
Automated Reprojection-Based Pixel Shader Optimization
Pitchaya Sitthi-amorn1 Jason Lawrence1 Lei Yang2 Pedro V. Sander2 Diego Nehab3 Jiahe Xi4

1University of Virginia 2Hong Kong UST 3Microsoft Research 4Zhejiang University

10%

5%

0%

Figure 1: Several optimization results produced with our system. Each image compares (top) an input pixel shader to (bottom) a version
modified to cache and reuse some partial shading computation over consecutive frames. Our system automatically selects the intermediate
values to be reused and the rate at which cached entries are refreshed so as to maximize performance improvement while minimizing (inset)
the visual error injected into the final shading.

Abstract

We present a framework and supporting algorithms to automate the
use of temporal data reprojection as a general tool for optimizing
procedural shaders. Although the general strategy of caching and
reusing expensive intermediate shading calculations across consec-
utive frames has previously been shown to provide an effective
trade-off between speed and accuracy, the critical choices of what
to reuse and at what rate to refresh cached entries have been left to a
designer. The fact that these decisions require a deep understanding
of a procedure’s semantic structure makes it challenging to select
optimal candidates among possibly hundreds of alternatives. Our
automated approach relies on parametric models of the way pos-
sible caching decisions affect the shader’s performance and visual
fidelity. These models are trained using a sample rendering session
and drive an interactive profiler in which the user can explore the er-
ror/performance trade-offs associated with incorporating temporal
reprojection. We evaluate the proposed models and selection al-
gorithm with a prototype system used to optimize several complex
shaders and compare our approach to current alternatives.

Keywords: Real-Time Rendering, Temporal Reprojection, Proce-
dural Shading, Code Optimization

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism I.3.3 [Computer Graphics]: Display algo-
rithms

1 Introduction

Procedural shading [Cook 1984; Perlin 1985] is an indispensable
tool for modeling realistic surfaces in virtual environments. With
the advent of programmable graphics hardware, rendering systems
can employ increasingly complex procedural shaders at the pixel
level. Figure 1 shows a few examples of custom pixel shaders that
can be rendered at or near interactive rates by current hardware.

Modern pixel shaders often perform hundreds to thousands of arith-
metic operations, potentially incorporating expensive trigonometric
functions and many texture map accesses to produce a final pixel
color. As a result, their execution cost can easily dominate the
computational budget per frame, exceeding both hidden surface re-
moval and geometry processing. Another important consequence
of this increase in complexity is that optimizing pixel shaders by
hand has become an exhausting task. Nevertheless, designers are
often saddled with tight budgets and considerable manual effort is
spent devising the most efficient way to adequately reproduce a de-
sired effect. While there is no substitute for human intuition, there
is a clear need for automated tools to help in this process.

Just like a traditional program running on a CPU, a pixel shader
can be executed faster with higher-performance hardware or with
advancements in compiler technology that can better extract and
exploit parallelism in the code. Unique to graphics applications,
however, is that shaders can often be more aggressively optimized
by sacrificing accuracy for speed. Previous techniques have taken
advantage of this fact in two different ways: through code simplifi-
cation and data reprojection.

Given an input pixel shader, the methods proposed by Olano et al.
[2003] and Pellacini [2005] automatically generate a sequence of
progressively simplified versions. These may be used in place of
the original to improve performance at an acceptable level of detail.
Data reprojection, on the other hand, exploits the natural tempo-
ral coherence in animation sequences by caching expensive inter-
mediate shading calculations performed at each frame which may
be reused when rendering subsequent frames. For example, even
though a specular highlight moves quickly over a surface due to
changes in light position or viewpoint, the albedo usually remains
constant. In situations where the surface albedo is expensive to

compute (e.g., it requires evaluating a complex procedure as in Fig-
ure 1), caching and reusing previously computed values can reduce
rendering costs at a minor increase in error.

In general, data reprojection is more flexible than static code sim-
plification, since the former can take advantage of both spatial and
temporal coherence, and can adapt to changes in the scene. The
method recently proposed by Nehab et al. [2007] runs entirely on
the GPU and was demonstrated to provide impressive acceleration
results for a number of common effects. However, deciding what
to cache and defining a suitable refresh policy are critical for ob-
taining satisfactory results. Prior systems have left these decisions
to a designer, relying on his or her understanding of the semantic
structure of the procedure and intuition as to how each choice will
affect final render quality and performance. In many cases, the best
candidate for reprojection may have little physical significance and
can be easily overlooked among hundreds of choices.

We present a set of techniques to automate the use of data repro-
jection as a general and practical tool for optimizing procedural
shaders. We introduce parametric models of the way caching dif-
ferent subexpressions within a procedure affects its performance
and fidelity, which may be trained using a sample rendering ses-
sion. Additionally, we describe an interactive profiler wherein the
decision of what to cache is made according to these models, but
guided by user-defined error bounds. This system allows interac-
tive exploration of the error/performance trade-offs involved in us-
ing temporal reprojection. We present optimization results for sev-
eral production shaders (Figure 1) that demonstrate the generality
of our approach and compare our work to leading alternatives.

2 Related Work

Prior work on shader optimization has generally taken the form of
either code simplification or manual data reprojection. Our ap-
proach is the first to combine automatic code analysis with tem-
poral data reprojection. Although we target scanline rendering sys-
tems, the analysis and models underlying our approach (Section 4.2
and 4.3) are applicable to ray-based systems as well.

Code Simplification: Methods for simplifying a procedural shader
provide a level of detail approximation wherein less complex
shaders may be used in place of the original to improve rendering
performance. The technique proposed by Pellacini [2005] gener-
ates this set of simplified shaders automatically, based on a fixed
set of expression transformations, whereas the method developed
by Olano et al. [2003] focuses on converting texture fetches into less
expensive operations. While simplification provides a clear trade-
off between performance and accuracy, the resulting shaders cannot
adapt to changes in the inputs in the same way that data reprojec-
tion allows. On the other hand, the greater flexibility of reprojection
comes at the cost of increased storage overhead. In Section 5, we
compare our reprojection system to code simplification techniques.

