COMP5211: Machine Learning
Lecture 3
Logistics

• Form your group
 • Group registration: Due next Monday
 • Submit your team members & project title & project abstract
• Homework 1 will release this week
Optimization

Goal

• Goal: find the minimizer of a function
 • \(\min_w f(w) \)

• For now we assume \(f \) is twice differentiable
Optimization
Convex function

• A function $f: \mathbb{R}^n \rightarrow \mathbb{R}$ is a convex function

• \iff the function f is below any line segment between two points on f:

 • $\forall x_1, x_2, \forall t \in [0,1]$,

 • $f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$
Optimization

Convex function

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is a convex function

- \iff the function f is below any line segment between two points on f:
 - $\forall x_1, x_2, \forall t \in [0,1],$
 - $f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$

- Strictly convex:
 $f(tx_1 + (1 - t)x_2) < tf(x_1) + (1 - t)f(x_2)$
Another equivalent definition for differentiable function:

- f is convex if and only if $f(x) \geq f(x_0) + \nabla f(x_0)^T(x - x_0)$, $\forall x, x_0$
Optimization

Convex function

• Convex function:

 • (For differentiable function) \(\nabla f(w^*) = 0 \iff w^* \) is a global minimum

• If \(f \) is twice differentiable \(\Rightarrow \)

 • \(F \) is convex if and only if \(\nabla^2 f(w) \) is positive semi-definite

 • Example: linear regression, logistic regression, …
Optimization

Convex function

• Strict convex function:
 • $\nabla f(w^*) = 0 \iff w^*$ is the unique global minimum
 • Most algorithms only converge to gradient=0
 • Example: Linear regression when X^TX is invertible
Optimization
Convex vs Nonconvex

- Convex function:
 - $\nabla f(x) = 0 \rightarrow$ Global minimum
 - A function is convex if $\nabla^2 f(x)$ is positive definite
 - Example: linear regression, logistic regression, …
- Non-convex function:
 - $\nabla f(x) = 0 \rightarrow$ Global min, local min, or saddle point
 - Most algorithms only converge to gradient =0
 - Example: neural network, …
Optimization

Gradient descent

• Gradient descent: repeatedly do

 • $w^{t+1} \leftarrow w^t - \alpha \nabla f(w^t)$

 • $\alpha > 0$ is the step size

• Generate the sequence w^1, w^2, \ldots

 • Converge to stationary points ($\lim_{t \to \infty} \|\nabla f(w^t)\| = 0$)
Optimization

Gradient descent

• Gradient descent: repeatedly do
 - $w_{t+1} \leftarrow w_t - \alpha \nabla f(w_t)$
 - $\alpha > 0$ is the step size
• Generate the sequence w^1, w^2, \ldots
 - Converge to stationary points
 \[\lim_{t \to \infty} \| \nabla f(w^t) \| = 0 \]
 - Step size too large \Rightarrow diverge;
 - too small \Rightarrow slow convergence
Optimization
Why gradient descent

• At each iteration, form an approximation function of $f(\cdot)$:

 $$f(w + d) \approx g(d) := f(w^t) + \nabla f(w^t)^{d} + \frac{1}{2\alpha}||d||^2$$

• Update solution by $w^{t+1} \leftarrow w^t + d^*$

 $$d^* = \arg \min_d g(d)$$

 $$\nabla g(d^*) = 0 \Rightarrow \nabla f(w^t) + \frac{1}{\alpha}d^* = 0 \Rightarrow d^* = -\alpha \nabla f(w^t)$$

• d^* will decrease $f(\cdot)$ if α (step size) is sufficiently small
Optimization

Illustration of gradient descent

• Form a quadratic approximation

\[
f(w + d) \approx g(d) := f(w^t) + \nabla f(w^t)d + \frac{1}{2\alpha} \|d\|^2
\]
Optimization
Illustration of gradient descent

\[g(d) \approx f(w^t + d) \]

- Minimize \(g(d) \)

 \[\nabla g(d^*) = 0 \implies \nabla f(w^t) + \frac{1}{\alpha} d^* = 0 \implies d^* = -\alpha \nabla f(w^t) \]
Optimization

Illustration of gradient descent

- Update w

 $w^{t+1} = w^t + d^* = w^t - \alpha \nabla f(w^t)$
Optimization

Illustration of gradient descent

- Update \(w \)
 - \(w^{t+1} = w^t + d^* = w^t - \alpha \nabla f(w^t) \)
Optimization
Illustration of gradient descent

\[g(d) \approx f(w^{t+1} + d) \]
Optimization

Illustration of gradient descent

\[g(d) \approx f(w^{t+1} + d) \]
Optimization
When will it diverge

Can diverge \((f(w^t) < f(w^{t+1}))\) if \(g\) is not an upper bound of \(f\)

\[f(w^t) < f(w^{t+1}), \text{ diverge because } g\text{'s curvature is too small } \]
Optimization

When will it converge

Always converge \((f(w^t) > f(w^{t+1})) \) if \(g \) is an upper bound of \(f \)

\[f(w^t) > f(w^{t+1}), \text{ converge when } g \text{'s curvature is large enough} \]
Optimization

Convergence

• A differential function f is said to be L-Lipschitz continuous:
 \[\|f(x_1) - f(x_2)\|_2 \leq L\|x_1 - x_2\|_2 \]

