
168

Automating Image Morphing Using Structural Similarity
on a Halfway Domain

JING LIAO
Hong Kong UST and Zhejiang University
RODOLFO S. LIMA and DIEGO NEHAB
Instituto Nacional de Matemática Pura e Aplicada (IMPA)
HUGUES HOPPE
Microsoft Research
PEDRO V. SANDER
Hong Kong UST
and
JINHUI YU
Zhejiang University

The main challenge in achieving good image morphs is to create a map
that aligns corresponding image elements. Our aim is to help automate this
often tedious task. We compute the map by optimizing the compatibility of
corresponding warped image neighborhoods using an adaptation of struc-
tural similarity. The optimization is regularized by a thin-plate spline and
may be guided by a few user-drawn points. We parameterize the map over a
halfway domain and show that this representation offers many benefits. The
map is able to treat the image pair symmetrically, model simple occlusions
continuously, span partially overlapping images, and define extrapolated
correspondences. Moreover, it enables direct evaluation of the morph in a
pixel shader without mesh rasterization. We improve the morphs by opti-
mizing quadratic motion paths and by seamlessly extending content beyond
the image boundaries. We parallelize the algorithm on a GPU to achieve
a responsive interface and demonstrate challenging morphs obtained with
little effort.

Categories and Subject Descriptors: I.3.0 [Computer Graphics]: General

NVIDIA Corporation has generously donated the GPUs used in this project.
The project was partly supported by Hong Kong GRF grants nos. 619509
and 618513.
Authors’ addresses: J. Liao, Hong Kong UST (University of Science and
Technology), Clear Water Bay, Hong Kong; Zhejiang University, 38 Zheda
Rd, Xihu, Hangzhou, Zhejiang, China 310027; R. S. Lima and D. Nehab,
Instituto Nacional de Matematica Pura e Aplicada (IMPA), Estr. Dona Casto-
rina, 110-Jardim Botanico, Rio de Janeiro-RJ, 22460-320, Brazil; H. Hoppe,
Microsoft Research; P. V. Sander (corresponding author), Hong Kong UST
(University of Science and Technology), Clear Water Bay, Hong Kong;
email: psander@cse.ust.hk; J. Yu, Zhejiang University, 38 Zheda Rd, Xihu,
Hangzhou, Zhejiang, China 310027.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2014 ACM 0730-0301/2014/08-ART168 $15.00

DOI: http://dx.doi.org/10.1145/2629494

General Terms: Algorithms

Additional Key Words and Phrases: Image interpolation, warping, parame-
terization, motion paths, correspondences, GPU, Poisson extension

ACM Reference Format:

Jing Liao, Rodolfo S. Lima, Diego Nehab, Hugues Hoppe, Pedro V. Sander,
and Jinhui Yu. 2014. Automating image morphing using structural similarity
on a halfway domain. ACM Trans. Graph. 33, 5. Article 168 (August 2014)
12 pages.
DOI: http://dx.doi.org/10.1145/2629494

1. INTRODUCTION

Morphing between images is a long-studied problem addressed in
numerous publications including surveys and books Wolberg 1990,
1998; Gomes et al. 1999]. It usually involves a sequence of steps:
determining corresponding feature points in the images, defining the
motion paths followed by these features, interpolating a mapping in
the space between the features, warping the images into alignment,
and finally blending the warped images to produce an animation.

The most challenging step is to establish a good correspondence
map between the images, as this is crucial to prevent ghosting
artifacts during blending. Creating this map usually involves
significant interaction, using tagged features such as points, lines,
curves, or grids. Such careful registration of intricate silhouettes
can be tedious.

Our aim is to develop an optimization framework that simplifies
map creation by automatically aligning image structures includ-
ing irregular object boundaries. In many cases, an effective morph
requires a semantic understanding of the image content, which is be-
yond the scope of this article. Instead, we let the user draw a small
number of point correspondences to guide the process at a high
level. The key is that this guidance should be simple and sparse.

There are numerous stereo and optical-flow techniques for auto-
matically estimating image correspondences. However, these tech-
niques assume the images are closely related, for example, multi-
ple views of a consistent scene under similar lighting conditions.
In contrast, morphing often considers images of different objects.

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

168:2 • J. Liao et al.

Fig. 1. Our optimization creates effective morphs between dissimilar im-
ages by automatically aligning structural image features, requiring little
or no user guidance (here 0 and 7 point correspondences). Caricature by
c©Court Jones.

Therefore, morphing approaches must allow inexact matching of
image neighborhoods (objects with different shapes and colors)
and, as a consequence of this increased generality, they perform
poorly for problems like optical flow where the images are known
to be similar.

As reviewed in Section 2, other work has also considered
the problem of optimization-guided image morphing [Gao and
Sederberg 1998; Matusik et al. 2005; Wu and Liu 2013]. Our ap-
proach is designed to allow greater dissimilarities between images.
Rather than comparing colors or gradients at corresponding points,
we compare compatibility of corresponding warped image neigh-
borhoods. To this end, we adapt the structural similarity (SSIM)
measure introduced for perceptual image comparison by Wang et al.
[2004].

We make the resulting optimization framework more tractable by
representing the inter-image map using a halfway parameterization.
This representation offers a number of benefits.

—Symmetry. The parameterization does not favor either image.
—Continuity. The map can represent simple occlusion discontinu-

ities using a continuous function, thus simplifying regularization.
—Inclusivity. When extended at its boundaries, the parametric do-

main spans the content from both images.

We show that the other steps in morphing also greatly benefit from
the halfway parameterization.

—Nonlinear paths. The map can concisely represent quadratic mo-
tion paths to reduce deformation during the morph.