Data Reprojection: The spatio-temporal coherence of animation
sequences has been heavily exploited in both off-line and inter-
active ray-based rendering systems [Cook et al. 1987; Badt 1988;
Chen and Williams 1993; Bishop et al. 1994; Adelson and Hodges
1995; Mark et al. 1997; Walter et al. 1999; Bala et al. 1999; Lar-
son and Simmons 1999; Havran et al. 2003; Tawara et al. 2004]; as
well as in hybrid systems that utilize hardware acceleration [Sim-
mons and Séquin 2000; Stamminger et al. 2000; Tole et al. 2002;
Woolley et al. 2003; Gautron et al. 2005; Zhu et al. October, 2005;
Dayal et al. 2005; Gautron et al. 2007]. The majority of these sys-
tems reuse expensive global illumination or geometry calculations
such as ray-scene intersections, indirect lighting estimates, visibil-

ity queries, etc. One notable exception is the Shadermaps system
proposed by Jones et al. [2000] which reuses partial shading cal-
culations, although the decision of what to reuse is manual and
shaders must be factored by hand. Miller et al. [1998] also propose
reusing partial shading data, but rely on a fixed lighting model and
a fully manual analysis. Data caching and asynchronous evaluation
also play a prominent role in specialized hardware designs [Tor-
borg and Kajiya 1996; Regan and Pose 1994]. Image-based ren-
dering methods [Levoy and Hanrahan 1996; Gortler et al. 1996]
and image impostor/billboard techniques [Maciel and Shirley 1995;
Schaufler and Stürzlinger 1996; Shade et al. 1996; Aliaga and Las-
tra 1998; Décoret et al. 2003] can also be regarded as reprojecting
shading information into nearby image planes. More recent work
has focused on data reprojection methods for real-time applications
running entirely on the GPU [Nehab et al. 2007]. A similar repro-
jection scheme is used by Scherzer et al. [2007] to improve shadow
generation and by Hasselgren and Akenine-Moller [2006] to ac-
celerate multi-view rendering architectures. Recently, Sitthi-amorn
et al. [2008] introduced a three-pass implementation of temporal
reprojection that is better suited for current graphics hardware.

To the best of our knowledge, the problem of automatically select-
ing optimal subexpressions within a procedural shader for reuse has
not been previously studied.

Code Analysis: Our approach employs code analysis techniques
similar to those used by Pellacini [2005] for shader simplification.
The process of generating an instance of a shader modified to cache
a specific intermediate calculation is related to compiler specializa-
tion methods studied in graphics [Guenter et al. 1995; Knoblock
and Ruf 1996], which have also found use in lighting design sys-
tems [Ragan-Kelley et al. 2007]. Unlike this prior work, our focus
is on automatic and general methods for identifying optimal shad-
ing calculations for reuse.

3 Background: Reprojection Cache

This paper builds on the reverse reprojection cache introduced by
Nehab et al. [2007] and later refined by Sitthi-amorn et al. [2008]
which is illustrated in Figure 2. These techniques maintain a
viewport-sized buffer for both the cache payload and scene depth.
The original pixel shader is extended to reproject the generating
scene point into the previous frame in order to compute its loca-
tion in the cache. A cache hit occurs whenever the depth of the
reprojected scene point agrees with the corresponding depth in the
previous frame’s depth buffer, in which case the payload can be

Frame n Frame n + 1 Hitmap

Figure 2: Illustration of the reprojection cache introduced by Nehab
et al. [2007]. Their method allows reusing shading data between
consecutive frames at mutually visible surface locations, shown in
green in the hitmap. Pixels previously occluded or explicitly re-
freshed are computed from scratch and shown in red. Note that
refreshes occur along a random pattern in the framebuffer.

pixel shader

error/performance
models

AST

. . .

sample render
session + assets

input automatic
precomputation

interactive
profiler

instantiating
compiler

analysis
and training

selection
algorithm

error threshold

final shader

payload/depth
buffers

real-time preview

mf and ∆n

Figure 3: Overview of our optimization system. In a precomputation stage we first compute the abstract syntax tree of an input shader and
then train parametric models of the error and performance associated with caching each intermediate calculation over a range of refresh
periods. These models drive an interactive profiler in which a selection algorithm chooses the optimal calculation and refresh period based
on a user-set error threshold. Our system is able to instantiate new versions of the shader quickly enough to allow the user to interactively
explore its error/performance trade-offs.

reused in computing the final pixel color. Otherwise, a miss occurs
and the value must be recomputed from scratch. In either case, the
payload and depth buffers are updated and the pixel color is emit-
ted. This technique thus allows reusing shading information at fixed
visible surface locations, as opposed to fixed locations in the frame-
buffer. Note that visibility is recomputed anew at each frame and
only shading information is potentially reused.

Although a scene point may remain visible across many consec-
utive frames, its cached value will eventually become stale and
should be explicitly recomputed within some predetermined refresh
period ∆n. The cost of refreshing the entire cache every ∆n
frames can be evenly distributed by refreshing 1/∆n of the cache
at each frame. Nehab et al. [2007] explore the trade-offs between
refreshing the cache along tiled regions and random patterns, con-
cluding that random patterns give less objectionable artifacts, but
incur slight performance penalties due to lock-step processing. We
use random patterns and force refreshes within 4× 4 pixel blocks.

We build on the three-pass algorithm described by Sitthi-amorn
et al. [2008]. The first pass processes cache hits and primes the
depth buffer for misses and refreshes. In the second pass, the cache
payload is computed from scratch at pixels that were not previously
processed, leaving the correct payload value at every pixel in the
current viewpoint. A third and final pass computes the final shad-
ing using these updated payload values. Sitthi-amorn et al. [2008]
show that this three-pass method is more efficient for pixel-bound
scenes executing on modern GPUs as compared to methods that re-
quire fewer passes but place greater demands on hardware support
for multiple render targets and dynamic flow control. Note that our
system is not restricted to this implementation, but could instead
use that proposed by Nehab et al. [2007].

4 Automated Reprojection

Figure 3 illustrates the main components of our system. The input
consists of a pixel shader and a sample rendering session (e.g., ge-
ometry and texture assets, camera and animation paths, etc). Our
system first computes the abstract syntax tree (AST) [Aho et al.
2006] representation of the shader. From the AST, we can auto-
matically generate a version of the shader modified to cache and
reuse an intermediate calculation at a certain refresh period. In a

precomputation stage, we use the sample session to fit parametric
models of the error and performance associated with every possi-
ble reprojection policy. These models drive a selection algorithm
that chooses the best cache parameters so as not to exceed an error
threshold specified by the user. An instancing compiler generates a
version of the shader optimized according to these decisions which
is finally bound to a scene under interactive control. Results can
be regenerated within a few milliseconds from when the designer
changes the error threshold, allowing interactive exploration of the
possible optimization choices. The key features of our system are:

• Ease of use: fully automatic code analysis and instancing iso-
late the designer from having to understand or manually mod-
ify any source code;

• Efficiency: our profiler is able to efficiently analyze produc-
tion shaders, which often generate hundreds of intermediate
values;

• Interactive feedback: the designer can interactively se-
lect different error bounds and inspect the error/performance
trade-offs in the resulting optimized shader.

