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Abstract

We introduce a view-dependent level of detail rendering system designed with modern GPU architectures in mind.
Our approach keeps the data in static buffers and geomorphs between different LODs using per-vertex weights for
seamless transition. Our method is the first out-of-core system to support texture mapping, including a mechanism
for texture LOD. This approach completely avoids LOD pops and boundary cracks while gracefully adapting to
a specified framerate or level of detail. Our method is suitable for all classes of GPUs that provide basic vertex
shader programmability, and is applicable for both out-of-core or instanced geometry. The contributions of our
work include a preprocessing and rendering system for view-dependent LOD rendering by geomorphing static
buffers using per-vertex weights, a vertex buffer tree to minimize the number of API draw calls when rendering
coarse-level geometry, and automatic methods for efficient, transparent LOD control.

1. Introduction

Real-time rendering of massive 3D scenes lies at the fore-
front of graphics research. In this paper we present a
new algorithm for real-time rendering of large polygonal
meshes. To our knowledge, this is the first out-of-core view-
dependent mesh renderer that supports texture mapping and
continuous smooth transitions between LODs to prevent
popping. Both of the above features allow our method to
faithfully render geometry with high fidelity without requir-
ing sub-pixel sized triangles with Gouraud-interpolated ver-
tex colors. Our method is also applicable to instanced geom-
etry, as we will show in the results section.

Our data structure, the progressive buffer (PB), is derived
from a progressive mesh (PM) [Hop96] and consists of a se-
quence of static buffers at different levels of detail for the
different clusters of polygons that make up the mesh. Each
buffer stores an irregular mesh, thus faithfully capturing ge-
ometric detail for a given polygon rate. Transitioning be-
tween different levels of detail is achieved via geomorphing
[Hop96]. Our novel method computes geomorphing weights
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per vertex in order to ensure consistency between neighbor-
ing clusters of triangles and to prevent boundary discontinu-
ities. Figure 1 shows a rendering of a PB with a texture and
with color-coded LODs.

Due to the usage of static buffers and texture mapping,
this system achieves high rendering rates using consumer
graphics hardware and scales to previous hardware.

This paper presents a preprocessing method and a ren-
dering system for geometry and texture view-dependent dy-
namic level of detail that is suitable for a large class of graph-
ics hardware. In order to achieve this objective, we introduce
the following techniques:

• A rendering method that geomorphs the geometry in the
vertex shader using per-vertex weights. This approach
completely prevents LOD pops and boundary cracks,
while still using "GPU-friendly" static vertex and index
buffers.

• A hierarchical method to more efficiently render geometry
that is far from the viewer, thereby reducing the number
of API draw calls.

• A scheduling algorithm to load required geometry and
texture data on demand from disk to main memory and
from main memory to video memory.

• An automatic method that controls and smoothly adjusts
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(a) Texture-mapped rendering with shadows (b) Color-coded chart LOD

Figure 1: View-dependent geometry and texture LOD on a 16M triangle mesh. The adaptive model being rendered has 800,000
triangles. This scene is rendered at 30fps.

the level of detail in order to maintain a desired framer-
ate. This approach is transparent and gracefully adapts the
rendering quality as a function of the graphics horsepower
and the scene’s geometric complexity.

The approach presented in this paper has the following
drawbacks and limitations:

• On current hardware, the size of the vertex buffer is
doubled when geomorphing to a lower level of detail.
Note, however, that this secondary buffer only needs to be
loaded when a particular cluster is in a geomorphing re-
gion (see Section 3). Since, high-detail geometry is only
required for regions that are close to the camera, the ben-
efit of a flexible data structure outweighs the overhead on
the small subset of buffers that reside in video memory.

• Our method requires a larger number of draw calls than
purely hierarchical algorithms. This is required because
current graphics hardware does not allow changing tex-
ture state within a draw call. Grouping separate textures in
unified atlases at higher levels of detail would change the
texture coordinates, thus preventing those from being geo-
morphed appropriately. We believe the advantages of tex-
ture mapping are more important than the efficiency gain
of having fewer draw calls on clusters near the camera.
For clusters far from the camera, we address this problem
by grouping the low resolution data in unified buffers, thus
reducing the number of draw calls on large scenes, where
it matters the most.

