supervectors is used.
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STEP 8 : Estimate the eigentriphone coefficient vector wip of any triphone p by maxi-

mizing the likelihood L(wip) of its training data:

L(wip)= constant − (3.4)∑
j,m,t

γipjm(t)(xt − µipjm(wip))
′C−1

ipjm(xt − µipjm(wip))

where Cipjm and γipjm(t) are the covariance and occupation probability of the

mth Gaussian at the jth state of triphone p of base phone i given observation xt.

The procedure is called maximum-likelihood eigen-decomposition (MLED) in [54].

Finally, the Gaussian mean of the mth mixture at the jth state of triphone p can be

obtained from vip as

µipjm = mijm +

Ki∑
k=1

wipkeikjm . (3.5)

STEP 9 : If either the eigentriphone coefficients converge or the recognition accuracy

of a development data set is maximized, go to STEP 10. Otherwise, re-align the

training data using the model in STEP 8, re-estimate the Gaussian means and repeat

STEP 4 – 9.

STEP 10 : After the eigentriphone “adaptation” of the Gaussian means, the Gaussian

covariances and mixture weights of a triphone are re-estimated if its sample count is

greater than the thresholds θv and θw respectively. Otherwise, they remain the same

as those of the monophone model from which they are cloned.

3.2.2 State-based Eigentriphone

In model-based eigentriphone acoustic modeling, high-dimensional triphone supervec-

tors are constructed by concatenating the Gaussian mean vectors from all the (three)

states of each triphone HMM of a base phone. One may also apply the modeling

framework to sub-phonetic units. Motivated by the findings that the correlation be-

tween states is usually stronger than the correlation between the entire HMMs [79],

state-based eigentriphone modeling was also investigated. Now, an eigenbasis is de-

veloped for each state of each base phone in a procedure similar to that of model-based

eigentriphone modeling in Section 3.2.1. Compared with model-based eigentriphone
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acoustic modeling, state-based eigentriphone acoustic modeling produces three times

more eigenbases as well as the eigentriphone coefficients, but its eigenvector dimen-

sion is only 1/3 of the former.

The basic procedure of state-based eigentriphone modeling is described as below.

The following procedures are repeated for each state j of each base phone i:

STEP 1 : Monophone hidden Markov model (HMM) of base phone i is first estimated

from the training data. Each monophone is a 3-state strictly left-to-right HMM, and

each state is represented by an M -component Gaussian mixture model (GMM).

STEP 2 : The monophone HMM of base phone i is then cloned to initialize all its Ni

triphones in the training data.

STEP 3 : Re-estimate only the Gaussian means of the triphones after cloning; their

Gaussian covariances and mixture weights (which are copied from their base phone

HMM) remain unchanged.

STEP 4 : Create a triphone state supervector vijp for state j of triphone p of base phone

i by stacking up all the Gaussian mean vectors as below.

vijp =
[

µipj1, µipj2, · · · , µipjM ] , (3.6)

where µipjm, m = 1, 2, . . . ,M is the mean vector of the mth Gaussian component

at the jth state of triphone p of base phone i. Similarly, a state supervector mij is

created from the corresponding monophone state model.

STEP 5 : Let Ni be the number of triphones of base phone i. Collect all triphone state

supervectors vij1, vij2, . . ., vijNi
as well as the monophone state supervector mij of

base phone i, and derive an eigenbasis from their correlation or covariance matrix

using principal component analysis (PCA). The covariance matrix is computed as

follows:
1

Ni

∑
p

(vijp − mij)(vijp − mij)
′ . (3.7)

STEP 6 : Arrange the eigenvectors {eijk, k = 1, 2, . . . , Ni} in descending order of

their eigenvalues λijk, and pick the top Kij (where Kij ≤ Ni) eigenvectors to rep-

resent the eigenspace of state j of base phone i.
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STEP 7 : Now the supervector vijp of state j of any triphone p of base phone i is

assumed to lie in the space spanned by the Kij eigentriphones. Thus, we have

vijp = mij +

Kij∑
k=1

wijpkeijk , (3.8)

where wijp = [wijp1, wijp2, . . . , wipKij
] is the eigentriphone coefficient vector of

state j of triphone p of base phone i.

STEP 8 : Estimate the eigentriphone coefficient vector wijp of state j of any triphone p

by MLED. Finally, the Gaussian mean of the mth mixture at the jth state of triphone

p can be obtained from vijp as

µipjm = mijm +

Kij∑
k=1

wijpkeijkm . (3.9)

STEP 9 : If either the eigentriphone coefficients converge or the recognition accuracy

of a development data set is maximized, go to STEP 10. Otherwise, re-align the

training data using the model in STEP 8, re-estimate the Gaussian means and repeat

STEP 4 – 9.

STEP 10 : After the eigentriphone “adaptation” of the Gaussian means, the Gaussian

covariances and mixture weights of a triphone are re-estimated if its sample count is

greater than the thresholds θv and θw respectively. Otherwise, they remain the same

as those of the monophone state model from which they are cloned.

3.2.3 Cluster-based Eigentriphone

Both the model-based and state-based eigentriphone acoustic modeling methods dis-

cussed above derive eigenbases from all triphones of a base phone. In fact, the eigent-

riphone modeling framework is very flexible and can be applied to any group of pho-

netic or sub-phonetic units provided that they may be represented by supervectors of

the same dimension. For example, if training data are really scarce, one may perhaps

derive eigentriphones from broad phonetic classes (such as vowels, fricatives, etc.);

on the other hand, when there are sufficient data, one may divide the triphones of a

base phone into groups and derive eigentriphones from each triphone group. Thus,
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we investigate a more general framework of deriving eigentriphones from clusters of

triphones or triphone states , which we call cluster-based eigentriphone acoustic mod-

eling. In particular, we investigate eigentriphone modeling with general state clusters.

Common clustering algorithms such as k-means clustering, agglomerative hierar-

chical clustering, and decision tree, together with a well-defined distance metric or

impurity function may be used to generate triphone or state clusters for cluster-based

eigentriphone modeling. Instead of delving into various clustering algorithms, we re-

sort to the use of phonetic decision tree for the purpose since it has been applied suc-

cessfully to a few tasks such as state tying in ASR. In fact, we propose to use the

triphone state clusters represented by the nodes in the same state-tying tree for deriv-

ing eigentriphones. There are several benefits for the choice:

• In a typical ASR system, there are 39 base phones and the triphone models are

3-state HMMs. Thus, there will be 39 sets of model-based eigentriphones and

39 × 3 = 117 sets of state-based eigentriphones. On the other hand, there are

many more tied states — usually hundreds or even thousands — in an ASR

system, which means that the use of the state clusters from tied-states will allow

a higher resolution of eigentriphone modeling than model-based or state-based

eigentriphone modeling. Moreover, the state-tying tree gives one the flexibility

to decide the modeling resolution by going up or down the phonetic decision tree

and choose the right nodes for cluster-based eigentriphone derivation2.

• State-based eigentriphone modeling is a special case of cluster-based eigentri-

phone modeling in which each cluster consists of respective states from all tri-

phones of a base phone. However, cluster-based eigentriphone modeling using

tied-state clusters is computationally more efficient because the number of tied

states is usually much greater than the number of monophone states so that there

are fewer triphone state supervectors in each tied-state cluster to derive eigentri-

phones.

• Most importantly, unseen triphones may also be synthesized using the same pho-

netic state-tying tree that defines state clusters for cluster-based eigentriphone

2Note that the nodes selected for conventional state tying need not be the same as the nodes selected
for cluster-based eigentriphone modeling; the two processes simply use the same phonetic decision
tree.
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modeling as in conventional tied-state triphone HMM systems. That is, since

eigentriphone modeling starts with a well-trained tied-state HMM system, the

latter will be kept to synthesize unseen triphones as in general practice3.

• Cluster-based eigentriphone modeling does not require any modification in the

tied-state GMM-HMM training procedures. Thus, our method can be viewed as

a kind of post-processing that can easily fit into most existing ASR systems.

The basic procedure of cluster-based eigentriphone modeling is described as below.

First, we apply decision-tree state clustering to construct a set of conventional tied-state

triphone HMMs where each state is represented by an M-component GMM. Then the

following procedure is repeated for each state cluster i, consisting of Ni members:

STEP 1 : Untie the Gaussian means of all the triphone states in a state cluster. The

means of the cluster GMM are then cloned to initialize all untied triphone states in

the cluster. Note that the Gaussian covariances and mixture weights of the states in

the cluster are still tied together.

STEP 2 : Re-estimate only the Gaussian means of triphone states after cloning. Their

Gaussian covariances and mixture weights remain unchanged as their state cluster

GMM does.

STEP 3 : Create a triphone state supervector vip for each triphone state p in state cluster

i by stacking up all its Gaussian mean vectors from its M -component GMM as

below

vip =
[

µip1, µip2, · · · , µipM

]
, (3.10)

where µipm, m = 1, 2, . . . ,M is the mean vector of the mth Gaussian component.

Similarly, a state cluster supervector mi is created from the GMM of state cluster i.

STEP 4 : Collect the triphone state supervectors {vi1, vi2, . . ., viNi
} as well as the state

cluster supervector mi of cluster i, and derive an eigenbasis from their covariance

or correlation matrix using PCA.

3Although eigentriphone modeling opens up another possibility of approximating an unseen triphone
by one of the ensuing distinct triphone models that is believed to be most “similar” to the unseen one
instead of by the tied states, simple ways to define such similarity did not give better results; further
investigation is needed. For simplicity, we still synthesize the unseen triphones using the tied states
from the phonetic state-tying tree.
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STEP 5 : Arrange the eigenvectors {êik, k = 1, 2, . . . , Ni} in descending order of their

eigenvalues λik, and pick the top Ki (where Ki ≤ Ni) eigenvectors to represent the

eigenspace of state cluster i. Note that different state clusters may have different

Ki.

STEP 6 : The supervector vip of any triphone state p is assumed to lie in the space

spanned by the Ki eigentriphones. Thus, we have

vip = mi +

Ki∑
k=1

wipkeik , (3.11)

where wip = [wip1, wip2, . . . , wipKi
] is the eigentriphone coefficient vector of tri-

phone p in the “triphone state space” of cluster i.

STEP 7 : Estimate the eigentriphone coefficient vector wip of any triphone state p by

MLED.

3.3 Extensions to the Basic Procedure

The basic procedure of eigentriphone modeling is motivated from the eigenvoice adap-

tation framework. However, the eigenvoice adaptation framework is originally devel-

oped to solve the speaker adaptation problem. Thus, there are rooms for improvement

in the basic procedure of our modeling framework. To make the eigentriphone mod-

eling framework more robust, the modeling framework are improved in the following

two aspects:

• In the basic procedure, the triphones are considered “equal” when they are used

to derive the eigentriphones. However, due to the uneven distribution of tri-

phones in the training data, some triphones are better trained than others and

they are more reliable. Thus, it is desirable to incorporate some notion of tri-

phone reliability in the construction of the eigentriphones.

• After the derivation of eigentriphones, a hard decision is made on the dimension-

ality of the eigenspace (or, equivalently, the number of eigentriphones), Ki, to

represent all the triphone models of base phone i. However, the rationale is that
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a triphone with more adaptation data should use a larger K. Thus, it is desirable

to deduce an automatic way of finding the K for each adapted triphone.

We propose using weighted PCA [50] and regularization [49] to solve the two

problems respectively.

3.3.1 Derivation Using Weighted PCA

The use of weighted PCA instead of standard PCA has at least two advantages.