We focus on shaders that compute the color of non-transparent sur-
faces, and consider the problem of caching a single intermediate
value. Furthermore, once a value and refresh period have been se-
lected by our algorithm they are fixed in the optimized shader.

4.1 Problem Statement

Given the source code to a procedural shader and a representa-
tive rendering session, we must automatically identify appropriate
subexpressions for caching and automatically transform the input
shader to cache and reuse values for those subexpressions.

The key intermediate representation used for both of these tasks
is the AST, a static representation of a program, illustrated in Fig-
ure 4. The leaf nodes in an AST correspond to program variables
and constants and internal nodes correspond to operations (such as
a multiplication or function invocation). It is convenient to view the
procedural shader code as a single expression that computes a func-
tion of its input values. The AST encodes the structure of that ex-
pression and the root node represents the final color emitted by the
shader. Since we are concerned with caching subexpression values,

f (X) = [R G B]

f (X)

0

m

X :n

n

n

Figure 4: Abstract syntax tree (AST) representation of a pixel
shader. The AST encodes the computed function that generates
the final RGB output for a given input vector Xn. The root node
f0 represents the final output. Inner nodes such as fm represent
subexpressions of f such as arithmetic (e.g., Xn(1)×π) or function
evaluations (e.g., texture fetches, sin(Xn(3)), etc.). Those subex-
pressions are candidates for caching.

we need not consider control flow (e.g., conditional branches) ex-
plicitly. Richer program representations, such as data dependency
graphs or control flow graphs are thus not necessary, but our tech-
nique can operate on them if they are available.

Shader inputs may include texture maps, surface normal coordi-
nates, light parameters, animation parameters, texture coordinates,
etc. It is convenient to denote the inputs at frame n by a P -
dimensional vector Xn. We can then denote the value at each of
the M internal nodes at frame n as functions fm(Xn) of the in-
put vector. Internal nodes commonly represent function evaluation
(e.g., cos(Xn(3))) or arithmetic (e.g., Xn(7)/2). Lastly, we desig-
nate f0(Xn) as the value at the root node and assume it specifies a
vector in the RGB colorspace.

Using a reprojection cache, we can essentially restore a single
node fm in this graph to a previously cached value. This will
improve rendering performance whenever the computational cost
of evaluating the subtree rooted at fm exceeds the overhead of
supporting the cache. However, if the inputs change (causing the
cached value to become stale) or if scene motion forces the cache
to be resampled at non-integral locations (leading to reconstruction
errors), reusing an internal node may propagate substantial errors
into the computed value at the root node.

The research challenge that this paper addresses is to develop tech-
niques for automatically identifying optimal nodes to cache. We as-
sert that these nodes will exhibit two properties: they can be reused
over many frames without introducing significant error into the final
shading and their subtree is expensive to evaluate. Because these
two factors ultimately depend on run-time user input, our general
strategy is to model the expected error (Section 4.2) and expected
rendering cost (Section 4.3) associated with any particular caching
policy. These models are trained using a representative rendering
session that exhibits typical input patterns. We present an empirical
validation of our models in Section 4.4 and describe our selection
algorithm in Section 4.5.

4.2 Error Model

Reusing the value of a node cached at a previous
frame fm(Xn−∆n) instead of the exact value computed
from the current inputs fm(Xn) may propagate errors into
the final pixel color generated by the shader. By denoting

the root value as f0(Xn, fm(Xn)), we make its dependence
on the value of its descendant fm(Xn) explicit. Note that
fo(Xn, fm(Xn−∆n)) ≈ fo(Xn, fm(Xn)). Since both values
depend on the non-deterministic inputs Xn and Xn−∆n, we
treat them as functions of random variables and base caching
decisions on the expected value of the L2-distance between the
color produced by the original shader and one modified to cache a
node fm at a refresh period of ∆n:

ε(fm, ∆n) =

P (hit)E[‖f0(Xn, fm(Xn))− f0(Xn, fm(Xn−∆n))‖], (1)

where P (hit) is the probability of a cache hit. Our goal is to com-
pute accurate estimates of ε(fm, ∆n) for each node fm and a range
of refresh periods ∆n.

Disregarding for a moment error caused by resampling the cache,
the expected value in Equation (1) depends only on the joint proba-
bility distribution function P (Xn, Xn−∆n) and the symbolic rela-
tionship between the inputs and nodes in the procedure. A simpli-
fying assumption that makes the problem of modeling this equation
treatable is to assume that fluctuations in the inputs are stationary,
so that P (Xn, Xn−∆n) depends only on ∆n. Although this as-
sumption ignores the fact that an interactive session may exhibit
input patterns whose statistics change over time (consider, for ex-
ample, a first-person actor moving between two environments with
strikingly different lighting), we found this to be justified in many
practical situations. Furthermore, it is possible to derive separate
error models from different sample rendering sessions in order to
capture these types of higher-level trends.

For the rendering sessions and pixel shaders that we tested, we con-
sistently observed that the correlation between inputs across con-
secutive frames decayed at an exponential rate. We found a similar
trend in the difference in surface colors generated by the original
and modified shader: the resulting error always increases with ∆n,
but at a rate that decays exponentially. The important exception to
this rule is when the node has a discontinuous relationship with the
root node or appears inside a dynamic block of code. For example,
imagine the effect of reusing the result of the termination test in a
for loop! Fortunately, these cases can be easily detected either in
the AST or during training and removed from further consideration.

The remaining factors that influence Equation (1) include the prob-
ability of a cache hit (hit rate) and the nature of the error caused by
repeatedly resampling a discrete cache. As before, we found that
both of these factors contribute to the final error according to the
same exponential trend. That is, both the hit rate and average re-
construction error increase alongside ∆n, but at a rate that decays
exponentially. Based on these observations, we model Equation (1)
by a parametric function ε̂:

ε̂(fm, ∆n) = αm(1− e−λm(∆n−1)). (2)

Note that ε̂(fm, 1) = 0 as required, since this corresponds to re-
freshing the cache at each frame.

To train our error model we first generate a set of shaders, each
modified to cache a valid node in the AST of the input. These are
generated automatically and the refresh period is controlled by a
uniform parameter. Next, we compute the average pixel error over
the entire sample render session between each of these modified
shaders and the original at a sparse set of refresh periods (we use
∆n ∈ [2, 10, 18, 26, 34, 42, 50]). Finally, we fit the error parame-
ters for each node αm and λm to these estimates using a standard
downhill simplex search [Nelder and Mead 1965].

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20 25 30 35 40 45 50

H
it

R
at

e

Refresh Period Δn

Hit Rate vs. Refresh Period

Dragon
Trashcan

Ambient Occlusion

Figure 5: Hit rate as a function of refresh period for several shaders.
We compare (data points) measurements to (solid lines) predictions
generated by our model in Equation (4).

