COMP5211: Machine Learning
Lecture 11
Decision Tree
Illustration

• Each node checks on feature x_i:
 • Go left if $x_i < \text{threshold}$
 • Go right if $x_i > \text{threshold}$
Decision Tree
A real example

- Each node checks on feature x_i:
 - Go left if $x_i < \text{threshold}$
 - Go right if $x_i > \text{threshold}$
Decision Tree
Pros

• Strength:
 • It’s a nonlinear classifier
 • Better interpretability
 • Can naturally handle categorical features
Decision Tree

Pros

• Strength:
 • It’s a nonlinear classifier
 • Better interpretability
 • Can naturally handle categorical features

• Computation:
 • Training: slow
 • Prediction: fast
 • h operations (h: depth of the tree, usually ≤ 15)
Decision Tree
Splitting the node

- Classification tree: Split the node to maximize entropy

- Let S be set of data points in a node, $c = 1, \ldots, C$ are labels:

 \[H(S) = - \sum_{c=1}^{C} p(c) \log p(c) \]

 - Where $p(c)$ is the proportion of the data belong to class c
 - Entropy=0 if all samples are in the same class
 - Entropy is large if $p(1) = \ldots = p(C)$
Decision Tree

Information Gain

- The averaged entropy of a split \(S \rightarrow S_1, S_2 \)

 \[
 \frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)
 \]

- Information gain: measure how good is the split

 \[
 H(S) - (\frac{|S_1|}{|S|})H(S_1) + (\frac{|S_2|}{|S|})H(S_2)
 \]
Decision Tree

Information Gain

• The averaged entropy of a split $S \rightarrow S_1, S_2$

$$\frac{|S_1|}{|S|} H(S_1) + \frac{|S_2|}{|S|} H(S_2)$$

• Information gain: measure how good is the split

$$H(S) - ((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2))$$

Averaged entropy: $2/3*1 + 1/3*0 = 0.67$
Information gain: $1.58 - 0.67 = 0.91$
Decision Tree

Information Gain

- The averaged entropy of a split $S \to S_1, S_2$

 $$\frac{|S_1|}{|S|}H(S_1) + \frac{|S_2|}{|S|}H(S_2)$$

- Information gain: measure how good is the split

 $$H(S) - ((|S_1|/|S|)H(S_1) + (|S_2|/|S|)H(S_2))$$
Decision Tree
Splitting the node

• Given the current note, how to find the best split?
Decision Tree
Splitting the node

• Given the current note, how to find the **best split**?

• For all the **features** and all the **threshold**

 • Compute the information gain after the split

• Choose the best one (**maximal information gain**)
Decision Tree
Splitting the node

• Given the current note, how to find the **best split**?
• For all the **features** and all the **threshold**
 • Compute the information gain after the split
 • Choose the best one (**maximal information gain**)
• For n samples and d features: need $O(nd)$ time
Decision Tree

Regression Tree

- Assign a real number for each leaf

- Usually average y values for each leaf (minimize square error)
Decision Tree
Regression Tree

- Objective function:

 \[\min_F \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + (\text{Regularization}) \]

- The quality of partition \(S = S_1 \cup S_2 \) can be computed by the objective function:

 \[\sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2, \]

 Where \(y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i, \quad y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i \)
Decision Tree
Regression Tree

- Objective function:
 \[
 \min_{F} \frac{1}{n} \sum_{i=1}^{n} (y_i - F(x_i))^2 + \text{(Regularization)}
 \]

- The quality of partition \(S = S_1 \cup S_2 \) can be computed by the objective function:
 \[
 \sum_{i \in S_1} (y_i - y^{(1)})^2 + \sum_{i \in S_2} (y_i - y^{(2)})^2,
 \]
 where \(y^{(1)} = \frac{1}{|S_1|} \sum_{i \in S_1} y_i \) and \(y^{(2)} = \frac{1}{|S_2|} \sum_{i \in S_2} y_i \)

- Find the best split
 - Try all the features & thresholds and find the one with minimal objective function
Decision Tree

Parameters

- Maximum depth: (usually ≈ 10)
- Minimum number of nodes in each node: (10, 50, 100)
Decision Tree
Parameters

• Maximum depth: (usually ≈ 10)

• Minimum number of nodes in each node: (10, 50, 100)

• Single decision tree is not very powerful …

• Can we build multiple decision trees and ensemble them together?
Random Forest
Definition

- Random Forest (Bootstrap ensemble for decision trees):
 - Create T trees
 - Learn each tree using a subsampled dataset S_i and subsampled feature set D_i
 - Prediction: Average the results from all the T trees
- Benefit:
 - Avoid over-fitting
 - Improve stability and accuracy
- Good software available:
 - R: “randomForest” package
 - Python: sklearn
Random Forest