Firstly, it avoids defining and tuning of a sample count threshold to classify the

triphones into frequent and infrequent sets. Instead, the use of weighted PCA allows

eigentriphones to be derived by taking all triphones into account. This is made possible

by incorporating some measure of reliability of each triphone in the construction of the

eigenbasis that is related to its training data sufficiency. In this thesis, each triphone

supervector is weighted by its sample count in the weighted PCA procedure4. Thus,

for the case of model-based eigentriphone modeling, the covariance matrix in the basic

procedure is replaced by

1

ni

∑
p

nip(vip − mi)(vip − mi)
′ , (3.12)

where nip is the sample count of the triphone p of base phone i, and ni =
∑

p nip.

Secondly, as we can see from Fig. 3.2, the eigenvalue spectrum produced by weighted

PCA rises more sharply than the spectrum given by standard PCA. It means that fewer

leading eigentriphones produced by weighted PCA can capture more variations in the

triphone supervectors. As a result, weighted PCA allows the use of fewer eigentri-

phones in eigentriphone acoustic modeling. This has implications on the space re-

quirement to store the models produced by eigentriphone modeling. Since the models

produced by eigentriphone modeling are distinct, each observed triphone — even those

with few samples — in the database will be represented by a distinct HMM. Conse-

quently, the model size resulting from eigentriphone modeling is much bigger than

conventional tied-state HMMs. With the use of weighted PCA, fewer eigentriphones

may be employed to model each triphone, and the model size can be reduced.

4In general, the weights may be a function of the sample count nip such that the weights increase with
nip.
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Figure 3.2: Variation coverage by the number of eigentriphones derived from base
phone [aa]. The graph is plotted using the WSJ training corpus.

3.3.2 Soft Decision on the Number of Eigentriphones Using Regu-
larization

To avoid making a hard decision on the number of eigentriphones Ki to use for each

base phone i, a new penalized log-likelihood function Q(wip) is defined for the esti-

mation of the interpolation coefficients using all eigentriphones:

Q(wip) = L(wip) − βR(wip) , (3.13)

where β is the regularization parameter that controls the relative importance of the

regularizer R(·) compared with the likelihood term L(·) of Eqn. (3.4). The regularizer

should be chosen so that the more informative eigentriphones (with larger eigenvalues)

are automatically emphasized and the less informative eigentriphones (with smaller

eigenvalues) are automatically de-emphasized. In this thesis, the following regularizer

is found to be effective

R(wip) =

Ni∑
k=1

w2
ipk

λik

. (3.14)

The proposed regularizer represents a scaled Euclidean distance of the triphone

from the base phone in the space spanned by the eigentriphones. It has the following

properties:
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• The squared coefficient of each eigentriphone, wipk, is inversely scaled by its

eigenvalue so that a less informative eigentriphone will have less influence on

the “adapted” triphone model.

• When there are a lot of training data, the likelihood term will dominate the ob-

jective function Q(wip), and the “adapted” triphone model will converge to its

conventional Baum-Welch training estimate.

• On the other hand, for a triphone with a limited amount of training data, the

penalty term will dominate and a smaller scaled Euclidean distance between the

triphone and base phone is preferred. In other words, its “adapted” triphone

model will fallback to its monophone model.

Thus, in effect, the regularizer of Eqn. (3.14) will provide a soft decision on the number

of eigentriphones to use for each triphone (and not just for each base phone).

Differentiating the optimization function Q(wip) of Eqn. (3.13) w.r.t. each eigent-

riphone coefficient wipk, and setting each derivative to zero, we have,

Ni∑
n=1

Aipknwipn + β
wipk

λik

= Bipk ∀k = 1, 2, · · ·Ni (3.15)

where

Aipkn =
∑
j,m

e′ikjmC−1
ipjmeinjm

(∑
t

γipjm(t)

)

Bipk =
∑
j,m

e′ikjmC−1
ipjm

(∑
t

γipjm(t)(xt − mijm)

)
.

The eigentriphone coefficients may easily be found by solving the system of Ni

linear equations represented by Eqn. (3.15), and the Gaussian means of the new model

may be computed using Eqn. (3.9).

As pointed out in Section 3.3.1, weighted PCA may allow pruning of eigentri-

phones in the final models. When that is performed, the proposed soft decision on the

number of eigentriphones using regularization is applied on all the remaining eigentri-

phones after eigentriphone pruning. We called this new way of estimating coefficients

penalized maximum-likelihood eigen-decomposition (PMLED).
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3.4 Experimental Evaluation

Our proposed eigentriphone modeling method was evaluated on two speech recogni-

tion tasks: phoneme recognition on TIMIT [99] and medium-vocabulary continuous

speech recognition on the Wall Street Journal (WSJ) [75] 5K task.

In both tasks, we compare the performance of the following five acoustic modeling

methods:

• baseline1: conventional Baum-Welch training of triphone HMMs with no state

tying.

• baseline2: conventional Baum-Welch training of tied-state triphone HMMs.

• model-based eigentriphone modeling of triphone HMMs as described in Sec-

tion 3.2.1 (with no tied states).

• state-based eigentriphone modeling of triphone HMMs as described in Sec-

tion 3.2.2 (with no tied states).

• cluster-based eigentriphone modeling of triphone HMMs using tied-state clus-

ters as described in Section 3.2.3 (but no tied states).

Cross-word triphones5 were employed in all experiments and modeled as continuous-

density hidden Markov models (CDHMMs). Each CDHMM was a 3-state strictly

left-to-right HMM in which the state distributions were modeled by a mixture of 16

Gaussians with diagonal covariances. In addition, there were a 1-state short pause

model and a 3-state silence model whose middle state was tied to the short pause state.

Feature vectors were standard 39-dimensional MFCC acoustic vectors, and they were

extracted from the training speech data every 10ms over a window of 25ms. The HTK

toolkit [98] was used for HMM training and decoding with a beam width of 350.

All eigentriphone modeling experiments employed (weighted) PCA using correla-

tion matrices, and the soft decision on the number of eigentriphones with the use of

regularization to determine the eigentriphone coefficients. All system parameters such

5Triphones are constructed across word boundaries.
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as the regularization parameter β, grammar factor, insertion penalty, as well as the op-

timal number of tied states for conventional HMM training, and the optimal number

of state clusters for cluster-based eigentriphone modeling were determined using the

respective development data set6.

Table 3.1: Information of TIMIT data sets.
Data Set #Speakers #Utterances #Hours
training 462 3,696 3.14
core test 24 192 0.16

development 24 192 0.16

3.4.1 Phoneme Recognition on TIMIT

3.4.1.1 Speech Corpus and Experimental Setup

The standard TIMIT training set which consists of 3,696 utterances from 462 speakers

was used to train the various models, whereas the standard core test set which consists

of 192 utterances spoken by 24 speakers was used for evaluation. The development

set is part of the complete test set, consisting of 192 utterances spoken by 24 speakers.

Speakers in the training, development, and test set do not overlap. A summary of these

data sets is shown in Table 3.1.

We followed the standard experimentation on TIMIT, and collapsed the original 61

phonetic labels in the corpus into a set of 48 phones for acoustic modeling; the latter

were further collapsed into the standard set of 39 phonemes [61] for error reporting.

Moreover, the glottal stop [q] was ignored. At the end, there were altogether 15,546

cross-word triphone HMMs based on 48 base phones. Phoneme recognition was per-

formed using Viterbi decoding with a trigram phone language model (LM) that was

trained from the TIMIT training transcriptions using the SRILM language modeling

toolkit [87]. The trigram LM has a perplexity of 14.39 on the core test set.

6Firstly, the grammar factor and the insertion penalty were optimized in the conventional tied-state
HMM system, and then used without modification in other systems. Secondly, for different number
of state clusters, cluster-based eigentriphone modeling was run and the regularization parameter β
was tuned, all using the development data. Finally, the number of state clusters that gave the best
recognition result for the development data was recorded.
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3.4.1.2 Acoustic Modeling

Five sets of triphone HMMs were built according to the five acoustic modeling meth-

ods mentioned at the beginning of Section 3.4. For the conventional tied-state tri-

phone HMM system (baseline2), there are a total of 587 tied states7. The dimen-

sion of triphone supervectors in model-based eigentriphone modeling is 3(states) ×

16(mixtures)×39(MFCC) = 1, 872. The dimension of triphone supervectors in state-

based or cluster-based eigentriphone modeling is 16(mixtures) × 39(MFCC) = 624.

The number of bases for the model-based, state-based and cluster-based eigentriphone

modeling is 44, 132 and 587 respectively8. In fact, cluster-based eigentriphone mod-

eling was conducted using the clusters defined by the same 587 tied states in the base-

line2 system.

3.4.1.3 Results and Discussion

Table 3.2: Phoneme recognition accuracy (%) of various systems on TIMIT core test
set using phone-trigram language model.

Model Accuracy
baseline1: conventional training (no state tying) 68.63
baseline2: conventional tied-state HMM training 71.95

model-based eigentriphone training model (no state tying) 71.27
state-based eigentriphone training model (no state tying) 71.03

cluster-based eigentriphone training model (587 state clusters) 72.90

Phoneme recognition results of the five systems are compared in Table 3.2.

Though states are not tied in the three eigentriphone modeling methods, they out-

perform conventional HMM training without state tying by 3–4% absolute. In fact,

their phoneme recognition performance is comparable to conventional tied-state HMM

training, and cluster-based eigentriphone modeling actually outperforms the latter by

an absolute of 1%.

7The number of tied states was selected to maximize the phoneme recognition accuracy of the de-
velopment set. It turns out the number is close to but not optimal on the core test set. (See Fig.
3.4.)

8Among the 48 phones that were selected for acoustic modeling, four phones are different variants of
silence and closure, and they were modeled as monophone HMMs.
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Figure 3.3: Improvement of cluster-based eigentriphone modeling over state-based
eigentriphone modeling on TIMIT phoneme recognition.

Among the three eigentriphone modeling methods, the cluster-based method is the

best, followed by the model-based method and then the state-based method. Both the

model-based method and state-based method estimate eigenbases from all triphones

of a base phone, but the former method concatenates the three state supervectors of

each triphone into one long triphone supervector for basis derivation. The better per-

formance of the model-based method suggests that better eigenbases may be produced

by making use of the correlation among the triphone HMM states. On the other hand,

both the state-based method and the current cluster-based method create eigenbases at

the state level. The better performance of the cluster-based method must be attributed

to the higher modeling resolution — 587 state clusters in the cluster-based method ver-

sus 132 state clusters in the state-based method — which more than compensates for

the loss of state correlation that is otherwise maintained in the model-based method,

and gives the best performance.

We further compared the performance of state-based eigentriphone modeling with

cluster-based eigentriphone modeling when different forms of PCA were used, and

when different proportions of eigentriphones were pruned. Eigentriphone pruning was

done by first arranging the eigentriphones of each basis in descending order of their

eigenvalues, and then retaining different numbers of leading eigentriphones for mod-
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Figure 3.4: TIMIT phoneme recognition performance of cluster-based eigentriphone
modeling and conventional tied-state HMM training with varying number of state clus-
ters or tied states.

eling the triphones. The result is shown in Fig. 3.3. Since the cluster-based method

employs more state clusters than the state-based method (587 vs. 132), the former

creates about four times more eigenbases than the latter. Equivalently, the number

of eigentriphones in each eigenbasis produced by the former is only about 1/4 of the

latter on average. However, according to Fig. 3.3, one may still prune 60% of the

eigentriphones in both methods without any performance loss9. The figure also shows

that weighted PCA is more effective than standard PCA in deriving the eigentriphones

in both methods.