—Evaluation. The inverse map supports direct evaluation, so the
morphed image is computed within a simple pixel shader, without
rasterization of a fine triangle mesh.

—Extrapolation. Correspondences are defined beyond the image
boundaries, enabling a joint-image Poisson extension scheme to
reduce boundary artifacts.

2. RELATED WORK

Algorithms for automatically finding image correspondences are
typically based on registration, optical flow, or stereo matching
(for surveys, see Zitova and Flusser [2003], Baker et al. [2011],
and Scharstein and Szeliski [2002]). These methods assume struc-
tural relationships between source and destination images that are
not present in general image morphing. The same is true for view
interpolation in image-based rendering (see the survey in Shum

et al. [2003]) and for temporal upsampling of video sequences (e.g.,
Kang et al. [2003], Mahajan et al. [2009], and Yang et al. [2011]).
Nevertheless, for specialized image domains (such as faces or peri-
odic textures), correspondences can be automatically found [Bichsel
1996; Beymer 1996; Covell 1996; Liu et al. 2002; Yang et al. 2012].
Since matching features is in general an ambiguous and subjective
problem, artistic control is fundamental. Even when assisted by
snapping tools [Kass et al. 1988; Mortensen and Barrett 1995], this
interaction can be tedious.

Several methods relate to ours in that they also establish dense
correspondences between images by optimizing particular choices
of similarity, smoothness, and distortion terms. The methods of Gao
and Sederberg [1998] and Wu and Liu [2013] measure image simi-
larity based on color or gradients and therefore assume the images
to be related. Matusik et al. [2005] derive a similarity metric based
on the intensity of the compass operator [Ruzon and Tomasi 2001].
Their warp optimization is aimed at texture morphing and does not
offer artistic control. In contrast to these methods, our algorithm
accounts for map warping when comparing corresponding image
neighborhoods.

Yücer et al. [2012] present an approach to automatically trans-
fer edits across images of the same subject under strongly varying
viewpoints and changes in illumination. To this end, their method
creates a mapping between the two images. Unlike our approach,
their algorithm is designed specifically for images of the same sub-
ject, with related colors and gradients.

Our halfway parameterization is related to the cyclopean coor-
dinates introduced by Belhumeur and Mumford [1992] for solving
the stereo correspondences problem, if one considers moving the
camera along the stereo baseline. Mahajan et al. [2009] generalize
this concept by allowing each pixel to have a different transition
point, an idea adopted by Wu and Liu [2013] as well.

Recent work has explored entirely different approaches to image
morphing that lead to interesting effects. Shechtman et al. [2010]
applied patch-based texture synthesis to achieve interesting morph-
like effects in a fully automated way. Darabi et al. [2012] further
improve the quality of patch-based synthesis for scenarios where the
two input images have very different colors and structures. Rather
than morphing between a source and target image, photobios search
among a large collection of images of the same person to pro-
duce a plausible transition between two input faces [Kemelmacher-
Shlizerman et al. 2011].

There is relatively little work on controlling the motion paths
of features during the morph animation. The common approach
of linear interpolation does not reproduce rotations, as it leads to
unexpected nonmonotonic deformations. One possibility is to offer
artistic control at each feature, as proposed by Nishita et al. [1993].
An alternative is to factor rotations out of local transformations and
independently interpolate the components [Zhang 1996; Rossignac
and Vinacua 2011]. We describe a technique to improve motion
paths using a quadratic path optimization at pixel resolution.

3. THE HALFWAY PARAMETERIZATION

The first step in traditional approaches for creating a morph between
a pair of images I0 and I1 is to define a map φ from I0 to I1. One
challenge is that each image may contain “disoccluded” regions
that are invisible in the other image. Within disoccluded regions
of I0, map φ is typically left undefined and, across disoccluded
regions of I1, it must be discontinuous. To obtain a more complete
representation, one can introduce a second map from I1 back to I0,
but then maintaining consistency between the two maps during an
optimization process becomes quite expensive.

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

Automating Image Morphing Using Structural Similarity on a Halfway Domain • 168:3

Fig. 2. The inter-image map φ is the composition of two maps defined
using a common vector field v on a halfway domain.

Fig. 3. With a halfway parameterization, discontinuities due to simple oc-
clusions are represented using a continuous vector field v. Here the two
images are represented as 1D vertical segments and the associated corre-
spondence field v is plotted as a graph on the right.

Inspired by earlier work (e.g., Mahajan et al. [2009]), we address
these issues by forming the map using a halfway domain. Specifi-
cally, we define a single 2D vector field v over a domain � halfway
between the two images and use this field to create two maps (see
Figure 2):

φ0(p) = p − v(p) and φ1(p) = p + v(p). (1)

The inter-image map is the composition φ = φ1 ◦ φ−1
0 . This pa-

rameterization is nicely symmetric, because an exchange of the two
images simply corresponds to a negation of the vector field. As
illustrated in the 1D example of Figure 3, the vector field v is con-
tinuous even in the presence of simple occlusions. For instance, the
purple region in image I0 collapses to a point in image I1, yet the
vector field v defined over the halfway domain remains continuous.
Although the parametric domain area corresponding to the purple
region is shrunk, it is not degenerate. As shown with the orange re-
gion, the map can also be used to extrapolate correspondences when
one image extends beyond the boundary of the other. In fact, a sim-
ple constant extension of the vector field v (using clamp-to-border
sampling) yields useful correspondences beyond the boundaries, as
explored in Section 7.

