Optimization

Gradient descent convergence rate

Suppose f is convex and differentiable and its gradient is Lipschitz continuous, then if we run gradient for t iterations with a fixed step size $\alpha \leq \frac{1}{L}$, it will yield a solution that satisfies:

\[
f(w^t) - f(w^*) \leq \frac{\|w^0 - w^*\|^2}{2at}
\]

Proof:

\[
f(w^{t+1}) \leq f(w^t) + \nabla f(w^t)^T (w^{t+1} - w^t) + \frac{1}{2} \nabla^2 f(w^t) \|w^{t+1} - w^t\|^2
\]

\[
= f(w^t) + \nabla f(w^t)^T (w^{t+1} - w^t) + \frac{1}{2} L \|w^{t+1} - w^t\|^2
\]

\[
= f(w^t) + \nabla f(w^t)^T (w^t - \alpha \nabla f(w^t) - w^t) + \frac{1}{2} L \|w^t - \alpha \nabla f(w^t) - w^t\|^2
\]

\[
= f(x) - (1 - \frac{1}{2} L \alpha) \alpha \|\nabla f(x)\|^2 \leq f(w^t) - \frac{1}{2} \alpha \|\nabla f(x)\|^2
\]

...
Optimization
Large-scale problem

• Machine learning: usually minimizing the training loss:

\[
\min_w \left\{ \frac{1}{N} \sum_{n=1}^{N} \ell(w^T x_n, y_n) \right\} := f(w) \text{ (linear model)}
\]

\[
\min_w \left\{ \frac{1}{N} \sum_{n=1}^{N} \ell(f_W(x_n), y_n) \right\} := f(w) \text{ (general hypothesis)}
\]

• \(\ell \): loss function (e.g., \(\ell(a, b) = (a - b)^2 \))

• Gradient descent:

\[
w \leftarrow w - \eta \quad \nabla f(w)
\]

Main computation
Optimization
Large-scale problem

- Machine learning: usually minimizing the training loss:

 \[\min_w \left\{ \frac{1}{N} \sum_{n=1}^{N} \ell(w^T x_n, y_n) \right\} := f(w) \] (linear model)

 \[\min_w \left\{ \frac{1}{N} \sum_{n=1}^{N} \ell(f_W(x_n), y_n) \right\} := f(w) \] (general hypothesis)

- \(\ell \): loss function (e.g., \(\ell(a, b) = (a - b)^2 \))

- Gradient descent:

 \[w \leftarrow w - \eta \nabla f(w) \]

 Main computation

- In general, \(f(w) = \frac{1}{N} \sum_{n=1}^{N} f_n(w) \),

 - Each \(f_n(w) \) only depends on \((x_n, y_n) \)
Optimization

Stochastic gradient

- Gradient: $\nabla f(w) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w)$,

- Each gradient computation needs to go through all training samples
 - Slow when millions of samples
- Faster way to compare “approximate gradient”?
Optimization
Stochastic gradient

- Gradient: \(\nabla f(w) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w), \)
- Each gradient computation needs to go through all training samples
 - Slow when millions of samples
- Faster way to compare “approximate gradient”?
- Use stochastic sampling:
 - Sample a small subset \(B \subseteq \{1, \ldots, N\} \)
 - Estimated gradient
 - \(\nabla f(w) \approx \frac{1}{B} \sum_{n \in B} \nabla f_n(w) \)
 - \(|B| \): batch size
Optimization

Stochastic gradient descent

Stochastic Gradient Descent (SGD)

- Input: training data \(\{x_n, y_n\}_{n=1}^{N} \)
- Initialize \(w \) (zero or random)
- For \(t = 1, 2, \cdots \)
 - Sample a small batch \(B \subseteq \{1, \cdots, N\} \)
 - Update parameter

\[
\mathbf{w} \leftarrow \mathbf{w} - \eta^t \frac{1}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})
\]

- Extreme case: \(|B| = 1 \Rightarrow \) Sample one training data at a time
Optimization
Logistic Regression by SGD

- Logistic regression

\[
\min_w \frac{1}{N} \sum_{n=1}^{N} \log(1 + e^{-y_n w^T x_n})
\]

SGD for Logistic Regression

- Input: training data \(\{x_n, y_n\}_{n=1}^{N} \)
- Initialize \(w \) (zero or random)
- For \(t = 1, 2, \cdots \)
 - Sample a batch \(B \subseteq \{1, \cdots , N\} \)
 - Update parameter

\[
w \leftarrow w - \eta^t \frac{1}{|B|} \sum_{i \in B} -\frac{y_n x_n}{1 + e^{y_n w^T x_n}} \nabla f_n(w)
\]
Optimization

Why SGD works?