Table 3.2 only shows the best results of various systems under the optimal set-

tings determined by the development set. The effect of the number of state clusters on

cluster-based eigentriphone modeling was also studied and compared with the effect

of using different numbers of tied states on conventional HMM training as shown in

Fig. 3.4. The results show that for the same number of state clusters (or tied states),

cluster-based eigentriphone modeling always performs better than conventional tied-

state HMM training, and the optimal number of state clusters is similar for both acous-

tic modeling methods. The difference between the two curves in the figure represents

9Note that 40% of eigentriphones in the cluster-based eigentriphone modeling method contain fewer
eigentriphones than 40% of eigentriphones in the state-based eigentriphone modeling method. Specif-
ically, the former is about 1/4 of the latter.
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the amount of quantization error that is recovered by the current cluster-based eigen-

triphone modeling method. The result of a significant test run on the performance

difference between conventional tied-state HMM training and cluster-based eigentri-

phone training is shown in Table B.1 in Appendix B.

Table 3.3: Information of WSJ data sets. The out-of-vocabulary (OOV) is computed
with respect to to the 5K vocabulary defined in the recognition task.

Data Set #Speakers #Utterances Vocab Size OOV LM Perplexity
SI284 283 37,413 13,646 11.95% —

si dt 05.odd 10 248 1,260 0 —
Nov’92 8 330 1,270 0 56.94
Nov’93 10 215 1,004 0.29% 61.82

3.4.2 Word Recognition on Wall Street Journal

3.4.2.1 Speech Corpus and Experimental Setup

The standard SI-284 Wall Street Journal (WSJ) training set was used for training

the speaker-independent model. It consists of 7,138 WSJ0 utterances from 83 WSJ0

speakers and 30,275 WSJ1 utterances from 200 WSJ1 speakers. Thus, there is a total

of about 70 hours of read speech in 37,413 training utterances from 283 speakers. All

the training data are endpointed. The standard Nov’92 and Nov’93 5K non-verbalized

test set were used for evaluation using the standard 5K-vocabulary trigram language

model (LM) that came with the WSJ corpus. The set si dt 05.odd contains alternate

sentences from the 1993 WSJ 5K Hub development test set after sentences with OOV

words were removed. This was used to tune the system parameters. A summary of

these data sets is shown in Table 3.3.

3.4.2.2 Acoustic Modeling

There were 18,777 cross-word triphones based on 39 base phones. For the conven-

tional tied-state system (baseline2), the best performance was obtained with 7,374

tied states. The dimension of triphone supervectors in model-based, state-based, and

cluster-based eigentriphone modeling are the same as those in the TIMIT experiment,
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Table 3.4: Word recognition accuracy (%) of various systems on the WSJ 5K task
using trigram language model.

Model Nov’92 Nov’93
baseline1: conventional training; no state tying 95.61 94.05

baseline2: conventional tied-state HMM training 96.32 94.21
model-based eigentriphone training model 96.26 94.52
state-based eigentriphone training model 95.87 94.15

cluster-based eigentriphone training model 96.32 94.54
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Figure 3.5: WSJ recognition performance of cluster-based eigentriphone modeling
and conventional tied-state HMM training with varying number of state clusters or
tied states.

namely 1872, 624, and 624, respectively; the number of bases for the three methods is

39, 117, and 7,374 respectively.

3.4.2.3 Results and Discussion

The word recognition results of various systems are shown in Table 3.4.

Comparing the performance of baseline1 and baseline2, we once again observe

the effectiveness of state tying in triphone acoustic modeling. However, eigentri-

phone modeling can be an alternative: all the three variants of the method give com-

parable, if not better, recognition performance on WSJ. The state-based method is

again the weakest among the three eigentriphone modeling methods; the model-based
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method and the cluster-based method have similar performance with the latter be-

ing slightly better. On the Nov’92 test set, the cluster-based eigentriphone modeling

method has the same word recognition accuracy as the conventional tied-state HMM

training method, but on the Nov’93 test set, the former actually reduces the word error

rate of the latter by 5.7%.

The performance of the cluster-based eigentriphone modeling method and con-

ventional tied-state HMM training method over varying number of state clusters or

tied states was also studied. The results are shown in Fig. 3.5. It can be seen that

cluster-based eigentriphone modeling always performs better than conventional tied-

state HMM training for the same number of state clusters or tied states. Note that on

the Nov’92 test set, cluster-based eigentriphone modeling may achieve a better result

of 96.69% word accuracy by using 3,690 state clusters. The worse result of the method

in Table 3.4 was obtained with 7,374 state clusters which were found to be optimal on

the development set. The results of significant tests run on the performance differ-

ence between conventional tied-state HMM training and cluster-based eigentriphone

training are shown in Table B.2 and Table B.3 in Appendix B.

Table 3.5: Count of infrequent triphones in the test sets of TIMIT and WSJ for different
definition of infrequency. The WSJ figures here refer to SI284 training set.

Sample Count Below Nov’92 Nov’93 TIMIT
10 0.82% 0.94% 26.29%
20 1.75% 2.13% 40.66%
30 2.55% 3.01% 50.36%
40 3.55% 3.99% 57.10%
50 4.53% 5.15% 61.89%

3.4.3 Analysis

We further analyze the different behaviour of eigentriphone modeling in the two tasks

investigated in this proposal.

3.4.3.1 Different Recognition Improvements in TIMIT and WSJ

From the recognition results of TIMIT (Table 3.2) and WSJ (Table 3.4), it is noticed

that the performance gain is much more noticeable in TIMIT than in WSJ, and the gain
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in Nov’93 is also higher than in Nov’92.

Since the utmost strength of our new eigentriphone acoustic modeling method is

its ability to construct distinct models for each seen triphone — both frequent and

infrequent triphones — in the training set robustly, we believe that the performance

gain in a task should depend on how often those triphones that are infrequent in the

training set appear in the corresponding test set. If more of these infrequent triphones

appear in the test set, and if they are better estimated by eigentriphone modeling than

by conventional tied-state HMM training, then the performance gain by eigentriphone

modeling should be higher. Thus, we count the amount of infrequent triphones in the

test sets of TIMIT and WSJ with different definitions of infrequency, and the finding

is summarized in Table 3.5.

From the table, it can be seen that infrequent triphones appear much more in TIMIT

than in WSJ 10. For example, if we consider triphones that appear fewer than 30 times

in the training set as infrequent triphones, which are more likely to be under-trained,

then 50.36% of the triphones in the TIMIT test set are infrequent in the TIMIT train-

ing set, whereas the corresponding figures for WSJ Nov’92 and Nov’93 are 2.55%

and 3.01% respectively. In the baseline tied-state HMM system, these infrequent tri-

phones are modeled by tied-state HMMs, while in our new eigentriphone systems, they

are distinctly modeled as linear combinations of eigentriphones. Since the infrequent

triphones occur rarely in WSJ test sets, the advantage of eigentriphone modeling is

small. On the other hand, infrequent triphones appear much more in the test set of

TIMIT, thus the performance gain by eigentriphone modeling over conventional tied-

state HMM training is more obvious and significant in TIMIT.

3.4.3.2 Effectiveness of Adapting Infrequent Triphones

In order to show the effectiveness of adapting infrequent triphones with our proposed

method, we would like to repeat the WSJ experiment with a smaller training set. Here

the SI84 WSJ training set is used. It consists of the 7,138 WSJ0 utterances from only 83

WSJ0 speakers and is thus a subset of the SI284 training set. There are about 14 hours

10This is because the purposes of the two tasks are different. TIMIT dataset is collected for phoneme
recognition and it aims to cover a larger diversity of phoneme combinations. In contrast, WSJ is
designed for continuous speech recognition and the sentences chosen in the task have normally limited
the percentage of infrequent triphones.
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Table 3.6: Word recognition accuracy (%) on the WSJ Nov’92 5K task using the SI84
training set and a bigram language model. θm = 30 means only triphones with more
than 30 samples will be adapted. The remaining triphones were copied from the con-
ventional tied-state system.

Model θm Nov’92
baseline2: conventional tied-state HMM training - 93.09

50 93.29
40 93.33

cluster-based eigentriphone training model 30 93.33
20 93.42
10 93.67
0 93.89

Table 3.7: Performance of cluster-based eigentriphone modeling and conventional
tied-state triphones using different WSJ training sets. Recognition has done on the
WSJ Nov’92 5K evaluation set using a bigram language model.

Training Set Tied-state Cluster-based ETM
SI84 93.09 93.89
SI284 94.25 94.30

Table 3.8: Count of infrequent triphones in the WSJ nov’92 test set with respect to
different training set.

Sample Count Below Nov’92(w.r.t. SI84) Nov’92(w.r.t. SI284)
10 5.37% 0.82%
20 11.17% 1.75%
30 15.67% 2.55%
40 19.47% 3.55%
50 23.49% 4.53%
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of read speech in this training set. The accuracy results of cluster-based eigentriphone

modeling with different values of θm are shown in Table 3.6. θm is the threshold where

only triphones with number of samples more than θm will be updated. From the results,

we can see that the error rate reduction becomes smaller when triphones with the fewest

samples are not adapted. Thus, we believe that most of the gain with eigentriphone

modeling is attributed to the better estimation of the infrequent triphones.

Table 3.7 compares the performance of cluster-based eigentriphone modeling with

different training sets. First of all, it is not surprising to see that the overall accuracy

of using the SI84 training set is lower than using SI284 as the SI84 training set is only

about 1/5 of the SI284 training set. However, our method obtained a higher error rate

reduction when the SI84 training set was used. This can be explained by the higher

poor triphone rate in Table 3.8 when a smaller training set is used.

3.4.3.3 Effectiveness of Using PMLED

 90.5

 91

 91.5

 92

 92.5

 93

 93.5

 94

 10  20  30  40  50  60  70  80  90  100

W
or

d 
R

ec
og

ni
tio

n 
A

cc
ur

ac
y 

(%
)

Number of Eigenvectors (%)

Baseline
PMLED

MLED

Figure 3.6: Comparison between PMLED and MLED when different proportions of
eigentriphones are used.

The WSJ recognition task with the use of the SI84 training set is again repeated to

show the effectiveness of using PMLED to determine the eigentriphone coefficients.

The comparison of using PMLED and the classical MLED on cluster-based eigent-

riphone modeling with different proportions of eigentriphones is shown in Fig. 3.6.
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From the figure, we observe the following:

• The performance of classical MLED is sensitive to the number of eigentriphones.

The accuracy falls rapidly when more than 20% of eigentriphones are used. It is

because when there is too much eigentriphones, the triphones with small amount

of training data cannot be robustly estimated. When all the eigentriphones are

used, the triphones included in the reference set will fall back to their conven-

tional ML estimates.

• When PMLED is used, the accuracy is less sensitive to the number of eigent-

riphones as the regularization avoids making a hard decision on the number of

eigentriphones. The overall performance of using PMLED is better than the

system that uses the best number of eigentriphones.