4. CORRESPONDENCE OPTIMIZATION

To compute the halfway parameterization that best aligns the two
input images, we develop a multiresolution coarse-to-fine optimiza-
tion algorithm that operates on a regular grid of vector field sam-
ples v(p) defined over the halfway domain. At the finest level of
detail, the grid resolution matches that of the input images. We first
present the energy function that the algorithm minimizes to find
the best pixel neighborhood correspondences, then we describe the
multiresolution algorithm and our GPU implementation.

Fig. 4. The SIM energy term measures structural similarity of correspond-
ing warped neighborhoods N0, N1 of the two input images.

4.1 Energy Function

At each level in the coarse-to-fine optimization process, we optimize
the grid of vector values v(p) to minimize an objective energy E
defined over the halfway image domain �:

E =
∑
p∈�

E(p), with (2)

E(p) = ESIM(p) + λ ETPS(p) + γ EUI(p). (3)

We next describe each of the three energy terms. (We use fixed
weights λ = 0.001 and γ = 100 for all results in this article.)

Similarity energy. To measure whether corresponding neigh-
borhoods in the two input images have similar edge structure, we
use a modified version of the structural similarity index (SSIM)
introduced by Wang et al. [2004].

For each gridpoint p in the halfway domain �, the correspond-
ing image neighborhoods are obtained using the current map-
pings φ0

(
N (p)

)
and φ1

(
N (p)

)
of a 5 × 5 neighborhood N (p) of p

(see Figure 4). This allows severely warped neighborhoods to be
matched. For each halfway point p, we use bilinear interpolation
to gather the corresponding warped neighborhoods from images I0

and I1. Then, we evaluate

ESIM(p) = − 1

w h
SIM(N0, N1), with (4)

N0 = I0

(
φ0(N (p)

)
and N1 = I1

(
φ1(N (p)

)
. (5)

(Normalization by w h makes the term resolution independent,
while the negation turns a high similarity into a low energy.)

Just as in SSIM, the function SIM(N0, N1) is defined in terms of
the means, variances, and covariances of the pixel values in the two
neighborhoods. However, there are two key differences. First, we
omit the luminance term, because we want to match regions with
similar edge structure, regardless of luminance. And second, we take
the absolute value of the covariance term σN0N1 , because swapping
colors across an edge should not affect the energy. Formally,

SIM(N0, N1) = c(N0, N1) · s(N0, N1), with (6)

c(N0, N1) = 2σN0σN1 + C2

σ 2
N0

+ σ 2
N1

+ C2
and (7)

s(N0, N1) = |σN0N1 | + C3

σN0σN1 + C3
. (8)

Here, C2 = 58.5 and C3 = 29.3 are the same constants as in SSIM.

Smoothness energy. In the absence of other constraints, we
want the optimization to favor affine functions. This is accomplished
by minimizing the thin-plate spline (TPS) energy independently on

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

168:4 • J. Liao et al.

Fig. 5. The Thin-Plate Spline (TPS) term encourages smoothness of the
correspondence vector field v defined over the halfway domain.

components vx and vy of vector field v:

ETPS(p) = TPS
(
vx(p)

) + TPS
(
vy(p)

)
, where (9)

TPS
(
vx(p)

) =
(

∂2vx(p)

∂px
2

)2

+ 2

(
∂2vx(p)

∂pxpy

)2

+
(

∂2vx(p)

∂py
2

)2

, (10)

and analogously for TPS
(
vy(p)

)
(see Figure 5). The TPS energy is

defined over the halfway domain grid and discretized as in Finch
et al. [2011].

UI energy. To resolve ambiguities and provide artistic con-
trol, we allow the user to manually specify pairs of corresponding
points u0

i and u1
i in images I0 and I1. Let ūi = (u0

i + u1
i)/2 and

vui
= (u1

i − u0
i)/2. The correspondence between u0

i and u1
i forces

the halfway vector v(ūi) to equal vui
.

However, ūi does not in general lie exactly at a gridpoint p ∈ �.
Thus, we enforce soft constraints on the four nearest neighbors
pi1, pi2, pi3, pi4 of ūi . Each soft constraint is weighted by the
corresponding bilinear weight b(pij , ūi) such that

4∑
j=1

b(pij , ūi) pij = ūi . (11)

Therefore, the UI energy is

EUI(p) = 1

wh

∑
i,j | pij =p

b(pij , ūi)
∥∥v(pij) − vui

∥∥2
. (12)

Thus, by definition, EUI(p) is zero for gridpoints that are not in the
neighborhood of any constraint point ūu.

4.2 Optimization

We use a coarse-to-fine minimization approach to accelerate the op-
timization of the vector field v (and hopefully avoid local minima).

Multiresolution solver. We first build image pyramids where
the coarsest level has a resolution of 8×8 or 16×16 pixels. Proceed-
ing coarse-to-fine, we run an iterative relaxation on progressively
finer halfway domain grids. After each level is brought to conver-
gence, the solved vector field v is upsampled and used as starting
point for the next-finer level. We continue until reaching the desired
resolution for the halfway domain grid.

Iterative optimization at each level. At each gridpoint p in
the current level, we estimate the direction of the energy gradient
relative to v(p) using finite differences. We then use golden section
search [Kiefer 1953] to find the new optimal value for v(p) along this
search direction. To prevent foldovers, we restrict the search interval
so that φ0(p) and φ1(p) remain inside their respective 1-rings; the
maximum displacement is computed as shown in Figure 6. We
repeat the optimization for all points p until convergence.

Fig. 6. During line search optimization of v(p), we compute bounds on
the search interval to constrain maps φ0 and φ1 to remain bijections.

Fig. 7. Minimizing the combination of SIM, TPS, and UI energy terms
handles rotation, translation, and boundary deformation. For these two ex-
amples, we specified four and one user correspondence points, respectively.