- Stochastic gradient is an unbiased estimator of full gradient:

$$
\mathbb{E}\left[\frac{1}{|B|} \sum_{n \in B} \nabla f_n(w)\right] = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w) = \nabla f(w)
$$
Optimization

Why SGD works?

- Stochastic gradient is an unbiased estimator of full gradient:

\[
\mathbb{E}\left[\frac{1}{|B|} \sum_{n \in B} \nabla f_n(w)\right] = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w) = \nabla f(w)
\]

- Each iteration updated by

 - Gradient + zero-mean noise
Optimization

Stochastic gradient descent

• In gradient descent, η (step size) is a fixed constant

• Can we use fixed step size for SGD?
Optimization
Stochastic gradient descent

• In gradient descent, η (step size) is a fixed constant

• Can we use fixed step size for SGD?

• SGD with fixed step size cannot converge to global/local minimizers
Optimization

Stochastic gradient descent

• In gradient descent, η (step size) is a fixed constant

• Can we use fixed step size for SGD?

• SGD with fixed step size cannot converge to global/local minimizers

 If w^* is the minimizer, $\nabla f(w^*) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w^*) = 0$,

 But $\frac{1}{|B|} \sum_{n \in B} \nabla f_n(w) \neq 0$ if B is a subset

• (Even if we got minimizer, SGD will move away from it)
Optimization

Stochastic gradient descent: step size

- To make SGD converge:
 - Step size should decrease to 0
 - $\eta^t \to 0$
 - Usually with polynomial rate $\eta^t \approx t^{-a}$ with constant a
- Step decay of learning rate
Optimization
learning rate scheduling

• Other cyclic learning rate scheduling
Optimization

Stochastic gradient descent vs Gradient descent

• Stochastic gradient descent:
 • Pros:
 • Cheaper computation per iteration
 • Faster convergence in the beginning
 • Cons:
 • Less stable, slower final convergence
 • Hard to tune step size
Optimization
Ex. Perception learning

- Given a classification data \(\{x_n, y_n\}_{n=1}^N \)

- Learning a linear model:
 \[
 \min_w \frac{1}{N} \sum_{n=1}^N \ell(w^T x_n, y_n)
 \]

- Consider the loss:
 - \(\ell(w^T x_n, y_n) = \max(0, -y_nw^T x_n) \)

- What’s the gradient?
Optimization

Ex. Perception learning

• \(\ell(w^Tx_n, y_n) = \max(0, -y_nw^Tx_n) \)

• Consider two cases:

 • Case I: \(y_nw^Tx_n > 0 \) (predict correctly)

 • \(\ell(w^Tx_n, y_n) = 0 \)

 • \(\frac{\partial}{\partial w} \ell(w^Tx_n, y_n) = 0 \)
Optimization
Ex. Perception learning

• $\ell(w^T x_n, y_n) = \max(0, -y_n w^T x_n)$

• Consider two cases:

 • Case I: $y_n w^T x_n > 0$ (predict correctly)
 • $\ell(w^T x_n, y_n) = 0$
 • $\frac{\partial}{\partial w} \ell(w^T x_n, y_n) = 0$

 • Case II: $y_n w^T x_n < 0$ (predict wrongly)
 • $\ell(w^T x_n, y_n) = y_n w^T x_n$
 • $\frac{\partial}{\partial w} \ell(w^T x_n, y_n) = -y_n x_n$
Optimization
Ex. Perception learning

- $\ell(w^T x_n, y_n) = \max(0, -y_n w^T x_n)$
- Consider two cases:
 - Case I: $y_n w^T x_n > 0$ (predict correctly)
 - $\ell(w^T x_n, y_n) = 0$
 - $\frac{\partial}{\partial w} \ell(w^T x_n, y_n) = 0$
 - Case II: $y_n w^T x_n < 0$ (predict wrongly)
 - $\ell(w^T x_n, y_n) = -y_n w^T x_n$
 - $\frac{\partial}{\partial w} \ell(w^T x_n, y_n) = -y_n x_n$
- SGD update rule: Sample an index n
 - $w^{t+1} = \begin{cases}
 w^t, & \text{if } y_n w^T x_n \geq 0 \quad \text{(predict correctly)} \\
 w^t + \eta^t y_n x_n, & \text{if } y_n w^T x_n < 0 \quad \text{(predict wrongly)}
 \end{cases}$
Optimization