Table 3.9: Computational requirements during decoding by the models estimated by
conventional HMM training and cluster-based eigentriphone modeling. (See text for
details)

ASR Task Comparison Conventional
HMM Training

Eigentriphone
Modeling

TIMIT #Distinct States 587 46,638
Memory (MB) 1.47 49.2
Relative Decode Time 1.00 1.80

WSJ #Distinct States 7,374 56,331
Memory (MB) 18.4 75.3
Relative Decode Time 1.00 1.25

3.4.3.4 Additional Computational Requirements

There is a price to pay for the better performance of eigentriphone modeling. Since

the triphone models produced by eigentriphone modeling are all distinct, their model

size is much bigger than the models produced by conventional tied-state HMM train-

ing. Throughout the decoding process, the triphone state space of eigentriphone-

constructed models is also much larger. Table 3.9 compares the number of distinct

triphone states, memory used to store Gaussian mean vectors11 assuming 60% eigen-

triphone pruning, and the decoding time of eigentriphone-constructed models relative
11The memory requirement of transition probabilities and Gaussian variances are not considered here

as cluster-based eigentriphone modeling copies them from the conventional tied-state HMMs. Hence,
the memory requirements of these quantities for both training methods are the same.
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to that of conventional tied-state models. Although the model size and state space of

eigentriphone-constructed models are much larger than those of conventional HMMs,

the increase in decoding time is disproportionally small. This is due to the dispropor-

tionally small increase in the number of active states during decoding. In addition, the

increase in decoding time is larger in TIMIT than in WSJ because of the much larger

number of triphones in the TIMIT phone decoding network.

3.5 Evaluation with Discriminatively Trained Baseline

Figure 3.7: An illustration of the inter-cluster and intra-cluster discriminations pro-
vided by discriminative training and cluster-based eigentriphone modeling respec-
tively. mML

a and mML
b are the centers of cluster a and b obtained through ML training;

mDT
a and mDT

b are the centers of cluster a and b obtained through discriminative train-
ing.

As shown in Fig. 3.7, the discrimination among triphone states within the same

state cluster is now modeled by an addition of vectors Eiŵip through our cluster-based

eigentriphone modeling:

vip = mML
i + Eiŵip , (3.16)

where Ei = [ei1, . . . , eiKi
] is the matrix of eigentriphones that is used to model the

intra-cluster discrimination among the member states cluster i, and ŵip = [wip1, . . . , wipKi
]′

is the eigentriphone coefficient vector of triphone state p in the cluster. Meanwhile, the

discrimination among state clusters is modeled by the cluster mean vector mML
i which
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are obtained through ML training. Nevertheless, the inter-cluster discrimination can be

readily enhanced by conventional discriminative training (DT). Thus, we would like to

investigate the combination of two approaches by replacing mML
i with a set of dis-

criminative trained biases mDT
i . This could be achieved by directly bootstrapping our

cluster-based eigentriphone modeling from a discriminatively trained GMM-HMM.

3.5.1 Experimental Setup

The performance (in term of word accuracy) of the following four acoustic modeling

methods are compared on the WSJ recognition tasks:

• baseline1: conventional ML training of tied-state triphone HMMs.

• baseline2: minimum-phone-error (MPE) discriminative training of tied-state tri-

phone HMMs resulted from baseline1.

• cluster-based eigentriphone modeling of triphone HMMs bootstrapping from

baseline1.

• cluster-based eigentriphone modeling of triphone HMMs bootstrapping from

baseline2.

All the above systems are trained by the WSJ SI84 training set. Both baseline1 and

baseline2 consist of 1,277 tied-states. The cluster-based eigentriphone modeling was

conducted using the clusters defined by the tied states in the baseline systems with im-

plementation of PMLED and WPCA. Trigram language model is used for recognition.

3.5.2 Results and Discussion

Word recognition results of various systems are compared in Table 3.10. First of all,

we can see that classical discriminative training (baseline2) obtains a greater improve-

ment than our cluster-based eigentriphone modeling over conventional ML training of

tied-state triphones (baseline1). This suggests that exploiting inter-discrimination of

tied states might be more significant than achieving intra-discrimination among the

members of a tied state. Nevertheless, bootstrapping cluster-based eigentriphone mod-

eling from discriminatively trained triphones (baseline2) obtain a further improvement
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Table 3.10: Recognition word accuracy (%) of various systems trained by SI84 training
set on the WSJ Nov’92 5K evaluation set using trigram language model.

Model Description Accuracy
Baseline1: tied-state triphones (ML) 95.46
Baseline2: tied-state triphones (MPE) 95.78
Cluster-based eigentriphone modeling on base-
line1

95.68

Cluster-based eigentriphone modeling on base-
line2

96.06

of 0.28% absolute and a word error rate reduction of 6.6%. This suggests that the gains

from the two approaches are supplementary to each other.
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CHAPTER 4

EIGENTRIGRAPHEMES FOR SPEECH
RECOGNITION OF UNDER-RESOURCED

LANGUAGES

In Chapter 3, we investigated the use of distinct acoustic modeling in a phone-based

system and hence our proposed method is called eigentriphone modeling. One ma-

jor advantage of our proposed method is that the framework is very flexible and can

be applied to any group of modeling unit provided that they may be represented by

vectors of the same dimension. Thus, we would like to test the flexibility of our pro-

posed distinct acoustic modeling framework. On the other hand, although phone-based

modeling is the mainstream in ASR, grapheme-based modeling is useful in ASR for

under-resourced languages of which the phonetics and linguistics are not well studied.

Similar to phone-based modeling, parameter tying is also widely used in grapheme-

based modeling. It is therefore worth investigating the use of distinct modeling in a

grapheme-based system.

In this chapter, we first give an introduction to under-resourced languages and the

challenges in their recognition. Then we describe the conventional grapheme-based

modeling and our proposed method named cluster-based eigentrigrapheme modeling

which is based on the same methodology of cluster-based eigentriphone modeling.

Four under-resourced official South African languages (Afrikaans, South African En-

glish, Sesotho, siSwati) were used in a series of speech recognition experiments to

demonstrate the effectiveness of eigentrigrapheme modeling over conventional acous-

tic modeling methods.

4.1 Introduction to Automatic Speech Recognition of
Under-Resourced Languages

In the past, research efforts on automatic speech recognition (ASR) have been highly

focused on the most popular languages such as English, Mandarin, Japanese, French,
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German, and so on, in the developed countries. The remaining world languages, lack-

ing audio and language resources, are considered under-resourced languages. Usually

the phonetics and linguistics of these languages are not well studied either, thus the

development of human language technologies for these languages have been greatly

hindered. Nonetheless, some of these under-resourced languages are spoken by large

populations. For example, Vietnamese is spoken by about 80 million people, and Thai

is spoken by 60 million people. It is not difficult to see that real-life ASR applica-

tions for these languages have great potential. One major obstacle in developing an

ASR system for under-resourced languages is the availability of data. It is usually

costly and labor-intensive to create audio recordings and their human annotated tran-

scriptions, and make linguistic analyses for languages. As a consequence, it is both

academically intriguing and commercially attractive to look for more economically

efficient and faster ways to create human language technologies for under-resourced

languages.

In order to reduce the amount of annotated audio data for training the acoustic

models of a new target language, cross-lingual [72, 58] and multi-lingual [53] acoustic

modeling techniques have been developed. The rationale behind these techniques is

that an acoustic model may be ported to or adapted from some other high-resourced

languages, and only a relatively small amount of training data is required for the target

language. A key step for these cross-lingual or multi-lingual techniques to work is

to figure out a good mapping between phonemes across the languages. This can be

done using either a knowledge-based [26] or a data-driven approach [53]. In the data-

driven approach, the similarities between sounds can be measured by various distance

measures such as confusion matrix [26], entropy-based distance [53] or Euclidean dis-

tance [86]. The approach is further improved when the underlying model is more com-

pactly represented. A notable example is the use of subspace Gaussian mixture model

(SGMM) [24] in multi-lingual ASR [23, 64]. Another research direction is heading

toward making linguistic analysis of a target language easier and faster. Deducing the

phone set and preparing the pronunciation dictionary for a new language usually re-

quire native linguistic experts. This process is expensive and time-consuming, and is

even more so for non-native developers. One way to partially automate the develop-

ment of a pronunciation dictionary is to first prepare a small primary dictionary manu-

ally, and then use it to bootstrap a large dictionary by applying grapheme-to-phoneme
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conversion [66, 7, 17, 3]. However, the performance of the final dictionary depends

highly on the quality of the primary one. If the primary dictionary is not rich enough

and does not cover all the implicit grapheme-to-phoneme relations in the language, the

performance of the overall system will be badly influenced.

On the other hand, there is a simple solution to the creation of the phone set and

pronunciation dictionary for an under-resourced language: there is no need to develop

them if graphemes instead of phonemes are adopted as the acoustic modeling units.

In grapheme modeling [80, 47, 73, 58], each word in the “pronunciation dictionary”

is simply represented by its graphemic transcription according to its lexical form. Ac-

cording to [16], there are six types of writing systems in the world: logosyllabary,

syllabary, abjad, alphabet, abugida, and featural. Many languages that use the alphabet

writing system are suitable for grapheme acoustic modeling, and their grapheme set is

usually selected to be the same as their alphabet set [80].

The performance of grapheme modeling in ASR is sensitive to the languages. For

example, it works better than phone modeling in Spanish but worse than phone mod-

eling in English and Thai [89]. The reason is that the pronunciation of English has

developed away from its written form over time, whereas Thai has some complex

rules that map its writing to the pronunciation. There are techniques that improve

grapheme modeling; for example, in [73], a text normalization scheme was applied on

Thai graphemes to improve the performance of a Thai ASR system. There are also

works on multi-lingual grapheme modeling [88, 48]. These techniques, however, are

usually language-dependent as linguistic knowledge of the target language has to be

known in advance. Thus, it is favourable to investigate a language-independent tech-

nique to improve current grapheme modeling.

In conventional grapheme-based acoustic modeling, context-dependent trigraphemes 1

are used as the modeling units. Similar to the case of using triphones, state tying are

widely used to cluster the trigraphemes and the members in the same cluster share

the parameters. In this chapter, we would like to investigate the framework of dis-

tinct acoustic modeling in modeling context-dependent graphemes and we call our

new method cluster-based eigentrigrapheme acoustic modeling.

1Trigraphemes are developed from context-independent graphemes by taking the preceding and fol-
lowing graphemes into consideration.
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4.2 Cluster-based Eigentrigrapheme Acoustic Model-
ing

Figure 4.1: The cluster-based eigentrigrapheme acoustic modeling method. (WPCA
= weighted principal component analysis; PMLED = penalized maximum-likelihood
eigen-decomposition)

Fig. 4.1 shows an overview of the cluster-based eigentrigrapheme acoustic model-

ing method. The framework is very similar to the cluster-based eigentriphone modeling

method described in Chapter 3. All trigrapheme states are first represented by some

supervectors and they are assumed to lie in a low dimensional space2 spanned by a set

of eigenvectors. In other words, each trigrapheme supervector is a linear combination

of a small set of eigenvectors which are now called eigentrigraphemes. Clustering of

the states can be done by a singleton decision tree, and the procedure is exactly the

same as that of creating a conventional tied-state trigrapheme system.

Cluster-based eigentrigrapheme modeling consists of three major steps: (a) state

clustering via a singleton decision tree, (b) derivation of the eigenbasis, and (c) esti-

mation of eigentrigrapheme coefficients. They are discussed in further detail in the

2The dimension of the space is low when compared with the dimension of the trigrapheme state super-
vectors.
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following.