For the optimization at the coarsest level, we omit the SIM en-
ergy term; this initial coarse solution is based solely on the user
correspondence points and TPS energy.

As shown in Figure 7, even with very few UI correspon-
dence points, the optimization is able to robustly find good cor-
respondences in the presence of affine transformations and shape
deformations.

4.3 GPU Implementation Details

To benefit from the huge processing power of modern GPUs, the
optimization process should be made as parallel as possible. Un-
fortunately, not all gridpoints can be independently optimized. The
foldover prevention strategy shown in Figure 6 requires that values
in a 1-ring around p remain constant while v(p) changes. Worse
still, since neighborhoods N0 and N1 in the SIM function (4) depend
on a 2-ring of values around p, all of these must be held constant
while moving v(p). We have found that, although we must indeed
respect the parallelism constraint imposed by the foldover preven-
tion, we can loosen the SIM restriction. In theory, this prevents us
from guaranteeing that the energy is reduced at each parallel it-
eration. However, in practice, the optimization converges and the
added parallelism speeds up the process by 15% to 130% in our
tests, depending on grid resolution.

We therefore divide the input grid into blocks with 64 × 16
gridpoints, each to be processed by a CUDA block with 32 × 8
threads. Within each block, we partition the points into the four
groups with 32 × 8 points that satisfy the aforementioned 1-ring
minimum separation. The points in each group are optimized in
parallel according to the algorithm in Section 4.2. Since there can be
no synchronization between independent CUDA blocks, the 64×16
gridpoint blocks are separated by gaps (four gridpoints wide) to
avoid conflicts arising from the SIM restriction. Points in these gaps
are processed by subsequent invocations that use gaps at different
offsets. (Not all points are optimized the same number of times, but
we found that this does not significantly affect accuracy.)

Whenever v(p) is modified, it is necessary to update ESIM(q) for
all q in its 5×5 neighborhood. Updating these 25 values from scratch
would involve as many as (52 − 1) × 52 = 600 memory accesses

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

Automating Image Morphing Using Structural Similarity on a Halfway Domain • 168:5

Fig. 8. These examples show that rotating regions shrink when using linear
motion paths. With quadratic paths, the shape is better preserved throughout
the morph. The red arrows show the path followed by a selected point.

Fig. 9. An additional vector w(p) at each halfway pixel defines a quadratic
motion path to reduce map deformation during the morph.

per thread. We instead incrementally update these. The key is to
keep the means, variances, and covariance terms for each point as
separate value terms. When v(p) is modified, the responsible thread
uses fast atomic operations to incrementally update the affected
terms for all neighbors q. After a fast intra-block synchronization,
each thread recomputes its own ESIM(p) from up-to-date terms.

We optimize the coarsest level (64 to 256 gridpoints) on the
CPU using a direct solver. For each finer level, the GPU relaxation
solver iterates until no more v(p) changes. Each golden section
search usually terminates in fewer than 10 iterations (given a search
interval of ε = 0.001).

5. QUADRATIC MOTION PATHS

Given the results of the optimization, the morphing sequence moves
each point p from its position q0 = φ0(p) in image I0 to its po-
sition q1 = φ1(p) in image I1, as a parameter α spans the time
interval [0, 1]. The typical approach is to use linear interpolation.

qα = p + (2α − 1)v(p) (13)

Unfortunately, when considered as a whole, linear motion paths can
lead to undesirable (often nonmonotonic) deformations, even when
a global rotation exists (see Figure 8). To reduce this problem, we
instead define quadratic motion paths.

At each point p, we solve for an additional vector w(p) that
defines the control point b1/2 = p + 2w(p) for a quadratic Bézier
path:

qα = (1 − α)
(
(1 − α)q0 + αb1/2

) + α
(
(1 − α)b1/2 + αq1

)
(14)

= p + (2α − 1)v(p) + 4α(1 − α)w(p). (15)

The idea is to use these additional degrees of freedom to improve
the morph quality. The path still goes through q0 and q1 and it
interpolates q1/2 = p + w(p).

Computing w(p). We select w(p) by minimizing the sum of
two energy terms. The first term, ED(w), guides the local deforma-
tions halfway through the animation to match the halfway rotation
and scale between the source and target images. The second term,
ER(w), encourages points that are at rest (i.e., for which v(p) ≈ 0)
to remain at rest during the animation.

Let points pi, pj be a pair of (either horizontal or vertical) neigh-
bors in the halfway domain �. Define the vectors connecting them
in images I0 and I1:

d0(pi, pj) = φ0(pj) − φ0(pi) (16)

= pj − pi − (
v(pj) − v(pi)

)
, (17)

d1(pi, pj) = pj − pi + (
v(pj) − v(pi)

)
. (18)

Halfway through the animation, we want the corresponding vec-
tors to match the halfway rotation and exponential scaling between
vectors d0 and d1:

d̃1/2(pi, pj) =
√∥∥d0(pi, pj)

∥∥ ∥∥d1(pi, pj)
∥∥ d̂s(pi, pj), (19)

with ds(pi, pj) = d̂1(pi, pj) + d̂2(pi, pj) and û = u/‖u‖.
(20)

The halfway vector we actually obtain from the quadratic path is

d1/2(pi, pj) = pj − pi + (w(pj) − w(pi)). (21)

Therefore we set the deformation energy term to

ED(w) =
∑
pi ,pj

∥∥d1/2(pi, pj) − d̃1/2(pi, pj)
∥∥2

. (22)

For the resting energy term, we use

ER(w) =
∑

pi s.t. ‖v(pi)‖ < 1

(
1 − ∥∥v(pi)

∥∥) ∥∥w(pi)
∥∥2

. (23)

Thus we compute the vectors w(p) that minimize the energy

E(w) = ED(w) + βER(w). (24)

This linear least-squares energy has a unique minimum if there
are any resting correspondences. Otherwise, we simply set the
mean w̄ = 0. We use β = 1 for all examples in this article.