4.3 Performance Model

Identifying calculations suitable for reprojection also requires ac-
curate models of the performance associated with caching different
nodes in the input. As with error, we focus on modeling average be-
haviors. The contribution a single pixel shader makes to the overall
rendering time will depend on a number of other factors such as the
scene geometry, projected size of the shaded surface, etc., which
for simplicity we do not consider in our analysis.

Our model assumes that the total amount of time required to ren-
der a single frame varies linearly with the number of cache hits and
misses, plus some fixed overhead related to issuing and processing
the scene geometry. We estimate these values for each cacheable
node fm using L randomly chosen frames from the sample ses-
sion. For each frame, we record the total render time t along with
the respective number of cache hits h and misses m. We estimate
the fixed overhead E[time overhead] and the expected execution
time for a cache hit E[time hit(fm)] and miss E[time miss(fm)]
by solving the following over-constrained linear system:0BB@

h1 m1 1
h2 m2 1

...
hL mL 1

1CCA
0@ E[time hit(fm)]

E[time miss(fm)]
E[time overhead]

1A =

0BB@
t1
t2
...

tL

1CCA .

(3)
The average cost of executing a shader modified to reuse some par-
tial calculation will also depend on the total hit rate. Recall that
values are explicitly recomputed in two cases: whenever they are
not available in the cache or when their refresh period expires. Fig-
ure 5 plots the average hit rate as a function of ∆n for the scenes
shown in Figure 1. Based on this analysis, we model hit rate γ(∆n)
with the parametric expression

γ(∆n) = µ(1− 1/∆n). (4)

Note that the relationship between hit rate and refresh period is in-
dependent of the choice of what to reproject. Therefore, we fit µ
using a non-linear regression on the same measurements gathered
to train our error model for a single shader. Figure 5 compares the
fits to measured data that we obtained for three shaders. Note that
the hit rate never reaches 1.0, which is consistent with the fact that,
for a dynamic scene, the probability scene motion will prematurely
force a cache miss increases alongside refresh period.

Putting everything together, our model of the average time required
to render a single pixel is

r̂(fm, ∆n) =

γ(∆n)E[time hit(fm)] + (1− γ(∆n))E[time miss(fm)]. (5)

4.4 Validation of Error and Performance Models

We validated our error and performance models using the shaders
shown in Figure 1 and further described in Section 5. In each case,
we selected four nodes with different error/performance character-
istics (these are visualized in Figures 7, 8, and 9, respectively). We
also validated these models on different hardware. These fits are
consistent with those we observed for the nodes not shown.

The top row in Figure 6 compares predictions generated by our er-
ror model to measurements of the average L2 error computed from
the entire sample render session as a function of refresh period.
The error bars show the variance in these estimates and provide an
indication of the degree to which each node exhibits stationary fluc-
tuations. Note that our predictions are consistently well aligned to
the mean.

We similarly validated our performance model by assessing its ac-
curacy in predicting the render time of pixel shaders modified to
reproject these same nodes over the same range of refresh pe-
riods. Because measuring the time required to render a single
pixel is impractical, we instead generated comparisons for a sim-
ple test scene for which the number of shaded pixels M is held
constant (we simply positioned the model to subtend the entire
viewport). For each node and refresh period, we compare mea-
surements of the average per-frame render time to our prediction:
E[time overhead] + Mr̂(fm, ∆n). The bottom row of graphs in
Figure 6 show these comparisons. We omit error bars because the
variance in these measurements was negligible. As before, we ob-
served close agreement between our performance model and mea-
sured data for both NVIDIA and ATI hardware.

4.5 Selection Algorithm and Interactive Profiler

The ultimate goal of our system is to select nodes and refresh peri-
ods that offer the greatest performance improvement with the least
amount of approximation error. We base these decisions on the
models previously described, but leave to a designer the task of de-
termining how to best balance accuracy and speed. Specifically,
the user sets a threshold on the average pixel error in the resulting
shader εmax. Our system simply selects whichever node and refresh
period are predicted to provide the greatest performance improve-
ment without exceeding this threshold. Because the relative gains
from reprojection decrease with refresh period, we found it useful
to clip these to some maximum value (we used 50).

Finally, our system automatically generates a version of the shader
modified according to the selected parameters. The subtree of the
AST associated with the cached node is replaced by a subtree corre-
sponding to a cache lookup. In practice, we store compiled versions
of these shaders on disk and simply fetch them at runtime. This al-
lows regenerating new results within a few milliseconds from when
the threshold is changed, allowing a designer to interactively ex-
plore different optimization trade-offs. In our prototype system, we
present the user with a view of the final shader and the cache pay-
load. Please refer to the supplemental video for a demonstration.

5 Results

We used a Dell XPS equipped with an NVIDIA GeForce 8600GT
and an ATI Radeon HD2900 to generate the results in this pa-
per. Our implementation accepts shaders written in HLSL (shader
model 4) and allows caching vector-valued nodes with up to 3 el-
ements represented with 16-bits of precision. We evaluated our
approach using the three pixel shaders shown in Figure 1 and de-
scribed below. These were chosen to be representative of modern

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45 50 55

Av
er

ag
e

Pi
xe

l E
rro

r

Refresh Period ∆n

Marble Shader

measured
predicted

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45 50 55

Av
er

ag
e

Pi
xe

l E
rro

r

Refresh Period ∆n

Trashcan Shader

measured
predicted

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 5 10 15 20 25 30 35 40 45 50 55

Av
er

ag
e

Pi
xe

l E
rro

r

Refresh Period ∆n

Ambient Occlusion Shader

measured
predicted

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 5 10 15 20 25 30 35 40 45 50 55

Av
er

ag
e

R
en

de
r T

im
e

(m
s)

Refresh Period ∆n

Marble Shader (NVIDIA 8600GT)

measured
predicted

 0

 5

 10

 15

 20

 25

 30

 5 10 15 20 25 30 35 40 45 50 55

Av
er

ag
e

R
en

de
r T

im
e

(m
s)

Refresh Period ∆n

Trashcan Shader (NVIDIA 8600GT)

measured
predicted

 0

 25

 50

 75

 100

 125

 150

 175

 200

 225

 250

 5 10 15 20 25 30 35 40 45 50 55

Av
er

ag
e

R
en

de
r T

im
e

(m
s)

Refresh Period ∆n

Ambient Occlusion Shader (ATI HD2900)

measured
predicted

Figure 6: Validation of our error and performance models for several nodes in each shader shown in Figure 1. Top: each graph compares
(solid line) the average pixel error predicted by our model to (data points) measurements computed from the sample render session over the
entire range of refresh periods shown. The error bars visualize the variance in these measurements. Bottom: comparison between (solid line)
predictions generated with our performance model of the per-frame rendering time of a simple test scene and (data points) measurements of
the actual average render time as a function of refresh period. These fits are typical of those we observed in our experiments.

production shaders and exhibit a range of common shading calcula-
tions. The sample render sessions all consist of roughly 150 frames
that capture typical input patterns and can be seen in the supple-
mental video. Table 1 lists statistics of the results that we report,
including the total number of instructions in the input, the number
of cacheable nodes in the AST, and precomputation times.