4.2.1 Trigrapheme State Clustering (or Tying) by a Singleton De-
cision Tree

One major difference between phone-based and grapheme-based acoustic modeling

lies in the construction of the decision tree for tying hidden Markov model (HMM)

states. In phone-based modeling, it is well-known that decision tree using phonetic

questions [79] can significantly improve speech recognition performance by striking

a good balance between the trainability and resolution of the acoustic models. How-

ever, it is not clear how the phonetic questions used in a phone-based system to tie

triphone states can be ported to tie trigrapheme states in a grapheme-based system as

the relation between the graphemes and their influence in the pronunciation of their

neighboring graphemes is not well understood. In [80], different types of questions

are investigated [47] and it is found that questions asking only the identity of the im-

mediate neighboring grapheme, named as singleton questions, work at least as well as

other types of questions. In this thesis, decision tree3 using singleton questions at each

node is used to generate the conventional tied-state trigrapheme HMMs. In addition,

the trigrapheme states that belong to the same tied state naturally form a state cluster

on which our new cluster-based eigentrigrapheme modeling may be applied. In other

words, the same singleton decision tree can be used to create the tied states for a con-

ventional tied-state trigrapheme system as well as the state clusters for the construction

of cluster-based eigentrigraphemes4.

4.2.2 Conventional Tied-state Trigrapheme HMM Training

We adopt the standard procedure in HTK [98] to create a conventional tied-state tri-

grapheme HMM system as follows.

3The questions in the decision tree are generated from the grapheme set of the target language which is
derived by scanning through the training data. Thus, the trees are language-dependent but our method
is still language-independent.

4Although the state clusters of cluster-based eigentrigrapheme modeling and the tied states of conven-
tional trigrapheme modeling both come from the nodes of the same decision tree, in general, they
may not be exactly the same nodes. The optimal set of tied states or state clusters is determined using
a separate set of development speech data.

61



STEP 1 : Context-independent grapheme acoustic models are estimated from the train-

ing data. Each context-independent grapheme model is a 3-state strictly left-to-right

HMM, and each state is represented by a single Gaussian.

STEP 2 : Each context-independent grapheme HMM is then cloned to initialize all its

context-dependent trigraphemes.

STEP 3 : For each base grapheme, the transition probabilities of all its trigraphemes

are tied together.

STEP 4 : For each base grapheme, tie the corresponding HMM states of all its tri-

graphemes using a singleton decision tree. Thus, three singleton decision trees are

built for each base grapheme. Once a set of trigrapheme states are tied together, they

share the same set of Gaussian means, diagonal covariances, and mixture weights.

STEP 5 : Synthesize the unseen trigraphemes by going through the singleton questions

of the decision trees.

STEP 6 : Grow the Gaussian mixtures of the models with the training data until each

tied state is represented by an M -component Gaussian mixture model (GMM) with

diagonal covariance. In practice, the optimal value of M is determined by a separate

set of development data.

4.2.3 Eigentrigrapheme Acoustic Modeling

Recall that each node in the state clustering decision tree has a dual role: it is treated

as a tied state for tied-state HMM training, and as a state cluster for eigentrigrapheme

modeling. To begin cluster-based eigentrigrapheme modeling, one first decides which

tree nodes are to be used as the state clusters. Then the state-clusters are treated as tied

states, and conventional tied-state trigrapheme HMMs are created using the procedure

described in Section 4.2.2. The resulting tied-state HMMs are used as the initial models

for deriving the eigentrigraphemes of each state cluster.
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4.2.3.1 Derivation of Cluster-based Eigentrigraphemes

The following procedure is repeated for each state cluster i, consisting of Ni member

states.

STEP 7 : Untie the Gaussian means of all the trigrapheme states in a state cluster with

the exception of the unseen trigrapheme states. The means of the cluster GMM are

then cloned to initialize all untied trigrapheme states in the cluster. Note that the

Gaussian covariances and mixture weights of the states in the cluster are still tied

together.

STEP 8 : Re-estimate only the Gaussian means of trigrapheme states after cloning.

Their Gaussian covariances and mixture weights remain unchanged as their state

cluster GMM does.

STEP 9 : Create a trigrapheme state supervector vip for each trigrapheme state p in

state cluster i by stacking up all its Gaussian mean vectors from its M -component

GMM as below

vip =
[

µip1, µip2, · · · , µipM

]
, (4.1)

where µipm, m = 1, 2, . . . ,M is the mean vector of the mth Gaussian component5.

Similarly, a state cluster supervector mi is created from the GMM of state cluster i.

STEP 10 : Collect the trigrapheme state supervectors {vi1, vi2, . . ., viNi
} as well as the

state cluster supervector mi of cluster i, and derive an eigenbasis from their correla-

tion matrix using weighted principal component analysis (WPCA). The correlation

matrix is computed as follows:

1

ni

∑
p

nip(v̂ip − m̂i)(v̂ip − m̂i)
′ , (4.2)

where v̂ip and m̂i are the standardized version of vip and mi that are created by

normalizing them with the diagonal covariance matrix; nip is the frame count of the

5Since the mixture weights are still tied among the trigrapheme states in a state cluster, the M Gaussian
components in each state can be consistently ordered across all the member states in the cluster to
create their supervectors.
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trigrapheme state p in cluster i, and ni =
∑

p nip is the total frame count of state

cluster i.

STEP 11 : Arrange the eigenvectors {êik, k = 1, 2, . . . , Ni} in descending order of

their eigenvalues λik, and pick the top Ki (where Ki ≤ Ni) eigenvectors to repre-

sent the eigenspace of state cluster i. These Ki eigenvectors are now called eigen-

trigraphemes of state cluster i. Note that different state clusters may have different

numbers of eigentrigraphemes.

4.2.3.2 Estimation of the Eigentrigrapheme Coefficients

After the derivation of the eigentrigraphemes, the supervector vip of any trigrapheme

state p in cluster i is assumed to lie in the space spanned by the Ki eigentrigraphemes.

Thus, we have

vip = mi +

Ki∑
k=1

wipkeik , (4.3)

where eik, k = 1, 2, . . . , Ki is the rescaled version of the standardized eigenvector êik;

wip = [wip1, wip2, . . . , wipKi
] is the eigentrigrapheme coefficient vector of trigrapheme

state p in the trigrapheme state space of cluster i.

The eigentrigrapheme coefficient vector wip is estimated by using the previously

introduced penalized maximum-likelihood eigen-decomposition (PMLED). The eigen-

trigrapheme modeling procedure stops if either the estimation of eigentrigrapheme co-

efficients converges or the recognition accuracy of the trained models is maximum on a

development data set. Otherwise, the training data are re-aligned with the current mod-

els, and the derivation of eigentrigraphemes and the estimation of their coefficients are

repeated.

4.3 Experimental Evaluation

The effectiveness of our eigentrigrapheme acoustic modeling method is evaluated on

four under-resourced languages of South Africa with the assumption that no phonetic

dictionaries are available. Since graphemes are the basic modeling units in grapheme-

based modeling, word recognition accuracy is the main metric for the evaluation.
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Nonetheless, triphone-based systems were also built with the use of semi-automatically

generated phonetic dictionaries so as to benchmark the results of our eigentrigrapheme

results (where no dictionaries are used).

4.3.1 The Lwazi Speech Corpus

The Lwazi project was set up to develop a telephone-based speech-driven information

system to take advantage of the more and more popular use of telephones in South

Africa nowadays. As part of the project, the Lwazi ASR corpus [67] was collected to

provide the necessary speech and language resources in building ASR systems for all

eleven official languages of South Africa.

The corpus was collected from approximately 200 speakers per language who are

all first language speakers. Each speaker produced approximately 30 utterances, of

which 16 of them are phonetically balanced read speech and the remainders are elicited

short words such as answers to open questions, answers to yes/no questions, spelt

words, dates, and numbers. All the data were recorded over a telephone channel and

were transcribed only in words. Background noise, speaker noise, and partial words

are marked in the orthographic transcriptions.

The Lwazi project also created a 5,000-word pronunciation dictionary for each lan-

guage [18]. These dictionaries cover the most common words in the language but not

all the words appearing in the corpus. Thus, for the phone-based experiments, the Dic-

tionaryMaker [91] software was used to generate dictionary entries for the words that

are not covered by the Lwazi dictionaries. The given Lwazi dictionaries were used

as the seed dictionaries6 for DictionaryMaker to extract grapheme-to-phoneme con-

version rules which were then applied to generate a phonetic transcriptions of the un-

covered words for each language. The pronunciations suggested by DictionaryMaker

were directly used without any modification.

Among the eleven official South African languages, four are chosen for this inves-

tigation. We looked at their ranks according to three different criteria:

• the human language technology (HLT) index [85]: the index indicates the total

6For Afrikaans, the dictionary available at http://sourceforge.net/projects/rcrl/files/AfrPronDict/ was
used together with the Lwazi dictionary as the seed dictionary.
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quantity of HLT activity for each language. The higher the index, the greater the

HLT development.

• the phoneme recognition accuracy [9]: a higher phone accuracy means a higher

rank for the language.

• the amount of training data available [9]: language with more training data will

be given a higher rank.

Table 4.1: Ranks of the four chosen South African languages in three aspects: their hu-
man language technology (HLT) indices, phoneme recognition accuracies, and amount
of training data in the Lwazi corpus. (A smaller value implies a higher rank.)

Language HLT Rank [85] Phoneme Recognition [9] Amount of Data [9]
Afrikaans 1 5 11

SA English 2 11 10
Sesotho 7 7 7
siSwati 9 3 1

Finally, the four languages are chosen because they have a good mix of phoneme

accuracies and HLT activities as shown in Table 4.1:

Afrikaans: Afrikaans is a Low Franconian, West Germanic language, which origi-

nated from Dutch [92]. It has about 6 million native speakers and is the third

largest language in South Africa. It is also spoken in South Africa’s neighbour-

ing countries like Namibia, Botswana and Zimbabwe. It has relatively more

resources [78], and more ASR related works [19, 46] have been done on it than

other languages of South Africa. It is interesting to see that although Afrikaans

has the least amount of training data in the corpus, its phoneme recognition result

is quite good among the eleven South African languages.

South African (SA) English: SA English is the de facto South African lingua franca.

It is spoken by about 3.6 million people in South Africa. SA English evolved

from British English but is highly influenced by Afrikaans and the other lan-

guages of the country.

Sesotho: Sesotho is a Southern Bantu language, closely related to other languages in

the Sotho-Tswana language group. It has about 3.5 million native speakers and

is the seventh largest language in South Africa.
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siSwati: siSwati is also a Southern Bantu language, closely related to the Nguni lan-

guage group. It has about 1 million native speakers and is the ninth largest

language in South Africa.

Table 4.2: Information on the data sets of four South African languages used in this
investigation. (OOV is out-of-vocabulary)

Data Set #Speakers #Utt. Dur.(hr) Vocab OOV
Afrikaans Training 160 4,784 3.37 1,513 0.00%

Afrikaans Dev. 20 600 — 870 0.89%
Afrikaans Test 20 599 — 876 0.97%

SA English Training 156 4,665 3.98 1,988 0.00%
SA English Dev. 20 581 — 1,104 1.10%
SA English Test 20 597 — 1,169 1.68%
Sesotho Training 162 4,826 5.70 2,360 0.00%

Sesotho Dev. 20 600 — 1,096 1.86%
Sesotho Test 20 601 — 1,089 2.29%

siSwati Training 156 4,643 8.38 4,645 0.00%
siSwati Dev. 20 599 — 1,889 6.14%
siSwati Test 20 596 — 1,851 4.53%

Since the corpus does not define the training, development and test set for each

language, we did the partitions ourselves. The data sets used in our experiments are

summarized in Table 4.2. It is interesting to see that languages with more training data

(in terms of duration) have a higher percentage of out-of-vocabulary words in their test

set.

Table 4.3: Perplexities of phoneme and word language models of the four South
African languages.