• Although this approach does not require a perfect vox-
elization of space to construct different clusters of adja-
cent faces, our rendering method achieves better results
when there are no clusters significantly larger than the
average. This is because the maximum cluster radius re-
stricts the size of the LOD regions as described in Sec-
tion 4. For best performance, clusters should have sim-
ilar bounding radii (within each connected component).
We address this by first voxelizing space, and then further
splitting each cluster into charts that are homeomorphic to
discs and thus can be parametrized.

The remainder of this paper is organized as follows. In

Section 2, we describe previous work and how it relates to
our approach. Section 3 outlines our basic data structure,
the progressive buffer, which provides a continuous level
of detail representation for the mesh. In Section 4, we de-
scribe how we efficiently render progressive buffers. Section
5 presents our preprocessing algorithm, which partitions the
mesh into clusters and generates the progressive buffers for
each cluster. Finally, we present results in Section 6 and sum-
marize in Section 7.

2. Previous work

Several methods for efficient rendering of large polygon
models have been proposed in the past. The earlier works
focused on continuous LOD, while more recent research ad-
dresses rendering large models that do not fit in video mem-
ory, thus opening a number of different issues, such as out-
of-core simplification and memory management.

The first approaches developed for view-dependent real-
time mesh rendering adaptively simplified at the triangle
level via edge collapses [XV96, Hop97, ESV99]. With the
advent of programmable graphics hardware it has become
much more efficient to perform larger scale simplification
on static buffers. Other methods clustered sets of vertices in
a hierarchical fashion [LE97]. While these methods are gen-
erally good at providing view dependent LOD, none of the
above methods are applicable to out-of-core rendering of ar-
bitrary polygonal meshes.

An alternative approach for rendering large meshes was
presented by Rusinkiewicz and Levoy [RL00]. Their method
converts the input mesh to a vertex tree, which is then
rendered using point primitives. However, current graphics
hardware is more optimized for rendering triangle primitives
with texture/normal maps, which usually produces higher
quality results for the same rendering cost. There are several
hybrid approaches that use both triangle and point primitives
in order to reduce rendering cost (e.g., [CN01, DH02]).

Recent out-of-core methods for view-dependent mesh
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(a) Transition between two LODs. (b) Vertex LOD as a function of distance from camera.

Figure 2: The geomorph depicted on the left occurs when the cluster’s bounding sphere’s center is near the transition point
between rendering PBi and PBi−1. To ensure continuity, the geomorph must be performed at a distance of r away from this
transition point, where r is the maximum cluster radius. This is necessary so that all vertices have finished geomorphing when
the cluster switches LOD. The variables k, s, and e determine the size of the LOD bands and the geomorph region.

rendering have focused on the fact that graphics hard-
ware is significantly more efficient when rendering static
triangle buffers from video memory. These methods use
irregular meshes, the most common used path on cur-
rent graphics cards, making them very efficient for a
given fidelity. There are several recent methods for
out-of-core rendering based on irregular meshes (e.g.,
[ESC00, VM02, Lin03, CGG∗04, YSGM04]). These meth-
ods address issues of memory management and prefetching
to video memory. However, to our knowledge, none of the
previously published works for out-of-core rendering of ar-
bitrary polygonal meshes provide a continuous smooth tran-
sition between different LODs nor do they support texture
mapping. The above methods rely on the fact that, with a
very high triangle throughput rate, one can store the required
attribute data per vertex and directly switch the rendered tri-
angles to a coarser level of detail before the change becomes
visually noticeable (i.e., before a screen space error tolerance
is met).

Our novel approach geomorphs between the levels of de-
tail, resulting in a smooth pop-free transition, regardless of
the screen-space error of the approximation. It does not re-
quire pixel-sized triangles, as it can store detail in texture
maps and provide LOD control over the texture images.
Therefore, since the rendered geometry can be coarser, it
allows us to focus the GPU resources on rendering other
scene effects with complex shaders while still maintaining
real-time framerates. Furthermore, our method can be used
with older generation graphics hardware for a given loss of
rendering quality.

Gain and Southern [GS03] use geomorphing for static
LOD within each object of the scene. Our method, how-
ever, addresses multiple levels of detail for a single arbi-
trary object, thus allowing for view-dependent LOD of large
meshes. This is accomplished by computing the geomorph-

ing weight per vertex, as opposed to per object, by prop-
erly constructing mesh clusters, and by constraining where
LOD transitions take place, as described in the next section.
[Ulr02] presents a method designed for terrain rendering and
avoids transitions between objects of mismatched LODs by
introducing a small vertical ribbon mesh, which would likely
produce more significant texture-stretching artifacts for arbi-
trarily complex geometry. Our approach addresses arbitrary
meshes and avoids the need for ribbon meshes by performing
the geomorph computation per vertex. The idea of per-vertex
LOD was first introduced by the multiresolution rendering
algorithm of Grabner in 2003.