5.1 Marble Shader

This shader combines a marble-like albedo, modeled as five oc-
taves of a procedural 3D noise function [Perlin 1985], with a sim-
ple Blinn-Phong specular layer [Blinn 1977]. The graph at the
top of Figure 7 depicts the pixel error vs. performance for each
of cacheable nodes in this shader over a range of refresh periods.
These types of graphs are very useful for assessing the degree to
which a shader will benefit from data reuse. Paths that appear near
the lower left hand region correspond to nodes that are ripe for re-
projection as they allow greater reduction in render time for less
visual error. Paths toward the upper right hand region are just the
opposite: when reused, these nodes not only fail to improve per-
formance, but also introduce significant errors into the final sur-
face color. The vertical dashed line indicates the time required to
evaluate the original shader; points to the left of this line represent
performance improvements.

For this shader, nodes tend to organize into four clusters. Clus-
ter A contains calculations inside the noise function, including

Input Shader Marble Trashcan Ambient
Instructions 419 367 370

Cacheable Nodes 114 105 37
Precomputation 1.5h 1.2h 9.5h

Table 1: Summary of statistics for the results reported.

its final value. These are more compute intensive since they
rely on a long sequence of texture fetches and ALU instruc-
tions, but do not depend on camera or light position and are thus
ideal for reuse. Cluster B, on the other hand, represents nodes
that are relatively inexpensive to compute and depend strongly
on view and light position. Examples include the calculation of
the cosine-falloff and the specular component. These tend to be
poorly suited for reprojection since they are inexpensive to com-
pute from scratch and reusing these values would introduce vis-
ible artifacts into the shading. Cluster C contains nodes some-
where in between these two extremes. They occur after com-
bining the expensive noise function with inexpensive and view-
dependent terms such as noise()*dot(N,L). As expected,
they offer slightly greater performance improvement than caching
the noise terms alone, but at the cost of significantly higher er-
ror. Finally, Cluster D represents caching decisions that lead to
performing an expensive operation twice on a miss. For exam-
ple, caching the subexpression (1.0-noise) inside the expres-
sion (noise + (1.0-noise)*0.2) would result in evaluat-
ing noise in the second pass when the payload is updated and
again in the third pass when the final color is computed. Sitthi-
amorn et al. [2008] describe this “computational overlap” problem
as a potential side-effect of their three-pass algorithm. As indicated
by their position in the graph, these are poor candidates to cache.

The images below the graph in Figure 7 depict the nodes selected by
our algorithm at four different error thresholds. These thresholds,
along with the error/performance path of their associated nodes are
also indicated in the graph. Each image shows the cache payload
and refresh period selected by our algorithm, along with the final
shading resulting from these choices. We also list the peak signal-
to-noise ratio (PSNR) along with the resulting framerate. These
images (and those in Figure 1) show a single frame in a sequence in
which the camera and light rotate around the model. Please consult
the supplemental video for interactive versions of these compar-
isons.

() PSNR=58 / FPS=34

ε1

ε2

ε3

ε4

Cluster A

Cluster B
Cluster C

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60

Av
er

ag
e

Pi
xe

l E
rro

r

Average Render Time (ms)

Marble Shader
∆n=2

∆n=25
∆n=50

Cluster D

() PSNR=67 / FPS=30ε1 ε2

() PSNR=43 / FPS=82ε3 () PSNR=33 / FPS=90ε4

Figure 7: Error/performance paths and four selections made auto-
matically by our system for the Marble shader. The graph at top
plots the predicted average pixel error vs. render time over a range
of refresh periods for each cacheable node in the AST. The images
below visualize reprojection policies at four different error thresh-
olds indicated in the graph. Each image displays the cache payload
and chosen refresh period, along with the final shading and mea-
sured frame rate. The original shader runs at 29 FPS as indicated
by the dashed line.

For the error threshold ε1, our algorithm selects the lowest-
frequency octave inside the noise calculation for reuse, choosing
to recompute the higher-frequency octaves along with the rest of
the shading at each frame. Although this policy results in negligi-
ble visual error, it also gives a very small performance gain from 29
to 30 frames per second. Similarly, for the second error threshold
ε2, our algorithm chooses a node slightly higher in the AST that
corresponds to the sum of the three octaves with the lowest spa-
tial frequencies. Although this calculation can also be safely reused
without introducing large errors, it still does not give a significant
performance gain. Nevertheless, these two examples help verify
and illustrate the behavior of our algorithm. At the third error

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0 5 10 15 20

Av
er

ag
e

Pi
xe

l E
rro

r

Average Render Time (ms)

Trashcan Shader
∆n=2

∆n=25
∆n=50

ε1

ε2

ε3

ε4

() PSNR=70 / FPS=58ε1 () PSNR=58 / FPS=86ε2

() PSNR=44 / FPS=123ε3 () PSNR=36 / FPS=162ε4

Figure 8: Error/performance paths and four selections made by our
system for the Trashcan shader. The original shader runs at 59 FPS.

threshold ε3, our algorithm selects the complete noise calculation
at a refresh period of ∆n = 35. We found this point offered a
profitable balance between accuracy and speed, giving a 2.8x im-
provement in performance at an acceptable level of error. This se-
lection was used in Figure 1. At the highest error threshold ε4, our
algorithm selects the final pixel color. This node will naturally al-
ways provide the greatest performance gain, but often introduces
visible artifacts, as is the case in this example, since this shader
contains strong light- and view-dependent components. Addition-
ally, the difference in performance improvement between ε3 and ε4

is small since the noise calculation accounts for the majority of the
computational effort.