• A differential function f is said to be L-smooth: its gradient are Lipschitz continuous:
 \[\|\nabla f(x_1) - \nabla f(x_2)\|_2 \leq L\|x_1 - x_2\|_2 \]

• And we could get
 \[\nabla^2 f(x) \preceq LI \]
 \[f(y) \leq f(x) + \nabla f(x)^T(y - x) + \frac{1}{2}L\|y - x\|^2 \]
Optimization

Convergence

• Let L be a Lipchitz constant ($\nabla^2 f(x) \leq LI$ for all x)

 • Theorem: gradient descent converges if $\alpha < \frac{1}{L}$

• In practice, we do not know L ...
 • Need to tune step size when running gradient descent
Optimization
Convergence

- Let L be a Lipchitz constant ($\nabla^2 f(x) \leq LI$ for all x)

- Theorem: gradient descent converges if $\alpha < \frac{1}{L}$

- Why?
Optimization
Convergence

• Let L be a Lipchitz constant \((\nabla^2 f(x) \leq LI \text{ for all } x) \)

• Theorem: gradient descent converges if $\alpha < \frac{1}{L}$

• Why?

 • When $\alpha < 1/L$, for any d,

 \[
g(d) = f(w^t) + \nabla f(w^t)^T d + \frac{1}{2\alpha} \|d\|^2
 \]

 \[
 > f(w^t) + \nabla f(w^t)^T d + \frac{L}{2} \|d\|^2
 \]

 \[
 \geq f(w^t + d)
 \]

 • So, $f(w^t + d^*) < g(d^*) \leq g(0) = f(w^t)$

 • In formal proof, need to show $f(w^t + d^*)$ is sufficiently smaller than $f(w^t)$
Optimization
Gradient descent convergence rate

• Suppose f is convex and differentiable and its gradient is Lipschitz continuous, then if we run gradient for t iterations with a fixed step $\alpha \leq \frac{1}{L}$, it will yield a solution that satisfies:

 $f(w^t) - f(w^*) \leq \frac{\|w^0 - w^*\|_2^2}{2\alpha t}$

• Proof
Optimization
Convergence

• Let L be a Lipchitz constant $(\nabla^2 f(x) \leq LI$ for all x)

 • Theorem: gradient descent converges if $\alpha < \frac{1}{L}$

• In practice, we do not know L ...
 • Need to tune step size when running gradient descent
Optimization
Applying to logistic regression

gradient descent for logistic regression

- Initialize the weights w_0
- For $t = 1, 2, \cdots$
 - Compute the gradient

$$\nabla f(w) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n x_n}{1 + e^{y_n w^T x_n}}$$

- Update the weights: $w \leftarrow w - \eta \nabla f(w)$
- Return the final weights w
Optimization
Applying to logistic regression

• When to stop?
 • Fixed number of iterations, or
 • Stop when $\|\nabla f(w)\| < \epsilon$

gradient descent for logistic regression

- Initialize the weights w_0
- For $t = 1, 2, \cdots$
 - Compute the gradient
 $$\nabla f(w) = -\frac{1}{N} \sum_{n=1}^{N} \frac{y_n x_n}{1 + e^{y_n w^T x_n}}$$
 - Update the weights: $w \leftarrow w - \eta \nabla f(w)$
- Return the final weights w
Optimization
Line search

• In practice, we do not know L ...
 • Need to tune step size when running gradient descent
• Line Search: Select step size automatically (for gradient descent)
Optimization
Line search

• The back-tracking line search:
 • Start from some large α_0
 • Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, \ldots$
 • Stop when α satisfies some sufficient decrease condition
Optimization
Line search

• The back-tracking line search:
 • Start from some large α_0
 • Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, \ldots$
 • Stop when α satisfies some sufficient decrease condition
 • A simple condition: $f(w + \alpha d) < f(w)$
Optimization

Line search

• The back-tracking line search:
 • Start from some large α_0
 • Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, \ldots$
 • Stop when α satisfies some sufficient decrease condition
 • A simple condition: $f(w + \alpha d) < f(w)$
 • Often works in practice but doesn’t work in theory
Optimization
Line search

• The back-tracking line search:
 • Start from some large α_0
 • Try $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, \ldots$
 • Stop when α satisfies some sufficient decrease condition
• A simple condition: $f(w + \alpha d) < f(w)$
 • Often works in practice but doesn’t work in theory
• A (provable) sufficient decrease condition $f(w + \alpha d) \leq f(w) + c_1 \alpha \nabla f(w)^T d$ (armijo condition)
• $\nabla f(w + \alpha d)^T d \geq c_2 \nabla f(w)^T d$ (curvature)
 • + armijo = wolfe condition
• For constant $c_1, c_2 \in (0,1)$
Optimization

Line search

gradient descent with backtracking line search

- Initialize the weights w_0
- For $t = 1, 2, \cdots$
 - Compute the gradient

 $$d = -\nabla f(w)$$
 - For $\alpha = \alpha_0, \alpha_0/2, \alpha_0/4, \cdots$
 - Break if $f(w + \alpha d) \leq f(w) + \sigma \alpha \nabla f(w)^T d$
 - Update $w \leftarrow w + \alpha d$
- Return the final solution w