3. The progressive buffer

As mentioned above, our approach consists of constructing
a progressive buffer, which is a series of vertex and index
buffers that represent a mesh at different levels of detail
(LODs). Figure 2a shows two levels of detail of a progres-
sive buffer: PBi and PBi−1. Note that there are two vertex
buffers associated with each level of detail. Each cell repre-
sents a vertex, which is identified by an ID number. Each
level of detail also has an index buffer, which is omitted
from the figure. We will refer to the set of two vertex buffers
and one index buffer at a particular level of detail as a static
buffer (PBi, where i is the level of detail), and to the entire
sequence of static buffers as a progressive buffer.

Continuous level of detail. The discrete static buffers,
coupled with continuous geomorphing weights yield a con-
tinuous level of detail representation for the mesh. When
rendering a static buffer, geomorphing weights are deter-
mined in order to properly blend the vertex data between the
fine and coarse buffers based on distance from the camera.
The coarse buffer of PBi contains the same vertex data as the
fine buffer of PBi−1. Figure 2b shows a progressive buffer

c© The Eurographics Association 2005.



P. V. Sander & J. L. Mitchell / Progressive Buffers:View-dependent Geometry and Texture LOD Rendering

with 3 levels of detail. Note that, as the distance from the
camera increases, the cluster is geomorphed to the coarser
buffer and subsequently switches to a different static buffer.
As long as the geomorph to the coarser buffer is completed
before the switch, there will be no difference in the rendered
image when switching from one static buffer to the next.

View-dependent level of detail. So far, this method
works well for static level of detail, where the entire mesh
is rendered using the same static buffer and geomorphing
weight. However, in order to enable view-dependent dy-
namic level of detail, we must be able to assign different
levels of detail to different regions of the mesh. To achieve
this, we partition the mesh into multiple clusters and con-
struct a progressive buffer for each cluster. In order to pre-
vent geometric cracks on cluster boundaries, we must meet
the following requirements:

• When constructing the progressive buffers, consistently
simplify all clusters of each connected component in uni-
son in order to achieve consistent cluster boundary vertex
positions at all LODs, as described in Section 5.

• Ensure that the LOD and geomorphing weights of bound-
ary vertices match exactly across clusters, as described
next.

Clearly, one cannot assign a constant LOD for the en-
tire cluster, otherwise all clusters of a connected compo-
nent would need to have the same LOD for all boundaries
to match. That would not allow for dynamic level of detail.
To address this issue, we compute the geomorph weights per
vertex. If the geomorph weight is determined based on the
distance from the vertex to the camera, a boundary vertex
will have the same LOD and geomorph weight as its mate
on the neighboring cluster. This approach avoids boundary
cracks and allows the level of detail to vary across the mesh.
Note that the discrete static buffer is constant through the en-
tire cluster. It is determined based on the distance from the
cluster’s bounding sphere center to the camera.

The vertex LOD bar in Figure 2b shows that as long as
the proper buffers are used, one can render a cluster by ge-
omorphing each vertex independently, based on its distance
to the camera. The distance range in which the geomorph
takes place must be at least r away from the LOD boundary,
where r is the maximum cluster bounding sphere radius of
the mesh. This is necessary in order to ensure that none of
the vertices will be in the geomorph range after the cluster’s
bounding sphere center crosses the discrete LOD boundary
and the renderer starts using a different static buffer for that
cluster. As shown in Figure 2b, we choose the geomorph
range to be as far away from the camera as possible in order
to maximize the quality of the rendering.

Coarse buffer hierarchy (CBH). In order to minimize
the number of draw calls, we group the static buffer of the
coarsest LOD of all clusters in a single vertex buffer with a
corresponding index buffer. We then render different ranges
of this buffer with the aid of a hierarchical data structure

No

No

Most likely

Yes

Video memory

100MBYes3 (active)

Full datasetNo0 (not needed)

50MBYes1 (needed soon)

20MBYes2 (almost active)

Sample
thresholds

System memoryPriority

Figure 3: Different priority levels along with where the
buffers reside and example maximum thresholds.

which groups clusters together. This approach, detailed in
Section 4.3, also allows us to perform frustum culling at
any node of the tree.