As shown in the examples in Figure 8, using quadratic motion
paths that minimize neighborhood deformation in the halfway im-
age helps preserve shape throughout the morph, whereas linear
paths often shrink then grow any rotating region.

6. DIRECT PIXEL EVALUATION FOR RENDERING

Inspired by the work of Yang et al. [2011], we propose a simple
and efficient backward-mapping algorithm to render intermediate
frames within a morph. Our method does not involve mesh rasteri-
zation. Instead, each pixel in an intermediate image is independently
evaluated. Moreover, unlike mesh-based approaches, our method is
able to produce images that cover the entire domain of the input
images, as shown in Figure 10.

To simplify the presentation, we begin by considering the case
of linear paths. The goal is to invert Eq. (13) so that, given a point
qα in the intermediate image Iα , we find the corresponding point p
in the halfway domain �. Having obtained p, we use the functions

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

168:6 • J. Liao et al.

Fig. 10. Visualization of the halfway domain grid overlaid on the two
input images. With traditional rasterization, image pixels beyond the domain
boundary are left uncovered (as shown in blue). Our iterative pixel evaluation
approach fills these pixels with plausible values from the input images.

Fig. 11. In the presence of large rotations, omitting damping in the direct
iterative solver may lead to rendering artifacts; the original images are not
reproduced at the morph extremes because the solver fails to converge to
the correct halfway point. (Compare with Figure 8.)

φ0 and φ1 to perform sampling lookups into images I0 and I1. The
algorithm can be summarized as follows:

For each morph image Iα , we do the following.

(1) We render a single quadrilateral over the whole image domain.
(2) In the pixel shader, for pixel qα , we perform an iterative search

to find the corresponding point p.
(3) We sample I0 at φ0(p) and I1 at φ1(p) using bicubic filtering.
(4) We blend Iα(p) = (1 − α)I0(φ0(p)) + (α)I1(φ1(p)).

The main challenge is to find point p in step (2). It is obtained
using the following iterative search:

p(0) = qα, (25)

p(i+1) = qα − (2α − 1) v
(
p(i)

)
. (26)

The same approach works with quadratic motion paths, except that
we instead invert Eq. (15):

p(0) = qα, (27)

p(i+1) = qα − (2α − 1) v
(
p(i)

) − 4α(1 − α) w
(
p(i)

)
. (28)

Because the map is smooth, the iterative search generally converges
after just a few (e.g., 3–5) iterations in both the linear and quadratic
cases. One difficulty we have encountered is that, when the map
includes large rotations, the iterative search may cycle and thus fail
to converge (Figure 11). We avoid this by damping the vector values
during the iterative process:

p(0) = qα, (29)

v(0) = v
(
p(0)

)
, (30)

p(i+1) = qα − (2α − 1) v(i), (31)

v(i+1) = (η)v
(
p(i+1)

) + (1 − η)v(i). (32)

The same modification also applies to the quadratic path case. We
set the exponential smoothing factor η = 0.8 in all results.

Fig. 12. The fact that a halfway point p may map beyond the extent of one
image lets us extrapolate outside the image boundary.

The direct pixel evaluation algorithm is implemented on the GPU
and is extremely efficient, as reported in Section 9. One exciting
benefit of the direct evaluation approach is that it can be used to
immediately render a morphing image over an arbitrary surface.
Unlike conventional approaches, this immediate rendering offers
high-quality filtering and does not require rasterization into a tem-
porary texture buffer.

7. POISSON-EXTENDED IMAGE BOUNDARIES

Often, the optimized mapping computed in Section 4.2 appropri-
ately maps some regions of I0 outside the domain of I1 (or vice
versa). For example, in Figure 12 the red point in I0 is mapped
outside I1. When morphing, the color sampled from I1 is therefore
undefined. To address this, we extend each image by transferring
content from the other image using the halfway parameterization,
then seamlessly complete and stitch the resulting extended image
using a gradient-domain least-squares optimization (i.e., a Poisson
equation).

Pixel transport. We construct for image I0 an extended ver-
sion Ī0, for instance with 10% extra pixels in each direction. The
interior (in-bounds) region of Ī0 is copied directly from I0 and
is never modified. To transport content into the extended region
of Ī0, we evaluate a pixel shader with the following algorithm. For
each pixel q0 ∈ �̄0, we seek its domain point p (i.e., satisfying
φ0(p) = q0) to find its corresponding point q1 = φ1(p) ∈ �1. The
search for p is solved using almost the same iterative algorithm as
in the direct pixel evaluation of Section 6. The new difficulty is that
q0 lies in the extended region, so after the initialization p(0) = q0,
the value v(p(0)) is undefined. Nonetheless, we run the iterative
algorithm where v(·) is evaluated using clamped-to-border sam-
pling that corresponds to a piecewise constant extension of v. After
the iterative search, if the point q1(p) = p+v(p) lies outside image
I1, which is not uncommon, we assign pixel q0 an undefined value.
Otherwise, we sample the color in I1.

Completion using gradient-domain optimization. In the re-
sulting extended region, for each pair of adjacent pixels, we compute
their finite difference. This difference is set to zero if either pixel
is undefined, or if one of the pixels is on the perimeter of I0. We
optimize the pixel colors in the extended region of Ī0 to match these
desired differences while constraining the colors on the boundary
of I0 (as Dirichlet constraints) [Pérez et al. 2003].