5.2 Trashcan Shader

We also evaluated our system using a shader from ATI’s
Toyshop demo [Advanced Micro Devices 2006], which combines
a simple base geometry with a high-resolution normal map and en-
vironment map to reproduce the appearance of a shiny trashcan. It

() PSNR=48 / FPS=15ε1 () PSNR=41 / FPS=26ε2

() PSNR=35 / FPS=33ε3 () PSNR=34 / FPS=33ε4

Av
er

ag
e

Pi
xe

l E
rro

r

Average Render Time (ms)

Ambient Occlusion Shader

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 75 150 225 300 375 450 525 600 675

∆n=2
∆n=25
∆n=50

ε1

ε2

ε3

ε4

Figure 9: Error/performance paths and four selections made by our
system for the Ambient Occlusion shader. The original runs at 1.8
FPS.

reconstructs the surface color from 25 samples of an environment
map combined using a Gaussian kernel. These 25 samples are eval-
uated along a 5 × 5 grid of normal directions computed from the
normal map. The result is gamma corrected and finally displayed.

Our analysis is presented in Figure 8, again showing the same er-
ror/performance graph and the decisions made by our algorithm at
four different error thresholds. For the lower error thresholds ε1

and ε2, our algorithm chooses to cache those samples that con-
tribute the least amount of energy to the final color (i.e., those with
lower weights in the Gaussian reconstruction kernel). For ε1, only
a single sample is cached; at ε2, sixteen samples are cached. As
before, these examples do not provide huge performance gains, but
they do help illustrate the behavior of our system. For the error
threshold ε3, our algorithm selects the sum of 24 samples of the
possible 25. In other words, this modified shader evaluates 24 sam-
ples every fourth frame (on average) and evaluates the single sam-
ple with the greatest reconstruction weight at every frame. This

provides a 2.1x performance improvement at an acceptable level
of error. These parameters were used in Figure 1. As is always
the case, for the largest threshold we consider (ε4), our algorithm
selects the final pixel color with a refresh period of 8. This gives
further speed improvements, but injects noticeable artifacts into the
shading. As indicated by the absence of paths toward the lower left
region of the graph in Figure 8, this shader is not particularly well
suited for temporal reprojection. This is because all of the calcu-
lations depend strongly on the camera position and cached values
quickly become stale. Nevertheless, our system is able to achieve
reasonable performance gains even for this challenging case.

5.3 Ambient Occlusion Shader

This shader estimates the ambient occlusion at each pixel [Bunnell
2005; Hoberock and Jia 2007]. The basic idea is to approximate
the scene geometry as a collection of discs which are organized in
a hierarchical data structure and stored as a texture. As each pixel
is shaded, this data structure is traversed to compute the percentage
of the hemisphere that is occluded. This calculation is combined
with a diffuse texture and a Blinn-Phong specular layer to produce
the final color. We observed render times of around 2 FPS on a
Dell XPS with an ATI Radeon HD2900 graphics card at a screen
resolution of 640×480. Because most of this shader’s effort is spent
traversing a hierarchical data structure with a series of nested loops,
we found a disproportionately small number of cacheable nodes in
the AST (recall that we do not consider nodes which appear inside
dynamic blocks of code). Nevertheless, our system successfully
identified several calculations that are suitable for temporal reuse.

The ambient occlusion calculation is carried out by summing the
contribution of the king chess piece separately from the other
pieces. The sample session shows only the king moving, in addi-
tion to the camera and light source, while the other pieces and board
remain fixed. Our analysis is presented in Figure 9. The presence
of nodes in the lower-left region of the error/performance graph
indicate a clear opportunity for reprojection. Indeed, for an error
threshold of ε1, our algorithm selects the portion of the ambient
occlusion calculation that accounts for only the static pieces, thus
computing the contribution of the moving king and the remaining
shading at every frame. This provides a 8x speed-up for a marginal
level of error and was used in Figure 1. Note that this image is one
frame from a sequence in which both the camera position and king
are moving. For the larger error threshold ε2, our system chooses
to cache the entire ambient occlusion calculation. Although this
gives a 15x performance gain, it introduces visible artifacts into the
shading (easily seen around the base of the king) since cached data
become stale at a quicker rate. For a threshold of ε3, our system
selects the product of the ambient occlusion term and the cosine-
falloff. This gives only a slight performance improvement over ε2,
even for a larger refresh period, since the added term is relatively
inexpensive to compute. Finally, for the largest threshold ε4, our
system selects to reuse the final surface color at the maximum re-
fresh period of 50 frames. This also brings only minor performance
improvements over lower thresholds since the majority of the com-
putation is devoted to the ambient occlusion calculation. Further-
more, reusing the final color causes significant artifacts.

5.4 Comparison to Prior Work

We also compare our work to two existing techniques for reducing
pixel load. Dynamic video resizing [Montrym et al. 1997] decreases
rendering latency by evaluating the shading in an off-screen buffer
at a reduced resolution and, in a second pass, resampling this buffer
at the target resolution. An improved resizing technique was intro-
duced by Yang et al. [2008]. We also implemented the simplifica-

Simplification
(2.2x speed improvement)

Our Approach
(2.8x speed improvement)

Original Digital Resizing
(2.7x speed improvement)

50%

25%

0%

Figure 10: Error comparisons at equal acceleration rates for three
methods: dynamic resizing, code simplification, and our approach.

tion method proposed by [Pellacini 2005]. Figure 10 shows equal
time comparisons of these three techniques for the Marble shader.
We selected a buffer size and level of simplification that give im-
provements comparable to the result obtained with our approach
using the threshold ε3 in Figure 7. The insets show close-up views
of the final shading and a visualization of the error. We used the
same sequence as in Figure 1 and 7.

As can be seen in the inset, resizing the framebuffer clearly de-
grades high-frequency features of the shading. This is most notice-
able around specular highlights and depth discontinuities. Although
automatic code simplification retains these features, important de-
tail in the marble texture is lost as a result of replacing several
high-frequency noise calculations with constant expressions. For
this example, reprojection provides a significantly better compro-
mise between speed and accuracy due to the wider range of opti-
mization choices available and its ability to better adapt to changes
in the scene. While the margin of difference between these meth-
ods would not be as wide in every case, reprojection in general has
greater flexibility in preserving important spatial and angular de-
tails at the expense of temporal reprojection artifacts, but with the
overhead of two additional rendering passes.

6 Discussion

Although it is possible to modify each of the shaders in Section 5 by
hand to achieve results similar to those we report, it is exactly this
type of manual effort that our work aims to alleviate. For example,
the static portion of the ambient occlusion in Figure 9 could be pre-
computed and stored in a texture map [Jones et al. 2000]. In prac-
tice, however, shaders are re-purposed many times and these types
of optimizations could be missed by a designer less familiar with
the source code. More importantly, it’s not uncommon for a shader
to be used under many different rendering conditions within a single
application. For example, a complete chess game may involve sep-
arate animation sequences for the motion of each piece. Our system
provides a way to optimize this entire set of shaders automatically,

by simply applying different sample sessions. Additionally, the re-
projection cache we use obviates the need for an explicit surface pa-
rameterization of scene elements, which is a common requirement
of manual precomputation techniques, since it only reuses data tem-
porarily stored at visible surface locations. Another benefit of our
approach is its ability to identify good candidates for reprojection
that have little physical meaning and could be easily overlooked by
a human. For example, the nodes selected for ε1 and ε2 in Figure 7
are buried inside a noise calculation and might not be caught dur-
ing a manual search. Finally, our system could be used to generate
a level-of-detail (LOD) approximation of a pixel shader. Although
this paper has focused on exposing and analyzing the underlying
error/performance trade-offs involved with data reprojection, these
decisions could be made at runtime based on a variety of factors:
viewing direction and position, camera motion, etc. These types of
optimizations would be tedious to perform by hand.