Out of core data management. During rendering of an
out of core model, the engine keeps track of the continu-
ous LOD determined by the center of the bounding sphere
of each cluster. As this number changes, the engine appro-
priately loads and unloads data to and from the disk, main
memory, and video memory. We employ a system that has
four priority levels, as shown in Figure 3. Active buffers
that are currently being rendered must reside in video mem-
ory and have priority 3. Buffers that could become active
very shortly if the distance from the camera to the cluster
changes slightly have priority 2 and are also loaded to video
memory (this buffer prefetching is very important to ensure
the buffer is available when needed). Buffers that could pos-
sibly be needed in the near future have priority 1 and are
loaded to main memory, but not to video memory. Finally,
all other buffers have priority 0 and only reside on disk. A
least-recently-used (LRU) scheme is used to break ties be-
tween buffers that have the same priority level. As shown in
Figure 3, the engine can set thresholds to each of these pri-
ority levels based on the amount of video and main memory
present and how fast it can read from the hard disk. Meth-
ods to automatically adjust the complexity of the scene given
fixed memory thresholds or current rendering frame rate are
described in Section 4.4.

Texture mapping. Progressive buffers can be texture
mapped using a consistent mesh parametrization. [COM98]
described an approach to preserve texture coordinates during
simplification. This method extends naturally to progressive
buffers. A single texture can be used for the entire progres-
sive buffer. Each mip level of the texture is associated with a
static buffer. Thus, the higher the static buffer being used, the
higher the maximum mip level. As with the geometry data,
texture data is also stored on disk and loaded out of core as
the level of detail changes.

4. Rendering

In this section, we describe how to efficiently render pro-
gressive buffers. We first describe a basic algorithm using
the data structure described in the previous section. Then we
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describe an optimized hierarchical algorithm to reduce the
number of draw calls. Finally, we describe how to adjust the
level of detail to maintain a stable framerate.

4.1. Computing the level of detail

In order to render the mesh, our rendering algorithm must
determine in real-time which level of detail we want to use
for each cluster. Our approach determines the level of de-
tail based on the cluster’s distance to the camera and tries
to maintain a constant triangle size after projection to the
screen. Assuming the worst case scenario, in which the tri-
angles in the cluster are all facing the viewer straight-on, this
method maintains an approximately constant screen-space
area for the triangle as the camera moves. As the distance to
the camera doubles, the screen space area of the triangle is
reduced by a factor of four. As a result, every time the dis-
tance to the camera doubles, we switch to the next coarser
level of detail, which has four times fewer vertices. Note
that, as shown in Figure 2, this is only true if the parameter
s is set to its default value of 0. The variable s, however, can
be set to a positive or negative value in order to further ad-
just the LOD. One can consider other distance and vertex ra-
tios, but one significant advantage of each LOD having four
times more vertices than its parent is that the same factor
of four can be applied to the textures, which is convenient,
especially when mipmapping these textures. This way, both
vertex and texture detail change by the same factor from one
LOD to the next.

The variables s and k from Figure 2 can be adjusted as a
function of several values, such as framerate, memory and
triangle count upperbound. s is used as a bias term for the
LOD, while k is a scaling term. Section 4.4 describes how to
automatically adjust these values to maintain a given fram-
erate.

We set the variable e, which represents the length of the
geomorph band, to its maximum allowed value of k−r. This
makes the transitions smoother and does not affect rendering
performance since the GPU still processes the same number
of triangles.

Given s, k and d, which is the distance from the cluster’s
center to the camera, the level of detail of a cluster is

i = f loor
(

log2

(
d− s

k
+1

))
. (1)

Prior to rendering the cluster, we must also determine the
start distance, ds, and the end distance, de for the geomorph
region within that cluster, which is computed as follows:

de = (2i+1−1)k + s− r
ds = de− e .

(2)
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Figure 4: The coarse buffer for the entire mesh (left) and
its accompanying hierarchy, which is used to minimize the
number of API draw calls.

These two values must be placed in the GPU’s constant
store, so that during rendering, the vertex shader can inter-
polate the position and other attributes based on the vertex
distance from the camera.