We apply a similar process to seamlessly extend image I1 to Ī1 us-
ing colors transported from I0. The effect is that the extended region
of each image captures detail from the other image while seamlessly
matching the appearance of its own inner region. Figure 13 shows an
example result. Because the right image is contained within the left
image, its extension receives detail transported from the left image.
When there is no correspondence, as is the case for the extended

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

Automating Image Morphing Using Structural Similarity on a Halfway Domain • 168:7

Fig. 13. We extend the image domains beyond their original boundaries
(shown by inset rectangles), by transporting pixel values across the images
using the extrapolated map and solving a gradient-domain optimization to
obtain a seamless reconstruction.

Fig. 14. The interactive morphing system shows the input images, the
halfway morph, and an oscillating morph animation.

region of the left image, the gradient-domain optimization yields a
diffuse result.

Finally, we perform morphing using the extended images, without
any special treatment for boundaries (except clamp-to-border in the
unlikely case that the maps φ0 or φ1 were to reach outside the
extended images).

8. USER INTERFACE

Our prototype system provides a small set of views and UI controls
that allow the user to interactively guide the optimization towards
the desired morph effect. A few point correspondence points are typ-
ically sufficient to properly align important features to each other.
The correspondences between all remaining pixels are automati-
cally found.

Figure 14 shows our interface with an example image pair. The
two panes at the top show the input images with overlaid correspon-
dence points. Mouse operations allow the user to quickly add, move,

and remove correspondence points on these images. The bottom-
left pane shows the current halfway image. Generally, if this image
has no visible ghosting near corresponding object boundaries, the
optimizer has achieved a satisfactory result. The user is also able to
select correspondence points directly on the intermediate image by
clicking the first image position and dragging it to the second image
position. Please refer to the accompanying video (accessed in the
ACM Digital Library) for a demonstration. Finally, the bottom-right
pane displays a morphing animation. The correspondence optimiza-
tion runs in the background, while the bottom two panes are updated
interactively as the optimization progresses. The coarse-to-fine op-
timization is immediately restarted when the user manipulates the
correspondence points. This makes the process of producing con-
vincing morphs fast and intuitive.

9. RESULTS

All our results use the same default parameters in the optimization
objective. There is no user intervention beyond the specified pairs
of correspondence points, shown in red in all the figures.

Figure 15 compares our approach to several representative mor-
phing techniques using examples extracted from the corresponding
papers. Input images with overlaid correspondence points and an-
notations required by the previous work are shown on the far left
and far right. The second image in each row shows the result of
the related work, while the third image shows our results. Some
traditional techniques require significantly more user guidance than
our method to achieve nearly comparable results in these exam-
ples [Smythe 1990; Lee et al. 1996; Choi and Hwang 2011; Wu
and Liu 2013]. Other techniques are targeted at more specific prob-
lems and would be unable to properly handle most of the general
examples shown in Figure 16. These include temporal upsampling
of similar frames [Mahajan et al. 2009], texture-synthesis-based
discontinuous morphs [Shechtman et al. 2010], and methods spe-
cific to human faces [Yang et al. 2012]. Gao and Sederberg [1998]
explore a similar semi-automatic method, but aim at images with
similar colors. Our approach gives excellent results in these cases
and our similarity energy lets us handle more generic morphs of
scenes with different colors.

Figure 16 shows several results of our approach. The input im-
ages are shown on the far left and far right along with overlaid
correspondence points used during the morphing process. Note
that the top two examples require no correspondence points, pro-
viding an accurate result right away. In each row, the three cen-
tral images show the progression of the morph. These results
demonstrate the algorithm’s ability to handle different challenging
scenarios.

Table I reports the grid resolution and number of correspondence
points for each image in Figures 15 and 16. These grid resolu-
tions suffice to achieve an accurate morph. The table also shows
a timing breakdown of the different stages of our GPU optimiza-
tion algorithm. The correspondence optimization (Solve) requires
about one to seven seconds, depending on the dataset. Even when
using dense grids with over half a million points, the optimization
takes under seven seconds, which is reasonable for our interactive
system. Because the system shows mapping results as the opti-
mization progresses, the user need not wait until the optimization
completes to see the effect of newly added correspondence points.
The generation of quadratic paths (Path) and the computation of the
Poisson-extended image boundaries (Bndry) take approximately a
couple of seconds. Since these do not change the direct pixel corre-
spondences, they are not as important during correspondence point
manipulation. Nonetheless, if the system is idle and waiting for

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

168:8 • J. Liao et al.

Fig. 15. Comparison with morphs presented in prior methods. Input im-
ages I0, I1 are overlaid with the additional input (e.g., grids, points) used in
each method, as well as the sparse correspondence points (in red) used in
our method.

Table I. Statistics for the Morphs in Figures 15 and 16
Dataset Processing times* (sec)

Fig Image Resolution Points Solve Path Bndry Total
15 boy 600 × 480 2 2.5 0.6 0.6 3.7

man-cat 475 × 400 12 6.6 2.0 2.0 10.6
woman 160 × 160 4 1.4 0.7 0.6 2.7
girl 270 × 270 0 1.8 1.0 1.0 3.8
ball 306 × 262 10 3.2 0.9 1.0 5.1
model 97 × 123 1 2.5 0.4 0.5 3.4
tv 528 × 396 8 3.3 1.7 1.9 6.9
bush-obama 154 × 208 4 1.8 0.7 0.8 3.3

16 butterfly 306 × 248 0 2.0 1.2 1.1 4.3
flower 600 × 480 0 2.3 2.2 2.4 6.9
cat-lion 524 × 800 11 4.6 2.7 4.3 11.6
monalisa 440 × 440 2 2.6 1.2 1.8 5.6
man-lizard 720 × 540 13 6.3 2.3 2.9 11.5
caricature 400 × 448 3 4.7 1.8 2.0 8.5
lake 462 × 342 11 4.9 1.5 1.5 7.9

*Hardware: NVIDIA GTX 680 on Intel Core i7 @ 3.4GHz with 8GB RAM.

user input after correspondence minimization, it proceeds to per-
form these computations to provide a complete result.