Momentum

• Gradient descent: only using current gradient (local information)

• Momentum: use previous gradient information
Optimization
Momentum

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information
- The momentum update rule:
 - $v_t = \beta v_{t-1} + (1 - \beta) \nabla f(w_t)$
 - $w_{t+1} = w_t - \alpha v_t$
 - $\beta \in [0, 1)$: discount factors, α: step size
- Equivalent to using moving average of gradient
 - $v_t = (1 - \beta) \nabla f(w_t) + \beta(1 - \beta) \nabla f(w_{t-1}) + \beta^2(1 - \beta) \nabla f(w_{t-2}) + \ldots$
Optimization
Momentum

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information
- The momentum update rule:
 - $v_t = \beta v_{t-1} + (1 - \beta) \nabla f(w_t) \quad w_{t+1} = w_t - \alpha v_t$
 - $\beta \in [0,1)$: discount factors, α: step size
- Equivalent to using moving average of gradient
 - $v_t = (1 - \beta) \nabla f(w_t) + \beta(1 - \beta) \nabla f(w_{t-1}) + \beta^2(1 - \beta) \nabla f(w_{t-2}) + \ldots$
- Another equivalent form:
 - $v_t = \beta v_{t-1} + \alpha \nabla f(w_t)$
 - $w_{t+1} = w_t - v_t$
Optimization
Momentum gradient descent

Momentum gradient descent
- Initialize $w_0, v_0 = 0$
- For $t = 1, 2, \cdots$
 - Compute $v_t \leftarrow \beta v_{t-1} + (1 - \beta) \nabla f(w_t)$
 - Update $w_{t+1} \leftarrow w_t - \alpha v_t$

- α: learning rate
- β: discount factor ($\beta = 0$ means no momentum)
Optimization

Momentum gradient descent

Momentum stochastic gradient descent

- Initialize $w_0, v_0 = 0$
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \cdots, N\}$
 - Compute $v_t \leftarrow \beta v_{t-1} + (1 - \beta) \nabla f_i(w_t)$
 - Update $w_{t+1} \leftarrow w_t - \alpha v_t$

- Optimizing $f(w) = \frac{1}{N} \sum_{i=1}^{N} f_i(w)$

- α: learning rate

- β: discount factor ($\beta = 0$ means no momentum)
Optimization
Nesterov accelerated gradient

- Using the “look-ahead” gradient

 \[v_t = \beta v_{t-1} + \alpha \nabla f(w_t - \beta v_{t-1}) \]

- \[w_{t+1} = w_t - v_t \]
Optimization

Why momentum works?

- Reduce variance of gradient estimator for SGD
- Even for gradient descent, it’s able to speed up convergence in some cases:
Optimization
Adagrad: Adaptive updates

• SGD update: same step size for all variables

• Adaptive algorithms: each dimension can have a different step size

<table>
<thead>
<tr>
<th>Adagrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialize (w_0)</td>
</tr>
<tr>
<td>For (t = 1, 2, \cdots)</td>
</tr>
<tr>
<td>(i \in {1, \cdots, N})</td>
</tr>
<tr>
<td>Compute (g^t_i \leftarrow \nabla f_i (w_t))</td>
</tr>
<tr>
<td>(G_i^t \leftarrow G_i^{t-1} + (g_i^t)^2)</td>
</tr>
<tr>
<td>Update (w_{t+1} \leftarrow w_t - \frac{\eta}{\sqrt{G_i^t} + \epsilon} g_i^t)</td>
</tr>
</tbody>
</table>

• \(\eta \): step size (constant)