Definition
Gradient Boosted Decision Tree

Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \arg \min_F \sum_{i=1}^n \ell(y_i, F(x_i)) \text{ with } F(x) = \sum_{m=1}^T f_m(x)$$

- (Each f_m is a decision tree)
Gradient Boosted Decision Tree

Boosted Decision Tree

• Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

 $F^* = \arg\min_F \sum_{i=1}^{n} \ell(y_i, F(x_i))$ with $F(x) = \sum_{m=1}^{T} f_m(x)$

 (Each f_m is a decision tree)

• Direct loss minimization: at each stage m, find the best function to minimize loss

 • Solve $f_m = \arg\min_{f_m} \sum_{i=1}^{N} \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$

 • Update $F_m \leftarrow F_{m-1} + f_m$

 $F_m(x) = \sum_{j=1}^{m} f_j(x)$ is the prediction of x after m iterations
Gradient Boosted Decision Tree

Boosted Decision Tree

- Minimize loss $\ell(y, F(x))$ with $F(\cdot)$ being ensemble trees

$$F^* = \arg\min_F \sum_{i=1}^{n} \ell(y_i, F(x_i)) \text{ with } F(x) = \sum_{m=1}^{T} f_m(x)$$

- (Each f_m is a decision tree)

- Direct loss minimization: at each stage m, find the best function to minimize loss

$$f_m = \arg\min_{f_m} \sum_{i=1}^{N} \ell(y_i, F_{m-1}(x_i) + f_m(x_i))$$

- Update $F_m \leftarrow F_{m-1} + f_m$

$$F_m(x) = \sum_{j=1}^{m} f_j(x)$$ is the prediction of x after m iterations

- Two problems:
 - Hard to implement for general loss
 - Tend to overfit training data
Gradient Boosted Decision Tree

Gradient Boosted Decision Tree (GBDT)

- Approximate the current loss function by a quadratic approximation

\[
\sum_{i=1}^{n} \ell(\hat{y}_i, F_{m-1}(x_i) + f_m(x_i)) \approx \sum_{i=1}^{n} (\ell_i(\hat{y}_i + g_if_m(x_i) + \frac{1}{2}h_if_m(x_i)^2))
\]

\[
= \sum_{i=1}^{n} \frac{h_i}{2} \|f_m(x_i) - g_i/h_i\|^2 + \text{constant}
\]

- Where \(g_i = \partial_{\hat{y}_i} \ell_i(\hat{y}_i) \) is gradient, \(h_i = \partial^2_{\hat{y}_i} \ell_i(\hat{y}_i) \) is second order derivative
Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

- Finding $f_m(x, \theta_m)$ by minimizing the loss function:

$$\arg \min_{f_m} \sum_{i=1}^{N} [f_m(x_i, \theta) - g_i/h_i]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)

- $h_i = \alpha$ (fixed step size) for original GBDT

- XGboost shows computing second order derivate yields better performance
Gradient Boosted Decision Tree

Gradient Boosted Decision Tree (GBDT)

- Finding $f_m(x, \theta_m)$ by minimizing the loss function:

$$\arg\min_{f_m} \sum_{i=1}^{N} \left[f_m(x_i, \theta) - g_i / h_i \right]^2 + R(f_m)$$

- Reduce the training of any loss function to regression tree (just need to compute g_i for different functions)
- $h_i = \alpha$ (fixed step size) for original GBDT
- XGboost shows computing second order derivate yields better performance

Algorithm:
- Computing the current gradient for each \hat{y}_i
- Building a base learner (decision tree) to fit the gradient
- Updating current prediction $\hat{y}_i = F_m(x_i)$ for all i
Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$
Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$
Gradient Boosted Decision Tree
Gradient Boosted Decision Tree (GBDT)

- Key idea:
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

$$F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \quad g_m(x_i) = \frac{\partial \ell(y_i,F(x_i))}{\partial F(x_i)} \bigg|_{F(x_i)=F_{m-1}(x_i)}$$
Gradient Boosted Decision Tree

Gradient Boosted Decision Tree (GBDT)

- **Key idea:**
 - Each base learner is a decision tree
 - Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

\[
F_{m-1}(x_i) = \sum_{j=1}^{m-1} f_j(x_i) \\
g_m(x_i) = \left. \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} \right|_{F(x_i) = F_{m-1}(x_i)}
\]
Gradient Boosted Decision Tree (GBDT)

Key idea:
- Each base learner is a decision tree
- Each regression tree approximates the functional gradient $\frac{\partial \ell}{\partial F}$

Final prediction $F(x_i) = \sum_{j=1}^{T} f_j(x_i)$
Gradient Boosted Decision Tree

Open source packages

• XGBoost: the first widely used tree-boosting software

• LightGBM: released by Microsoft
 • Histogram-based training approach — much faster than finding the best split
 • Good GPU support