Language Data Set Phoneme Perplexity Word Bigram Perplexity

Afrikaans
Dev. 7.37 (trigram) 12.4
Test 7.33 (trigram) 11.18

SA English
Dev. 7.50 (trigram) 13.28
Test 7.76 (trigram) 11.18

Sesotho
Dev. 10.43 (bigram) 19.60
Test 10.29 (bigram) 19.69

siSwati
Dev. 7.60 (trigram) 12.27
Test 7.50 (trigram) 10.94
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4.3.2 Common Experimental Settings

The first 13 Perceptual Linear Predictive (PLP) coefficients [42] and their first and

second order derivatives were used7. These 39-dimensional feature vectors were ex-

tracted every 10ms over a window of 25ms. Speaker-based cepstral mean subtraction

and variance normalization were performed.

The grapheme set and phoneme set of each language are the same as the ones

defined in the Lwazi dictionaries. For all systems described below, the transition prob-

abilities of all triphones/trigraphemes of the same base phone/grapheme were tied to-

gether. Each triphone/trigrapheme model was a strictly left-to-right 3-state continuous-

density hidden Markov model (CDHMM) with a Gaussian mixture density of at most

M = 16 components per state. In addition, there were a 1-state short pause model and

a 3-state silence model whose middle state was tied with the short pause state. Recog-

nition was performed using the HTK toolkit [98] with a beam search threshold of 350.

Only the annotated text data in the training set were used to train the corresponding

language models. Both phoneme trigram language models and word bigram language

models were estimated for the four languages except Sesotho, for which only phoneme

bigrams could be reliably trained. Perplexities of the various language models on the

development data and test data are shown in Table 4.3.

All system parameters such as the grammar factor, insertion penalty, regularization

parameter β, number of GMM components M , number of tied states or state clusters,

and so forth were optimized using the respective development data.

4.3.3 Phoneme and Word Recognition Using Triphone HMMs

We first established the triphone-based ASR benchmarks against which the trigrapheme-

based models can be checked. Both conventional tied-state triphone HMM modeling

and our cluster-based eigentriphone modeling were tried for the four under-resourced

languages of South Africa. The number of base phones, the number of cross-word

triphones in the training set, the optimal number of tied states in conventional HMM

7MFCC and PLP are two widely used feature extraction schemes in ASR. Both of them are based on
Cepstral analysis. They are different in the frequency warping methods and the cepstral represen-
tation. In this thesis, we would like to cover both feature extraction schemes. As we have already
used MFCC in the experiments presented in Chapter 3, we employ PLP to extract the features in this
chapter.
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Table 4.4: Some system parameters of triphone modeling in the four South African
languages.

Language #Phonemes #Triphones
#Tied States in #State Clusters in

Conventional Models Eigentriphone Models
Afrikaans 37 5,203 617 332

SA English 44 7,167 988 362
Sesotho 41 4,061 741 624
siSwati 40 5,140 339 250

training, and the optimal number of state clusters in eigentriphone modeling for each

language are summarized in Table 4.4.

Table 4.5: Phoneme recognition accuracy (%) of four South African languages. († The
benchmark results in [9] used an older version of the Lwazi corpus and how the corpus
were partitioned into training, development, and test sets is unknown.)

Language
Benchmark [9]† Tied-state Triphone Cluster-based Eigentriphone

Flat LM Flat LM N-gram LM Flat LM N-gram LM
Afrikaans 63.14 59.07 69.73 (trigram) 62.23 72.32 (trigram)

SA English 54.26 45.48 56.58 (trigram) 46.03 57.84 (trigram)
Sesotho 54.79 62.36 67.06 (bigram) 64.08 68.35 (bigram)
siSwati 64.46 64.76 71.45 (trigram) 68.19 74.13 (trigram)

4.3.3.1 Phoneme Recognition Results

Although word recognition accuracy will be the eventual evaluation metric for grapheme

modeling, we would also like to report the phoneme recognition baselines of our tri-

phone models for the sake of completeness. Phoneme recognition was performed on

each of the four languages using either none or a flat LM as well as using its respective

bigram/trigram LM. The results 8 are given in Table 4.5. The following observations

can be made:

• Our phoneme recognition results with flat LMs are quite different from those

reported in [9]. There may be a few reasons:

8The significant test results in the phoneme recognition with respect to Afrikaans, South African En-
glish, Sesotho and siSwati are shown in Table B.4, Table B.5 ,Table B.6 and Table B.7 in appendix B
respectively.
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– To our knowledge, the Lwazi corpus has been evolving, and the corpus we

obtained earlier this year is different from the older version used in [9].

– Since there are no official test sets in the corpus, it is hard to compare

recognition performance from different research groups.

– Since the data are not manually labelled by professional transcribers, there

is no ground truth which the results from different research groups can be

compared with.

Thus, it may not be meaningful to compare our phoneme recognition results

with others. We believe it is good enough to see that our results are in the same

ballpark as the others.

• SA English has substantially lower phoneme recognition accuracy: it is lower

than that of the other three languages by more than 10% absolute. Although

SA English has a few more phones in its phonetic inventory than the other lan-

guages, and significantly more cross-word triphones to model (see Table 4.4), its

phoneme trigram perplexity is actually similar to Afrikaans and siSwati. (Only

bigram language model can be reliably estimated for Sesotho, and its value is

expected to be higher than the phoneme trigram perplexity of the other three

languages.) It means that the phoneme trigrams (as well as triphones) of SA

English are more unevenly distributed in the training corpus.

The lower phoneme recognition accuracy of SA English may be simply due

to its larger inventory of phones and triphones, making discrimination among

them more difficult. Another plausible reason is that SA English is now the

de facto lingua franca of South Africa. It is usually the language of choice for

communication among people from different regions and ethnic groups of the

country including immigrants from China and India. As a consequence, there

are more allophonic variations in SA English, making it harder to recognize.

• The training speech data are not phonetically labelled by human transcribers. In-

stead, their phonetic transcriptions are generated semi-automatically by grapheme-

to-phoneme conversion together with a small bootstrapping dictionary. From

the big improvement in recognition performance when phoneme language mod-

els were used (vs. when no language models were used), we may conclude that
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phoneme language models trained from the generated phonetic transcriptions are

good enough to improve phoneme recognition significantly.

• Triphone models estimated by our cluster-based eigentriphone modeling method

outperform triphone models estimated by conventional tied-state HMM training

by an average of 6.19% relative over the four languages.

Table 4.6: Word recognition accuracy (%) of four South African languages.

Language
Tied-state Cluster-based Eigen-

Trigrapheme Triphone Trigrapheme Triphone
Afrikaans 89.39 89.73 89.87 90.73

SA English 78.30 83.12 79.57 83.72
Sesotho 75.67 75.57 76.35 76.77
siSwati 80.04 79.79 80.67 80.29

4.3.3.2 Word Recognition Results

The word recognition performance 9 of the triphone-based systems are shown in Ta-

ble 4.6. We can see that

• With no surprise, Sesotho, having the highest LM perplexity (see Table 4.3), has

the lowest recognition accuracy.

• For the other three languages, namely Afrikaans, SA English, and siSwati, which

all have similar word bigram perplexity, their word recognition performance is

well correlated with their vocabulary size and OOV figure. Afrikaans has the best

word recognition accuracy, and yet there are only 1,513 words in its vocabulary

with 0.97% OOV. On the other hand, siSwati has the worst performance, and

its vocabulary size is 4,645 with 4.53% OOV, which are 3–4 times of that of

Afrikaans (see Table 4.4).

• Although SA English has the poorest phoneme recognition accuracy, its word

recognition performance is second among the four languages. It not only shows

9The significant test results in the word recognition with respect to Afrikaans, South African English,
Sesotho and siSwati are shown in Table B.8, Table B.9 ,Table B.10 and Table B.11 in appendix B
respectively.

71



the limitations of using phoneme recognition accuracy to predict word recogni-

tion performance, but also the effectiveness of a good n-gram language model

for word recognition.

• Cluster-based eigentriphone modeling outperforms conventional tied-state HMM

training by an average of 5.17% relative over the four languages.

Table 4.7: Some system parameters used in trigrapheme modeling of the four South
African languages. (The numbers of possible base graphemes are 43, 26, 27, 26 for
the four languages but not all of them are seen in the corpus.)

Language
#Seen Base #Cross-word #Tied States in #State Clusters in
Graphemes Trigraphemes Conventional Models Eigentrigrapheme Models

Afrikaans 31 3,458 728 332
SA English 26 4,125 1,630 547

Sesotho 25 3,072 543 543
siSwati 25 3,826 392 255

4.3.4 Word Recognition Using Trigrapheme HMMs

Similar acoustic models were developed using trigraphemes; there is no need for a

phonetic dictionary in the process. The number of base graphemes actually observed

in the corpus, the number of cross-word trigraphemes in the training set, the optimal

number of tied states in conventional HMM training, and the optimal number of state

clusters in eigentrigrapheme modeling for each language are summarized in Table 4.7.

The word recognition results of the various trigrapheme-based systems are shown in

Table 4.6 together with the results from the corresponding triphone-based systems so

they can be easily compared.

Besides the observations mentioned in triphone-based systems in Section 4.3.3.2,

the following additional observations are well noted.

• Except for SA English, our trigrapheme-based systems performs basically the

same as their triphone-based counterparts even without the knowledge of a pho-

netic dictionary. In fact, trigrapheme-based systems even outperform their triphone-

based counterpart in siSwati though insignificantly. The results suggest that there
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is a consistent mapping between the pronunciation of Afrikaans, Sesotho, and

siSwati and their graphemes.

• Trigrapheme-based systems perform much worse than triphone-based systems

in SA English. This is expected as similar results have been reported for En-

glish [89]. Besides, as mentioned in Section 4.1, that the pronunciation of

English has developed away from its written form over time, the particularly

large allophonic variations in SA English (which is also reflected in its phoneme

recognition accuracy) further compromise word recognition efforts.

• Once again, our new cluster-based eigentrigrapheme modeling consistently per-

forms better than conventional tied-state trigrapheme HMM training. It has an

average gain of 4.08% relative over the four languages.

4.4 Conclusions on Eigentrigrapheme Acoustic Model-
ing

Most state-of-the-art automatic speech recognition (ASR) systems are developed using

phonetic acoustic models. However, for many developing or under-developed coun-

tries in the world, the adoption of human language technologies is lagging behind

owing to the lack of speech and language resources, which are usually costly and take

a lot of human expertise to acquire. Graphemic acoustic modeling mitigates the prob-

lem as it does not require a phonetic dictionary. In this chapter, we investigate the use

of distinct acoustic modeling on grapheme-based modeling with our proposed method

named cluster-based eigentrigrapheme acoustic modeling. Our method has the fol-

lowing favorable properties:

• Since our method uses graphemes as the modeling units, it enjoys the same ben-

efits that other grapheme-based modeling methods do. Most importantly, there

is no need to create a phone set and a pronunciation dictionary. Thus, it is more

favorable for building an ASR system for under-resourced languages.

• Eigentrigrapheme modeling will also enjoy the same benefits as eigentriphone

modeling: Many trigraphemes in under-resourced languages may have little

training data; in the past, the problem has mainly been solved by state tying,
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but eigentrigrapheme modeling allows reliable estimation of the infrequently oc-

curring trigraphemes by careful state clustering and then projecting the member

states of each cluster onto a low-dimensional subspace spanned by a small set of

eigentrigraphemes of the cluster.

• No language-specific knowledge is required and the whole method is data-driven.

It can be used to improve existing systems that are based on conventional tied-

state trigrapheme HMMs. In fact, one may implement our method as a post-

processing procedure on conventional tied-state trigrapheme HMMs.