• \(\epsilon \): small constant to avoid division by 0
Optimization

Adagrad

• For each dimension i, we have observed T samples g_i^1, \ldots, g_i^T

• Standard deviation of g_i:

$$\sqrt{\frac{\sum_{t'} (g_{i}^{t'})^2}{t}} = \sqrt{\frac{(G_i^t)^2}{t}}$$

• Assume step size is η/\sqrt{t}, then the update becomes

$$w_{t+1}^i \leftarrow w_t^i - \frac{\eta}{\sqrt{t}} \frac{\sqrt{t}}{\sqrt{(G_i^t)^2}} g_i^t$$
Optimization

Adam: Momentum + Adaptive updates

Adam

- Initialize \mathbf{w}_0, $\mathbf{m}_0 = 0$, $\mathbf{v}_0 = 0$,
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \cdots, N\}$
 - Compute $\mathbf{g}_t \leftarrow \nabla f_i(\mathbf{w}_t)$
 - $\mathbf{m}_t \leftarrow \beta_1 \mathbf{m}_{t-1} + (1 - \beta_1) \mathbf{g}_t$
 - $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$
 - $\hat{\mathbf{m}}_t \leftarrow \mathbf{m}_t / (1 - \beta_1^t)$
 - $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t / (1 - \beta_2^t)$
 - Update $\mathbf{w}_t \leftarrow \mathbf{w}_t - 1 - \alpha \cdot \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t + \epsilon})$
Optimization

Batch size selection

- Larger batch size \Rightarrow more computation per update, less noise
- Usually, choose batch size large enough that
 - Fits in (GPU) memory
 - Can fully utilize the computation resource
- For example, 512 batch size for ImageNet training on a standard GPU.
Optimization
Large batch training

• What if we want to train a model with hundreds or thousands of GPUs
• Data parallel distributed computing:
 • Increasing the batch size linearly with number of devices.
• ⇒ Large batch training
Optimization
Problem of large batch training

• Tend to converge to models with lower test accuracy when using very large batch size

(Goyal et al., 2017) Training Imagenet in 1 hour
Optimization
Sharp vs wide local minimum

- Large-batch SGD/Adam:
 - Usually converge to a sharp local minimum (not enough inherent noise in SGD)
 - Harder to generalize to test data
Optimization
A simple but practical solution: learning rate scaling

- $\text{Var}[\frac{1}{|B|} \sum_{n \in B} g_n] \approx O(\frac{1}{|B|})$
- Batch size \uparrow, learning rate \uparrow
 - LR scaling: LR as $O(\sqrt{|B|})$ or $O(|B|)$
- However, LR has to be bounded for convergence (as for GD)
 - $LR \leq O(1/L)$ L: Lipchitz constant
- Can't unlimitedly increase LR
Optimization
Non-uniform updates between different layers

- Some layer becomes the bottleneck of LR

| Layers | $||w||_2$ | $||\nabla w||_2$ | $||w||_2 / ||\nabla w||_2$ |
|--------|----------|----------------|---------------------|
| fc8.0 | 20.24 | 0.078445 | 258 |
| fc8.1 | 0.316 | 0.006147 | 51 |
| fc7.0 | 20.48 | 0.110949 | 184 |
| fc7.1 | 6.400 | 0.004939 | 1296 |
| fc6.0 | 30.72 | 0.097996 | 314 |
| fc6.1 | 6.400 | 0.001734 | 3690 |
| conv5.0| 6.644 | 0.034447 | 193 |
| conv5.1| 0.160 | 0.000961 | 166 |
| conv4.0| 8.149 | 0.039939 | 204 |
| conv4.1| 0.196 | 0.000486 | 403 |
| conv3.0| 9.404 | 0.049182 | 191 |
| conv3.1| 0.196 | 0.000511 | 384 |
| conv2.0| 5.545 | 0.057997 | 96 |
| conv2.1| 0.160 | 0.000649 | 247 |
| conv1.0| 1.866 | 0.071503 | 26 |
| conv1.1| 0.098 | 0.004909 | 20 |
Optimization
Another solution

• Use \textit{Layer-wise Adaptive LR Scaling}

\[w^{(i)} \leftarrow w^{(i)} - \eta \frac{\|w^{(i)}\|}{\|g^{(i)}\|} g^{(i)}, \]

• where \((\cdot)^{(i)}\) means the \(i\)-th layer of neural network

• LARS: \(g\) is the stochastic gradient

• LAMB: \(g\) is the Adam update

• Google and Nvidia both use LAMB to train BERT within 1 minute (4096 TPU / 2048 GPU)