Figure 17 shows how the gradual insertion of additional corre-
spondence points progressively improves the quality of the morph-
ing result in complex scenarios.

Our approach does not optimally handle cases where the ideal
correspondence is discontinuous due to occlusion. Figure 18 shows
such an example, where disoccluded regions on the hair of the
subject result in blending artifacts with the background.

10. EXTENSIONS

A limitation of our method is that some complex occlusion cases
that involve motion parallax cannot be handled properly with the
continuous halfway parameterization that we propose. Some exam-
ples are shown in Figures 1 and 2 of our supplementary material.
We introduce extensions that allow our method to address these
particularly challenging examples and further increase the range of
supported morphing effects.

Ignore mask. Our optimization tries to find the best correspon-
dences across the entire input image domains. The mapping between
regions that are not important for the desired morph effect (e.g., the
background) may have a bad influence on regions that are key (e.g.,
the foreground). To mitigate this problem, we allow users to delin-
eate regions that will be ignored by the similarity energy term. Pixels
flagged by the ignore mask do not enter into the computation of the
mean, variance, and covariance between neighborhoods in Eq. (6).
Figure 19 shows an example with this issue, as well as the improve-
ment achieved with the relaxed constraints due to the ignore mask.

Layer segmentation. We extend our framework to handle a
more general class of image transformations, such as complex dis-
occlusions and motion with parallax (see Figure 20). To this end,
our interface allows the user to quickly tag different layers us-
ing intelligent scissors [Mortensen and Barrett 1995]. These lay-
ers are processed independently and then composited (respecting
their depth order). When processing each layer, pixels beyond
its boundary are also flagged with an ignore mask. Intermedi-
ate image pixels that do not overlap with any of the layers are
filled in using the same gradient-domain optimization process used
for the Poisson-extended image boundaries. In the example of
Figure 20, independent vector fields are computed for the ball,

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

Automating Image Morphing Using Structural Similarity on a Halfway Domain • 168:9

Fig. 16. Example morphing sequences. User-drawn correspondence points are shown in red over the input images I0 (left) and I1 (right). Caricature by
c©Court Jones.

goalkeeper, and background, leading to improved results. The im-
pact on performance is small since the expensive similarity term
need not be computed for masked regions.

Extrapolating caricatures using quadratic motion paths.
We can use our technique to extrapolate the morphing sequence

past the original input images in either direction. This is particularly
appealing when morphing from a photograph to a caricature of that
photograph, as shown in the two rightmost images of Figure 21.
Note that, by using our novel quadratic motion paths that minimize
deformations during the morph, local distortions in the resulting
image are greatly reduced when compared to linear motion paths.

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

168:10 • J. Liao et al.

Fig. 17. Given the input images at left and right, the three middle images show halfway morphs obtained with various subsets of control points (no control
points, red points only, and both red and green points). Ghosting due to misalignment is progressively reduced.

Fig. 18. Blending artifacts may occur on disoccluded regions, as shown in this rotating head example.

Fig. 19. By introducing a set of “ignore” masks (shown in red), we can avoid undesirable distortions caused by false matching of dissimilar regions.

Fig. 20. Segmenting a morph into layers (ball, player, and background) improves results in cases of disocclusion and motion parallax.

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

Automating Image Morphing Using Structural Similarity on a Halfway Domain • 168:11

Fig. 21. Examples of decoupling shape and color interpolation during a morph and extrapolating the motion paths. Caricature by c©Court Jones.

Decoupling shape and color transitions. The fine-grained
matching provided by our approach allows us to effectively combine
colors from one image with the shape of the other image without
significant artifacts. The two middle images in Figure 21 show the
combinations of the shape from a photograph with painted detail
from the caricature and vice versa.

11. CONCLUSIONS AND FUTURE WORK

In this work, we presented a variety of contributions to the well-
studied problem of generating high-quality morphs between two
images. The use of a halfway parameterization for establishing cor-
respondences provides a way to handle simple occlusions without
compromising the optimization process. Handling more complex
occlusions and rotations remains an area of future work. Our sim-
ilarity metric allows neighborhoods with the same structure to be
matched, even those with distinct color distributions and geometric
distortions. An interactive user interface, powered by an efficient
GPU implementation of a coarse-to-fine optimization algorithm,
allows artists to quickly specify desired point correspondences to
achieve the desired morphs. A quadratic path optimization reduces
the distortions that arise from linear paths during the animation
sequence. Finally, we introduced a fast, per-pixel iterative search
algorithm for inverting the mapping. It does not require mesh ras-
terization and, in conjunction with our joint Poisson boundary ex-
tension, enables out-of-bounds matches when input image domains
do not exactly correspond.

As future work, in addition to handling more complex occlusions,
we would like to explore the entire space of color and motion paths,
perhaps even allowing explicit user control with a stroke-based
interface. We would also like to consider extending this technique
to morphing between video sequences.

ACKNOWLEDGMENTS

The caricatures in Figures 1, 16, and 21 are courtesy of
Court Jones (http://www.courtjones.com/), who retains their
copyright.

REFERENCES

S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski.
2011. A database and evaluation methodology for optical flow. Int. J.
Comput. Vis. 92, 1, 1–31.

P. N. Belhumeur and D. Mumford. 1992. A bayesian treatment of the stereo
correspondence problem using half-occluded regions. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 506–
512.