• If trigrapheme state clusters are created using the graphemic decision tree, the

decision tree may also be used to synthesize unseen trigraphemes in the test

lexicon.

For four under-resourced languages of South Africa (SA), namely, Afrikaans, SA

English, Sesotho, and siSwati, it is shown that trigrapheme acoustic models trained by

our new eigentrigrapheme modeling method consistently outperform the trigrapheme

models trained by conventional tied-state HMM training, achieving a relative reduction

in the word error rates of the four SA languages by an average of 4.08%. Trigrapheme

HMM states trained by the eigentrigrapheme modeling method are distinct from each

other — the quantization error among the member states of a tied state in conventional

HMM is avoided — and should be more discriminative.
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CHAPTER 5

REFERENCE MODEL WEIGHTING

In Chapter 3, we present a new distinct acoustic modeling framework named eigentri-

phone modeling. In eigentriphone modeling, an orthogonal eigenbasis is derived using

weighted PCA, then all the triphones / triphone states are projected as distinct points

onto the space spanned by its eigenvectors. In this chapter, another distinct acoustic

modeling method named reference model weighting (RMW)1 is presented. In contrast

to eigentriphone modeling, reference model weighting does not require an orthogonal

basis, instead, it directly uses a set of reference model vectors in a cluster as the basis.

Thus the PCA component can be removed and the preparation of bases is simpler. This

chapter starts with the motivation and then the training procedure of reference model

weighting. After that, experiments on Wall Street Journal read speech recognition and

Switchboard conversational speech recognition are given.

5.1 Motivation from Reference Speaker Weighting

Reference model weighting (RMW) [12] is another attempt at distinct acoustic mod-

eling which is inspired by reference speaker weighting [65] in speaker adaptation.

In reference speaker weighting, a set of reference models is employed and the target

speaker model is constructed by an interpolation of these reference models. Similarly,

in RMW, a set of reference models is employed and the triphone states are constructed

by interpolating these reference models. In contrast to eigentriphone modeling where

a set of orthogonal basic vectors is derived using PCA, RMW directly use the triphone

states as the reference mdoels. Thus, the PCA component for generating orthogonal

basic vectors may be omitted, making the training process faster. In fact, the difference

between eigentriphone modeling and reference model weighting in distinct acoustic

modeling is very similar to the difference between eigenvoice and reference speaker

weighting in speaker adaptation.

1The first work of RMW is done by my colleague, Dongpeng Chen, and he has already published his
work of RMW in a conference [12] before the completion of this thesis.
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5.2 The Training Procedure of Reference Model Weight-
ing

RMW follows the overall framework of eigentriphone modeling (ETM) except that it

simplifies the training procedure by directly using the triphone states as the reference

models. The training procedure of cluster-based RMW is described below. Firstly,

decision-tree state clustering is used to construct a set of conventional tied-state tri-

phone HMMs where each state is represented by an M-component GMM. Then the

following procedure is repeated for each state cluster i, consisting of Ni members:

STEP 1 : Untie the Gaussian means of all the triphone states in a state cluster with the

exception of the unseen triphone states. The means of the cluster GMM are then

cloned to initialize all untied triphone states in the cluster. Note that the Gaussian

covariances and mixture weights of the states in the cluster are still tied together.

STEP 2 : Re-estimate only the Gaussian means of triphone states after cloning. Their

Gaussian covariances and mixture weights remain unchanged as their state cluster

GMM does.

STEP 3 : Create a triphone state supervector vip for each triphone state p in state cluster

i by stacking up all its Gaussian mean vectors from its M -component GMM as

below

vip =
[

µip1, µip2, · · · , µipM

]
, (5.1)

where µipm, m = 1, 2, . . . ,M is the mean vector of the mth Gaussian component.

Similarly, a state cluster supervector mi is created from the GMM of state cluster i.

STEP 4 : Arrange the triphone state supervectors {vi1, vi2, . . ., viNi
} in descending

order of their soft occupation count
∑

m,t γipm(t), and pick the top Ki (where

Ki ≤ Ni) supervectors to represent the space of state cluster i. We called these

supervectors the reference state supervectors. Note that different state clusters may

have different Ki.

STEP 5 : The supervector vip of any triphone state p is assumed to lie in the space
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spanned by the Ki reference state supervectors. Thus, we have

vip = mi +

Ki∑
k=1

wipkvik , (5.2)

where wip = [wip1, wip2, . . . , wipKi
] is the weight vector of triphone state p..

STEP 6 : Estimate the weight vector wip of any triphone state p by PMLED.

The following regularizer is used in RMW for the estimation of weight vector:

R(wip) =

Ni∑
k=1

w2
ipk∑

m,t γikm(t)
. (5.3)

where
∑

m,t γikm(t) is the sum of occupation counts of all the mixture components

of reference model k of cluster i. As a result, the less reliable reference model (with

smaller occupation count) are automatically de-emphasized.

5.3 Experiment Evaluation on WSJ: Comparison of RMW
and ETM

5.3.1 Experimental Setup

The WSJ recognition task with the SI-84 training set was used for performance com-

parison of RMW and ETM. Evaluation was performed on the standard Nov92 5K non-

verbalized test set, and the si dt 05 data set was used as the development set for tuning

system parameters such as the regularization parameter and decoding parameters, as

well as for finding the optimal state-tying nodes and state clusters. Finally, a bigram

language model (LM) with a perplexity of 147 was employed in this recognition task.

An HMM system with 1254 tied-states and 32 Gaussian mixtures per state was

trained from the training set. All the acoustic models in this task were trained using

the HTK toolkit.

5.3.2 Result and Discussion

The comparison of RMW and ETM using different proportions of reference states or

eigentriphones is shown in Fig.5.1. The results of the best RMW and ETM systems
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Figure 5.1: Comparison between RMW and ETM when different proportions of refer-
ence states or eigentriphones are used on WSJ0.

Table 5.1: Word recognition accuracies (%) and relative Word Error Rate (WER) re-
duction (%) w.r.t. the tied-state HMM baseline system of various systems on WSJ
Nov’92 task.

Model Word Acc. WER Reduction Eigenvectors/Reference States
tied-state HMM 93.29% - -
ETM 94.04% 11.18% 60%
RMW 94.13% 12.52% 100%
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are summarized in Table 5.1. From the results, we can see that

• Both RMW and ETM show improvement over conventional tied-state triphone

system and the best result from RMW is slightly better.

• The performance of RMW decreases when fewer reference states were used and

its best performance is achieved when all the reference states were used. In

contrast, ETM usually needs pruning some eigenvectors to obtain its best perfor-

mance.

• ETM has better performance when the percentage of reference states/eigentriphones

is lower than 50%. Thus, although RMW is easier to implement, ETM may be a

better choice when the model size is a concern.

5.4 Experimental Evaluation on SWB: Performance of
RMW together with Other Advanced ASR Tech-
niques

As discussed in Chapter 2, different ASR techniques are proposed in the past to im-

prove the ASR performance in different aspects. For example, feature-based methods

are used to improve the robustness of the feature vectors; speaker adaptation methods

address the acoustic variations among different speakers; discriminative training im-

proves the performance by formulating an objective function that is more related to the

evaluation criteria. RMW, as a kind of distinct acoustic modeling, aims to increase the

resolution of the acoustic model by giving each distinct modeling unit a unique model.

Thus, it is important to evaluate RMW with other ASR techniques.

In this section, we would like to evaluate the performance of RMW with the pres-

ence of other advanced techniques which have been widely used in ASR. Experimental

evaluation is done on a conversational speech corpus named Switchboard [38]. Besides

the speaker adaptation techniques SAT and FMLLR which are discussed in Section

2.3.2, two feature-level techniques are used:

• Linear discriminant analysis (LDA) [10, 28] is commonly used as a feature-

space transformation to improve the separability of acoustic classes in the fea-

ture space. Consecutive static features in a context window of several frames
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are concatenated to form a longer feature vector. Then LDA is applied to re-

duce the dimensionality of the features. In order to train the LDA transform,

a primary acoustic model is needed to classify the feature vectors into classes.

[21] reported that using LDA features followed by a maximum likelihood linear

transform (MLLT) [39] to replace the conventional dynamic features [29]2 can

yield significant performance gain.

• Maximum likelihood linear transform (MLLT) [34, 35] is used to decorrelate

different dimensions of the feature vectors. As discussed in Section 2.1.3, Gaus-

sian mixture models with diagonal covariance matrices are often used as the

pdfs because of their low computational cost. [35] pointed out that it is prefer-

able to decorrelate the feature vectors so that multiple components can model

the possible non-Gaussian distributions rather than the correlation between dif-

ferent dimensions. It is a matrix to rotate the axes so that the correlation between

different dimensions of the feature vectors is minimized. It was first proposed to

be a model-space transformation so that full covariance matrices are simulated

through a transform from diagonal covariance matrices. It can also be imple-

mented as a feature-space transformation where an equivalent effect is obtained.

In practice, MLLT is usually used together with LDA features as the MLLT can

be integrated with the LDA transform into a single transform.

5.4.1 Speech Corpus and Experimental Setup

A 100-hour training set from Switchboard I [38] was used for the acoustic model esti-

mation 3. The 100-hour training set contains 76,615 utterances. Recognition results are

reported on the standard Hub5 2000 evaluation set. It consists of 1,831 Switchboard

utterances and 2,628 Callhome utterances in about 2 hours of conversational speech.

MFCC with cepstral mean and variance normalization were used. Either the dy-

namic features or LDA features were used to form the acoustic feature vectors. When

the dynamic features were used, static features were concatenated with their dynamic

coefficients, delta and delta delta, to form 39-dimensional feature vectors. For the LDA
2Dynamic features are obtained by taking first and second difference of static features in a neighbor-
hood around the current frame.

3The partition of the training set, the number of tied-states and Gaussians and the decoding parameters
were suggested by the Switchboard recipe in the Kaldi toolkit.

80



features, seven consecutive feature vectors, each consisting of 13 static MFCC coef-

ficients, were concatenated and then reduced to 40-dimensional feature vectors using

LDA [40]. Then an MLLT [35] was estimated and combined with the LDA transform.

SAT [2] and FMLLR [30] were applied on several baselines.

A trigram language model was trained on all the transcribed data of Switchboard

I (about 284 hours) using the SRILM toolkit [87]. Acoustic model estimation and

recognition were performed using the Kaldi toolkit [25]. Scoring was done by the

NIST Scoring toolkit.

The following 4 baseline systems, each with 3K tied-states and 100K Gaussians in

total, were trained:

• Baseline1: ML-trained tied-state triphones, 39-dimensional dynamic features

• Baseline2: ML-trained tied-state triphones, 40-dimensional LDA+MLLT fea-

tures

• Baseline3: ML-trained tied-state triphones, 40-dimensional LDA+MLLT fea-

tures, SAT and FMLLR applied

• Baseline4: MPE-trained tied-state triphones, 40-dimensional LDA+MLLT fea-

tures, SAT and FMLLR applied

Cluster-based RMW were applied on each of the above 4 baselines. The training

procedures of RMW in this set of experiments is the same as the description in the

previous section. All the states were used as reference states to form the basis. The

regularization parameter is 400,000 4.