7 Limitations and Future Work

Although this paper marks an important step in demonstrating the
role of data reprojection as a general tool for optimizing procedural
shaders, there are many areas that warrant further study. Our ex-
haustive analysis could be improved with a search over the code’s
dependency graph and the use of pruning algorithms. Future work
should also consider the general problem of caching multiple nodes
and investigate compilation methods, including loop unrolling and
code reordering, that can improve a shader’s suitability for repro-
jection. Additionally, it should be possible to make cache decisions
at runtime based on online estimates of the scene’s volatility. These
techniques would require less precomputation, and would adapt
better to changing inputs. We believe heterogeneous CPU+GPU ar-
chitectures that have recently emerged [NVIDIA Corporation 2007]
provide an excellent platform for these types of algorithms which
would display a combination of instruction and data parallelism. It
is also important to better understand the trade-offs between static
code simplification and reprojection, with the goal of developing
unified algorithms that combine the best elements of these com-
plimentary approaches. Additionally, future work should explore
alternative cache parameterizations, similar to the work of Miller
et al. [1998]. Although our choice to associate cache entries with
visible surface locations is justified in many cases, we have found
examples such as the Trashcan shader in which defining cache co-
ordinates at reflected directions would result in greater temporal
uniformity. Finally, novel hardware design could improve the effi-
ciency of data reprojection. In particular, a tighter integration be-
tween refresh patterns and the execution granularity imposed by the
underlying hardware could significantly reduce overhead.

8 Conclusion

This paper has introduced a set of techniques for automating the use
of data reprojection as a general tool for optimizing pixel shaders.
Although the general strategy of caching and reusing expensive
shading calculations has previously been explored, the critical de-
cision of what partial shading information to cache has remained a
fully manual process. Our automated approach relies on parametric
models of the performance and fidelity of each of a set of shaders
modified to cache subexpressions in the input’s abstract syntax tree.
These models drive an interactive profiler in which a user may ex-
plore the accuracy/speed trade-offs associated with reprojection.
We evaluated our models and final selection algorithm using a pro-
totype system to optimize a range of complex pixel shaders and
directly compared our approach to current alternatives.

Acknowledgements

The authors thank Natalya Tatarchuk and AMD Corporation for
providing the Trashcan shader along with David Luebke and Eu-
gene d’Eon for their help with early experiments. Jason Lawrence
acknowledges an NSF CAREER award CCF-0747220 and an
NVIDIA Professor Partnership award. Pedro Sander and Lei Yang
were partially funded by RGC CERG grant #619207.

References
S. J. ADELSON AND L. F. HODGES. 1995. Generating exact

ray-traced animation frames by reprojection. IEEE Computer
Graphics and Applications 15, 3, 43–52.

ADVANCED MICRO DEVICES, 2006. ATI toyshop demo.

A. V. AHO, M. S. LAM, R. SETHI, AND J. D. ULLMAN. 2006.
Compilers: Principles, Techniques, and Tools (2nd Edition).

D. ALIAGA AND A. LASTRA. 1998. Smooth transitions in texture-
based simplification. In Computers & Graphics, 22, 71–81.

S. BADT. 1988. Two algorithms for taking advantage of temporal
coherence in ray tracing. The Visual Computer 4, 3, 123–132.

K. BALA, J. DORSEY, AND S. TELLER. 1999. Radiance inter-
polants for accelerated bounded-error ray tracing. ACM Trans-
actions on Graphics 18, 3, 213–256.

G. BISHOP, H. FUCHS, L. MCMILLAN, AND E. J. S. ZAGIER.
1994. Frameless rendering: double buffering considered harm-
ful. In Proceedings of ACM SIGGRAPH’ 94, ACM, New York,
NY, USA, 175–176.

J. F. BLINN. 1977. Models of light reflection for computer synthe-
sized pictures. Computer Graphics (Proceedings of ACM SIG-
GRAPH 77) 11, 2, 192–198.

M. BUNNELL. Dynamic ambient occlusion and indirect lighting.
In M. PHARR, Ed., GPU Gems 2, 223–233. Addison-Wesley.

S. E. CHEN AND L. WILLIAMS. 1993. View interpolation for im-
age synthesis. Computer Graphics (Proceedings of ACM SIG-
GRAPH 93), 279–288.

R. L. COOK. 1984. Shade trees. Computer Graphics (Proceedings
of ACM SIGGRAPH 84) 18, 3, 223–231.

R. L. COOK, L. CARPENTER, AND E. CATMULL. 1987. The
REYES image rendering architecture. Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 87) 21, 4, 95–102.

A. DAYAL, C. WOOLLEY, B. WATSON, AND D. LUEBKE. 2005.
Adaptive frameless rendering. In Proceedings of the Eurograph-
ics Symposium on Rendering (EGSR), 265–275.

X. DÉCORET, F. DURAND, F. SILLION, AND J. DORSEY. 2003.
Billboard clouds for extreme model simplification. ACM Trans-
actions on Graphics (Proc. SIGGRAPH) 22, 3, 689–696.

P. GAUTRON, K. BOUATOUCH, AND S. PATTANAIK. 2007. Tem-
poral radiance caching. IEEE Transactions on Visualization and
Computer Graphics 13, 5, 891–901.

P. GAUTRON, J. KŘIVÁNEK, K. BOUATOUCH, AND S. PAT-
TANAIK. 2005. Radiance cache splatting: A GPU-friendly
global illumination algorithm. In Proceedings of the Eurograph-
ics Symposium on Rendering (EGSR), 55–64.

S. J. GORTLER, R. GRZESZCZUK, R. SZELISKI, AND M. F. CO-
HEN. 1996. The lumigraph. In Proceedings of ACM SIGGRAPH
96, 43–54.

B. GUENTER, T. B. KNOBLOCK, AND E. RUF. 1995. Specializing
shaders. In Proceedings of ACM SIGGRAPH 95, 343–350.

J. HASSELGREN AND T. AKENINE-MOLLER. 2006. An efficient
multi-view rasterization architecture. In Proceedings of the Eu-
rographics Symposium on Rendering (EGSR), 61–72.