D. Beymer. 1996. Feature correspondences by interleaving shape and texture
computations. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 921–928.

M. Bichsel. 1996. Automatic interpolation and recognition of face images by
morphing. In Proceedings of the International Conference on Automatic
Face and Gesture Recognition. 128–135.

M. Covell. 1996. Eigen-points: Control-point location using principal com-
ponent analyses. In Proceedings of the International Conference on Au-
tomatic Face and Gesture Recognition. 122–127.

S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen. 2012. Image
melding: Combining inconsistent images using patch-based synthesis.
ACM Trans. Graph. 31, 4, 82.

M. Finch, J. Snyder, and H. Hoppe. 2011. Freeform vector graphics with
controlled thin-plate splines. ACM Trans. Graph. 30, 6, 166.

P. Gao and T. W. Sederberg. 1998. A work minimization approach to image
morphing. The Visual Comput. 14, 8–9, 390–400.

J. Gomes, L. Darsa, B. Costa, and L. Velho. 1999. Warping and Morphing
of Graphical Objects. Morgan Kaufmann, San Fransisco.

S. B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. 2003. High dynamic
range video. ACM Trans. Graph. 22, 3, 319–325.

M. Kass, A. Witkin, and D. Terzopoulos. 1988. Snakes: Active contour
models. Int. J. Comput. Vis. 1, 4, 321–331.

I. Kemelmacher-Shlizerman, E. Shechtman, R. Garg, and S. M. Seitz. 2011.
Exploring photobios. ACM Trans. Graph. 30, 4, 61.

J. Kiefer. 1953. Sequential minimax search for a maximum. Proc. Amer.
Math. Soc. 4, 3, 502–506.

S. Lee, K. Y. Chwa, J. K. Hahn, and S. Y. Shin. 1994. Image morphing
using deformable surfaces. In Proceedings of the Conference on Computer
Animation. 31–39.

S. Lee, K. Y. Chwa, J. K. Hahn, and S. Y. Shin. 1996. Image morphing using
deformation techniques. J. Visual. Comput. Animat. 7, 1, 3–23.

Z. Liu, C. Liu, H. Shum, and Y. Yu. 2002. Pattern-based texture metamor-
phosis. In Proceedings of the Pacific Conference on Computer Graphics
and Applications. 184–191.

D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoorthi, and P. Belhumeur.
2009. Moving gradients: A path-based method for plausible image inter-
polation. ACM Trans. Graph. 28, 3, 42.

W. Matusik, M. Zwicker, and F. Durand. 2005. Texture design using a
simplicial complex of morphable textures. ACM Trans. Graph. 24, 3,
787–794.

E. Mortensen and W. Barrett. 1995. Intelligent scissors for image compo-
sition. In Proceedings of the Annual ACM SIGGRAPH Conference on
Computer Graphics and Interactive Techniques. 191–198.

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

168:12 • J. Liao et al.

T. Nishita, T. Fujii, and E. Nakamae. 1993. Metamorphosis using Bezier
clipping. In Proceedings of the Pacific Conference on Computer Graphics
and Applications. 162–173.

P. Perez, M. Gangnet, and A. Blake. 2003. Poisson image editing. ACM
Trans. Graph. 22, 3, 313–318.

J. Rossignac and A. Vinacua. 2011. Steady affine motions and morphs. ACM
Trans. Graph. 30, 5, 116.

M. Ruzon and C. Tomasi. 2001. Edge, junction, and corner detection using
color distributions. IEEE Trans. Pattern Anal. Mach. Intell. 23, 11, 1281–
1295.

D. Scharstein and R. Szeliski. 2002. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 1,
7–42.

E. Shechtman, A. Rav-Acha, M. Irani, and S. M. Seitz. 2010. Regenerative
morphing. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 615–622.

H. Shum, S. Kang, and S. Chan. 2003. Survey of image-based representa-
tions and compression techniques. IEEE Trans. Circ. Syst. Video Technol.
13, 11, 1020–1037.

D. B. Smythe. 1990. A two-pass mesh warping algorithm for object trans-
formation and image interpolation. Tech. rep. 1030, ILM.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. 2004. Image quality
assessment: From error visibility to structural similarity. IEEE Trans.
Image Process. 13, 4, 600–612.

G. Wolberg. 1990. Digital Image Warping. IEEE Computer Society Press.
G. Wolberg. 1998. Image morphing: A survey. The Visual Comput. 14, 8,

360–372.
E. Wu and F. Liu. 2013. Robust image metamorphosis immune from ghost

and blur. The Visual Comput. 29, 4, 311–321.
F. Yang, E. Shechtman, J. Wang, L. Bourdev, and D. Metaxas. 2012. Face

morphing using 3D-aware appearance optimization. In Proceedings of the
Graphics Interface Conference. 93–99.

L. Yang, Y.-C. Tse, P. V. Sander, J. D. Lawrence, D. Nehab, H. Hoppe, and
C. L. Wilkins. 2011. Image-based bidirectional scene reprojection. ACM
Trans. Graph. 30, 6, 150.

K. Yucer, A. Jacobson, A. Hornung, and O. Sorkine. 2012. Transfusive
image manipulation. ACM Trans. Graph. 31, 6, 176.

Y. Zhang. 1996. A fuzzy approach to digital image warping. IEEE Comput.
Graph. Appl. 16, 4, 34–41.

B. Zitova and J. Flusser. 2003. Image registration methods: A survey. Image
Vis. Comput. 21, 11, 977–1000.

Received July 2013; revised December 2013; accepted February 2014

ACM Transactions on Graphics, Vol. 33, No. 5, Article 168, Publication date: August 2014.