5.4.2 Result and Discussion

Word recognition results of various systems are summarized in Table 5.2. First of all,

we can see that cluster-based RMW outperforms conventional tied-state triphones in

all the baseline systems. Furthermore, we find that

4This is a typical value for RMW from our experience in the WSJ task.
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Table 5.2: Recognition word accuracy (%) of various systems on the Hub5 2000 eval-
uation set using a trigram language model. The systems were trained on the 100-hour
SWB training set. All the systems have around 3K tied-states and 100K Gaussians
in total. The numbers in the brackets are the accuracy differences between the RMW
systems and their corresponding tied-state systems.

Model Description Tied-state RMW
Baseline1: ML training, dynamic features 58 59.4 (+1.4)
Baseline2: ML training, LDA+MLLT
features

61.7 62.8 (+1.1)

Baseline3: ML training, LDA+MLLT
features, SAT + FMLLR

66.7 67.5 (+0.8)

Baseline4: MPE training, LDA+MLLT
features, SAT + FMLLR

69.5 70.1 (+0.6)

• Not surprising, a significant gain is obtained when each ASR technique is added.

First of all, there is an absolute gain of 3.7% when dynamic features are replaced

by LDA-MLLT features. Then the speaker adaptation techniques SAT and FM-

LLR obtain another absolute gain of 5%. Finally, MPE discriminative training

further obtains an absolute gain of 2.8%.

• Cluster-based RMW can improve all the baseline systems where different kinds

of ASR techniques are applied. This suggests that the gain obtained by distinct

acoustic modeling is supplementary to the performance of existing state-of-the-

art ASR techniques.

• All the RMW systems are statistically and significantly better than the corre-

sponding baseline systems. The significant tests were done by the tool included

in the NIST scoring toolkit. The test results are shown in Table B.12 in Appendix

B.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

This thesis addresses the quantization errors induced by the conventional parameter

tying methods. We try to solve the problem by distinct acoustic modeling where ev-

ery modeling unit has a unique model and a distinct acoustic score. Motivated by the

eigenvoice [55] speaker adaptation, we propose a new modeling method called eigen-

triphone modeling. Our new method can robustly estimate rarely occurring triphones

without requiring state tying so that all trained triphones are generally distinct from

each other. Three variants of the method are investigated, namely the model-based,

state-based, and cluster-based eigentriphone modeling. The three variants differ in the

modeling unit (triphones or triphone states) and resolution. Empirically we find that

the more general cluster-based eigentriphone modeling gives the best performance in

both TIMIT phoneme recognition and WSJ word recognition. Cluster-based eigen-

triphone modeling does not require any modification in the tied-state GMM-HMM

training procedures. Thus, our method can be viewed as a kind of post-processing that

can easily fit into most existing ASR systems.

Another advantage of our proposed method is that the framework is very flexible

and can be applied to any group of modeling unit provided that they may be represented

by vectors of the same dimension. In order to test the flexibility of our method, we ap-

ply our distinct acoustic modeling framework to grapheme-based modeling systems

and the new method is called eigentrigrapheme modeling. We show that cluster-based

eigentrigrapheme modeling also outperforms conventional tied-state trigrapheme mod-

eling.

We also evaluate another distinct acoustic modeling method named reference model

weighting (RMW) which is motivated by reference speaker weighting in speaker adap-

tation. In contrast to eigentriphone modeling, reference model weighting does not re-

quire an orthogonal basis, instead, it directly uses a set of reference model vectors in

a cluster as the basis. We show that reference model weighting, using a simpler train-

ing procedure, works as well as eigentriphone modeling. We also show that its per-
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formance gain is supplementary to the performance of existing state-of-the-art ASR

techniques.

6.1 Contributions of the Thesis

The contributions of this thesis are summarized as follows:

• We show that the estimation of triphone models can be formulated as an adapta-

tion problem with our proposed modeling framework called eigentriphone mod-

eling. This initiates a new research direction for estimating model parameters.

• We show that state tying is not necessary in modern speech recognition systems.

In addition, better performance could be obtained by the use of distinct acoustic

modeling.

• We show that our proposed eigentriphone modeling framework is flexible enough

that it can be applied to other modeling units.

• We show that the performance gain from the use of distinct acoustic modeling is

supplementary to the performance gains from existing ASR techniques.

6.2 Future Work

In the future, we would like to extend our work in the following aspects:

• Variance adaptation: In our current work, only Gaussian means are adapted

whereas the variances are still tied with other members in the same triphone

cluster. The major reason is that from the literature [43] Gaussian means are

more important to the performance of the acoustic model. Besides, adapting

variances in our proposed distinct modeling framework is difficult because of

the following reasons:

– Data sparseness: Since estimating second-order statistics requires much

more data than the estimation of first-order statistics, it is difficult to ro-

bustly estimate the variance of a triphone with very low occurrence count

using only its own data.
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– Optimization problem: Unlike the Gaussian mean adaptation, there is no

close-form solution in solving the estimation objective function when vari-

ance adaptation are taken into consideration. Although optimization meth-

ods like gradient descent [5] can be used, they need further hand-tuning to

ensure the robustness of the estimation.

A possible solution is to adopt a partial distinct modeling approach where only

the triphones with occurrence counts higher than a threshold are adapted and

the rest remain tied. One may further employ the maximum likelihood linear

regression (MLLR) [32] approach to transform the variances.

• Efficient cluster definition: In this thesis, we investigate the use of cluster-based

eigentriphone modeling on state clusters defined by the conventional tree-based

state clustering. This tree-based state clustering defines the state clusters by

maximizing the likelihood of the data whereas the eigentriphone modeling aims

at representing the reference models with as few eigenvectors as possible. Thus,

there is a mismatch between the objectives of two approaches. It is possible

to eliminate the mismatch by using another objective function in the tree-based

state clustering. The question is how to measure the effectiveness of the new

state definition. One possible way is to maximize the total area under the eigen

spectrums of every state clusters.

• Phonetic units with higher levels of context dependence: One of the major

advantages of the eigentriphone modeling framework is that it is very flexible

and can be applied to other modeling unit. We have successfully applied the

framework on a grapheme-based modeling system and we called it eigentri-

grapheme modeling. One may further extend the framework to estimate pho-

netic units with higher levels of context dependence such as quinphones [95] or

pentaphones [71].

• Distinct triphone states in DNN-HMM: One of the major findings in this thesis

is another option of context-dependent model estimation apart from parameter

tying. In this thesis, we demonstrate the use of distinct acoustic modeling in

the GMM-HMM framework and it is possible to extend the idea to other recog-

nizer frameworks. As mentioned in Section 2.1.3, DNN-HMM has received a
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lot of attention recently; the output nodes of a DNN usually represent the pos-

terior probabilities of the tied states of an HMM [45]. It will be interesting to

see how it performs when the tied states are replaced by distinct triphone states.

The risk of overfitting due to the increased number of output nodes and connec-

tion weights in DNN need to be addressed. One possible direction is to try the

recently proposed “dropout” [15] method in the DNN-HMM framework. The

dropout procedure randomly omits each hidden unit according to a probabil-

ity distribution and the resulting DNN is approximately an average of multiple

neural networks. As the training cases for infrequent triphones are limited, aver-

aging the connection weights can help to avoid overfitting. Dropout has already

been used successfully in improving low-resource ASR where training data is

limited [68].
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APPENDIX A

PHONE SET IN THE THESIS

Table A.1: The phone set and their examples.
Phoneme Example Transcription

aa ODD aa d
ae AT ae t
ah HUT hh ah t
ao OUGHT ao t
aw COW k aw
ay HIDE hh ay d
b BE b iy
ch CHEESE ch iy z
d END eh n d
dh WEATHER w eh dh er
eh BEAR b eh r
er HURT hh er t
ey ATE ey t
f FREE f r iy
g GREEN g r iy n
hh HE hh iy
ih IT ih t
iy EAT iy t
jh JANE jh ey n
k KEY k iy
l LIGHT l ay t

m ME m iy
n SON s ah n
ng PING p ih ng
ow NO n ow
oy TOY t oy
p PIG p ih g
r RIGHT r ay t
s SEA s iy
sh SHE sh iy
t TEA t iy

th THETA th ey t ah
uh FOOT f uh t
uw TWO t uw
v VERY v eh r iy
w WET w eh t
y YET y eh t
z ZOO z uw
zh VISION v ih zh ah n
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APPENDIX B

SIGNIFICANT TESTS

The statistical significance test suite from National Institute of Standards and Technol-

ogy (NIST) is used to compared different systems. It encompasses four tests:

• MP: Matched Pair Sentence Segment (Word Error) Test.

• SP: Signed Paired Comparison (Speaker Word Accuracy Rate) Test.

• WI: Wilcoxon Signed Rank (Speaker Word Accuracy Rate) Test.

• MN: McNemar (Sentence Error) Test.

Here, we first apply the test to compare our proposed cluster-based eigentriphone

modeling and the conventional state tying. The abbreviations of the two system are as

follows:

• Cluster-ETM: Cluster-based eigentrphone modeling.

• Tied-state: Conventional state tying.

The test results are shown in Table B.1, Table B.2 and Table B.3.

Table B.1: Significant tests of the TIMIT experiments.

Cluster-ETM
Tied-state MP: Cluster-ETM

SP: same
WI: same
MN: same
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Table B.2: Significant tests of the WSJ nov92 experiments.

Cluster-ETM
Tied-state MP: same

SP: same
WI: same
MN: same

Table B.3: Significant tests of the WSJ nov93 experiments.

Cluster-ETM
Tied-state MP: same

SP: same
WI: same
MN: same

Next, we apply the test to compare various systems we used in Chapter 4. The ab-

breviations of various systems in the phoneme recognition are summarized as follows:

• TIED-FLATLM: Phone-based system with conventional state tying and a flat

LM used.

• CETM-FLATLM: Cluster-based eigentriphone modeling with a flat LM used.

• TIED-BILM: Phone-based system with conventional state tying and a bigram

LM used.

• CETM-BILM: Cluster-based eigentriphone modeling with a bigram LM used.

• TIED-TRILM: Phone-based system with conventional state tying and a trigram

LM used.

• CETM-TRILM: Cluster-based eigentriphone modeling with a trigram LM used.

The test results with respect to Afrikaans, South African English, Sesotho and

siSwati are shown in Table B.4, Table B.5 ,Table B.6 and Table B.7 respectively.

The abbreviations of various systems in the word recognition are summarized as

follows:

• PHONE-TIED: Phone-based system with conventional state tying.
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• GRAPHEME-TIED: Grapheme-based system with conventional state tying.

• PHONE-CETM: Cluster-based eigentriphone modeling.

• GRAPHEME-CETM: Cluster-based eigentrigrapheme modeling.

The test results with respect to Afrikaans, South African English, Sesotho and

siSwati are shown in Table B.8, Table B.9 ,Table B.10 and Table B.11 respectively.
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Finally, we apply the test to compare various systems we used in the Switchboard

experiments in Chapter 5. The abbreviations of the systems are as follows:

• ML-TS: Conventional state tying with ML training and dynamic features.

• ML-RMW: RMW with ML training and dynamic features.

• ML-LDA-TS: Conventional state tying with ML training and LDA+MLLT fea-

tures.

• ML-LDA-RMW: RMW with ML training and LDA+MLLT features.

• ML-LDA-SAT-TS: Conventional state tying with ML training, LDA+MLLT

features and SAT+FMLLT applied.

• ML-LDA-SAT-RMW: RMW with ML training, LDA+MLLT features and SAT+FMLLT

applied.

• MPE-LDA-SAT-TS: Conventional state tying with MPE training, LDA+MLLT

features and SAT+FMLLT applied.

• MPE-LDA-SAT-RMW: RMW with MPE training, LDA+MLLT features and

SAT+FMLLT applied.

The test results are shown in Table B.12.
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