4.2. Basic rendering algorithm

The basic rendering algorithm traverses all of the clusters
and, for each cluster, tests the cluster’s bounding sphere
against the view frustum. Should the cluster be inside the
frustum, it then sets the appropriate constant store variables
and renders the desired level of detail. The buffers represent-
ing that level of detail should already reside on the graph-
ics card, due to their high priority, unless the amount of
available graphics memory is not sufficient to render the
scene. The following vertex shader pseudocode properly ge-
omorphs between the two positions, p1 and p2:

d = length(p1 - eye);
w = smoothstep(ds, de, d);
Pos = lerp(p1, p2, w);

Normals and texture coordinates are also geomorphed this
way. Texture coordinates can be morphed because a consis-
tent parametrization is generated for all LODs. Note that nor-
mals need to be renormalized after geomorphing.

The pixel shader performs two texture fetches from the
two textures (corresponding to the two LODs), and then in-
terpolates between them using the same interpolation weight
w.

4.3. CBH rendering algorithm

In order to reduce the number of draw calls, group clusters at
the coarsest LOD level. Since the coarsest buffers take little
space, they can always be loaded into video memory.

As shown in Figure 4, the coarse buffers are grouped in
an order dictated by the coarse buffer hierarchy (CBH). The
CBH is a tree that contains all the clusters of the mesh as
leaves. When rendering, the engine parses this hierarchy, and
when it finds that all clusters below a certain node in the
tree are in the coarsest level (by testing the node’s bound-
ing sphere), it renders all those clusters using a single draw
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call. For instance, node CD in the tree can render clusters C
and D with a single draw call, since they are adjacent in the
index buffer. The node simply stores the starting index and
the number of triangles. The coarsest buffer does not contain
parent information, since there are no coarser LODs.

In order to take advantage of early-Z culling hardware,
we first render all nodes that are not in the coarsest level,
since they represent the front-most geometry. We then ren-
der all coarse nodes by performing a depth-first CBH traver-
sal. First, all leaves that are at the coarsest level are tagged
"renderable." Then, the recursive algorithm first traverses the
children of a particular node and, if they are both tagged ren-
derable, the current node is tagged as renderable. Otherwise,
if one of the children is tagged as renderable, it adds that
child node to the list of nodes to be rendered. After the tree
traversal is complete, all nodes in the list are rendered using
a smaller number of API draw calls.

4.4. Level of detail control

In this section, we describe how we can automatically con-
trol the level of detail. This allows our method to work at
satisfactory frame rates on a wide variety of GPUs.

The level of detail is adjusted by increasing and decreas-
ing the k variable from Figure 2b. When this variable reaches
its minimum value or r + emin, the s variable can be de-
creased to a value smaller than 0 if the level of detail must
be further decreased.

What remains to be determined is whether, given the cur-
rent runtime state, we want to increase or decrease the level
of detail. Ideally, we would simply use the framerate to de-
termine whether we want to increase or decrease the level
of detail. For instance, if it is above 65 fps, we increase
the LOD, and if it is below 55 fps we decrease the LOD.
However, oftentimes framerate only changes after an unde-
sirable event has already taken place. For instance, if the
active textures exceed the capacity of video memory, the
framerate suddenly drops. Ideally, we would like to prevent
such drops. In order to achieve this, we propose setting a
video memory upper bound, a system memory upper bound,
a triangle-count upper bound, and a framerate lower bound.
The level of detail is constantly and slowly increased unless
one of these bounds is violated, in which case, it decreases.
Using these bounds on the best indicators of performance,
we prevent such drastic framerate changes. Naturally, the
bounds can be tuned to the system configuration. Preprocess-
ing is not affected by these changes and the same progressive
buffer data structures can be used on all systems.

5. Preprocessing algorithm

In this section, we describe the steps involved in converting a
triangle mesh into a progressive buffer. These preprocessing
stages are mainly based on previous techniques for simplifi-
cation and texture mapping of LOD representations.

5.1. Segmentation

To segment an input mesh into clusters, we use a voxeliza-
tion of space. This ensures that the bounding spheres of all
the clusters are bound based on the size of the voxels. This,
however, may result in voxels that parameterize with high
distortion, have annuli, and are composed of disconnected
components. To address these problems, we further split the
clusters into charts that are mostly planar and homeomorphic
to discs. To achieve this, one can do this chartification man-
ually or use one of several existing chartification algorithms
(e.g., [MYV93, LPRM02, SWG∗03]). These charts can then
be parametrized and their attributes can be stored in a single
texture atlas for each cluster.