V. HAVRAN, C. DAMEZ, K. MYSZKOWSKI, AND H.-P. SEIDEL.
2003. An efficient spatio-temporal architecture for animation
rendering. In Rendering Techniques, 106–117.

J. HOBEROCK AND Y. JIA. High-quality ambient occlusion. In
H. NGUYEN, Ed., GPU Gems 3, 257–274. Addison-Wesley.

T. R. JONES, R. N. PERRY, AND M. CALLAHAN. 2000. Sha-
dermaps: A method for accelerating procedural shading. Tech-
nical report, Mitsubishi Electric Research Laboratories.

T. B. KNOBLOCK AND E. RUF. 1996. Data specialization. In
Proceedings of SIGPLAN, ACM, New York, NY, USA, 31, 215–
225.

G. W. LARSON AND M. SIMMONS. 1999. The holodeck ray
cache: an interactive rendering system for global illumination
in nondiffuse environments. ACM Transactions on Graphics 18,
4, 361–368.

M. LEVOY AND P. HANRAHAN. 1996. Light field rendering. In
Proceedings of ACM SIGGRAPH 96, 31–42.

P. MACIEL AND P. SHIRLEY. 1995. Visual navigation of large en-
vironments using textured clusters. In Proceedings of the Sym-
posium on Interactive 3D Graphics, 95–ff.

W. R. MARK, L. MCMILLAN, AND G. BISHOP. 1997. Post-
rendering 3D warping. In Proceedings of the Symposium on In-
teractive 3D Graphics, 7–ff.

G. MILLER, M. HALSTEAD, AND M. CLIFTON. 1998. On-the-fly
texture computation for real-time surface shading. IEEE Com-
puter Graphics and Applications 18, 2, 44–58.

J. S. MONTRYM, D. R. BAUM, D. L. DIGNAM, AND C. J.
MIGDAL. 1997. InfiniteReality: A real-time graphics system.
In Proceedings of ACM SIGGRAPH 97, ACM, 293–302.

D. NEHAB, P. V. SANDER, J. LAWRENCE, N. TATARCHUK, AND
J. R. ISIDORO. 2007. Accelerating real-time shading with re-
verse reprojection caching. In Graphics Hardware, 25–35.

J. A. NELDER AND R. MEAD. 1965. A simplex method for func-
tion minimization. Computer Journal 7, 4, 308–313.

NVIDIA CORPORATION, 2007. NVIDIA CUDA Compute Uni-
fied Device Architecture programming guide.

M. OLANO, B. KUEHNE, AND M. SIMMONS. 2003. Auto-
matic shader level of detail. In HWWS ’03: Proceedings of
the ACM SIGGRAPH/EUROGRAPHICS conference on Graph-
ics hardware, Eurographics Association, 7–14.

F. PELLACINI. 2005. User-configurable automatic shader simplifi-
cation. ACM Transacations on Graphics 24, 3, 445–452.

K. PERLIN. 1985. An image synthesizer. Computer Graphics
(Proceedings of ACM SIGGRAPH 85) 19, 3, 287–296.

J. RAGAN-KELLEY, C. KILPATRICK, B. W. SMITH, D. EPPS,
P. GREEN, C. HERY, AND F. DURAND. 2007. The lightspeed
automatic interactive lighting preview system. ACM Transaca-
tions on Graphics 26, 3, 25–36.

M. REGAN AND R. POSE. 1994. Priority rendering with a vir-
tual reality address recalculation pipeline. In Computer Graphics
(Proceedings of ACM SIGGRAPH 94), 155–162.

G. SCHAUFLER AND W. STÜRZLINGER. 1996. A three dimen-
sional image cache for virtual reality. Computer Graphics Forum
(Proc. of EUROGRAPHICS) 15, 3, 227–236.

D. SCHERZER, S. JESCHKE, AND M. WIMMER. 2007. Pixel-
correct shadow maps with temporal reprojection and shadow test
confidence. In Proceedings of the Eurographics Symposium on
Rendering (EGSR), 45–50.

J. SHADE, D. LISCHINSKI, D. H. SALESIN, T. DEROSE, AND
J. SNYDER. 1996. Hierarchical image caching for accelerated
walkthroughs of complex environments. In Proceedings of ACM
SIGGRAPH, ACM, New York, NY, USA, 75–82.

M. SIMMONS AND C. H. SÉQUIN. 2000. Tapestry: dynamic mesh-
based display representation for interactive rendering. In Eu-
rographics Workshop on Rendering, Springer-Verlag, London,
UK, 329–340.

P. SITTHI-AMORN, J. LAWRENCE, L. YANG, P. V. SANDER, AND
D. NEHAB. 2008. An improved shading cache for modern gpus.
In Graphics Hardware, 95–101.

M. STAMMINGER, J. HABER, H. SCHIRMACHER, AND H.-P.
SEIDEL. 2000. Walkthroughs with corrective texturing. In Ren-
dering Techniques, Springer-Verlag, London, UK, 377–388.

T. TAWARA, K. MYSZKOWSKI, AND H.-P. SEIDEL. 2004.
Exploiting temporal coherence in final gathering for dynamic
scenes. In Proceedings of the Computer Graphics International
(CGI), IEEE Computer Society, Washington, DC, USA, 110–
119.

P. TOLE, F. PELLACINI, B. WALTER, AND D. P. GREENBERG.
2002. Interactive global illumination in dynamic scenes. ACM
Transactions on Graphics 21, 3, 537–546.

J. TORBORG AND J. T. KAJIYA. 1996. Talisman: commodity real-
time 3d graphics for the PC. In Proceedings of ACM SIGGRAPH
96, 353–363.

B. WALTER, G. DRETTAKIS, AND S. PARKER. 1999. Interac-
tive rendering using the render cache. In Rendering Techniques,
Springer-Verlag/Wien, New York, NY, D. Lischinski and G. Lar-
son, Eds., 10, 235–246.

C. WOOLLEY, D. LUEBKE, B. WATSON, AND A. DAYAL. 2003.
Interruptible rendering. In Proceedings of the Symposium on
Interactive 3D Graphics, ACM, New York, NY, USA, 143–151.

L. YANG, P. V. SANDER, AND J. LAWRENCE. 2008. Geometry-
aware framebuffer level of detail. Computer Graphics Fo-
rum (Proceedings of Eurographics Symposium on Rendering
(EGSR)) 27, 4, 1183–1188.

T. ZHU, R. WANG, AND D. LUEBKE. October, 2005. A GPU
accelerated render cache. In Pacific Graphics, (Short Paper Ses-
sion).