5.2. Hierarchy construction

To build the CBH, we start with all of the clusters as leaves
of the tree and then perform a bottom-up greedy merge. All
possible merging pairs are placed in a priority queue, sorted
by smallest bounding sphere of the resulting merged cluster.

The above approach ensures that nearby clusters will be
grouped together. Disconnected components can also be
merged together, as long as they are using the same LOD
band sizes (i.e., the same k, s, e, and r).

5.3. LOD-compliant parametrization

In order to texture map the mesh, each chart must
parametrized into a disc and packed into atlases for each
cluster. The parametrization restrictions for chart boundaries
are discussed in [COM98] and [SSGH01]. Any parametriza-
tion metric can be used (e.g., [Flo97, SSGH01, DMA02]).
For our examples, we used the L2 stretch metric from
[SSGH01], which minimizes sampling distortion from the
3D surface to the 2D domain.

The computed parametrization and resulting texture
mipmap will be applicable to all levels of detail. In the next
section, we will describe how we simplify the mesh to guar-
antee this.

5.4. Progressive mesh creation

In this step, we must simplify the mesh, ensuring that the
edge collapses keep the chart boundaries consistent and do
not cause flips in UV space [COM98]. We use the half-edge
collapse with the memory-less appearance preserving sim-
plification metric as in [SSGH01].

Each connected component must be simplified in unison.
In order to achieve this, we simplify one cluster at a time un-
til it reaches a specified user defined geometric error thresh-
old. The order in which we simplify the clusters does not sig-
nificantly affect the results, since we perform the same num-
ber of simplification passes on all the clusters between each
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pair of adjacent levels of detail. In order to consistently sim-
plify the cluster boundaries, when simplifying each cluster,
we also load the adjacent clusters and simplify the boundary
vertices as well. However, we keep the neighboring cluster’s
interior vertices fixed. This allows all boundaries to be sim-
plified and prevents boundary cracks. This method is related
to that presented by [Hop98] for terrain simplification and
by [Pri00] for arbitrary meshes.

5.5. Vertex and index buffer creation

Now that a PM has been constructed, we must extract
meshes at different levels of detail and create corresponding
vertex and index buffers. As mentioned previously, we chose
each level of detail to have four times fewer vertices than the
next finer one. For our examples, we picked five levels of
detail, as that resulted in a sufficient range of LODs.

After extracting the meshes at the different LODs, we con-
struct a set of vertex and index buffers for each cluster of
each LOD. Each vertex will not only contain its own at-
tributes (e.g., position, normal, texture coordinates), but it
will also contain all the attributes of its parent vertex in the
next coarser LOD. The PM hierarchy provides the ances-
try tree. The parent vertex is its closest ancestor that is of
a coarser level of detail. If the vertex is in the next coarser
level, the parent is itself.

After these buffers are created, the vertices and faces are
reordered using the method of [Hop99] to increase vertex
cache coherency and thus improve rendering performance.

Vertex buffer compression. One limitation of this work
is the doubled vertex buffer size that is required to render
progressive buffers on current graphics architectures. In an
attempt to offset this, we store the buffers with 28 bytes per
vertex. Each of the two normals is stored with 10 bits per
component for a total of 4 bytes per normal. Each set of
2D texture coordinates is stored using two 16-bit integers,
thus occupying 4 bytes each. Finally, each of the two sets of
3D position coordinates is stored using three 16-bit integers
each, for a total of 6 bytes each.

While the precision for the normals and texture coordi-
nates is sufficient, 16-bit precision for the position in a large
scene is not high enough. In order to address this, we initially
considered storing the position as a delta from the chart’s
center position. However, this would result in dropped pix-
els at chart boundaries because of precision errors when de-
compressing vertices from adjacent charts whose positions
must match exactly. In order to avoid this problem, we store
the position modulo r (p % r), where r is the largest clus-
ter bounding sphere. Given the stored position and the clus-
ter’s bounding sphere center position (which is made avail-
able through the constant store), the vertex shader can recon-
struct the original position. Since the stored values (p % r)
are identical for matching vertices on adjacent clusters, they
are reconstructed to the exact same value.

Figure 5: Visualization of the levels of detail.
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Figure 8: Number of unavailable cluster buffers when fol-
lowing a flypath with prefetching disabled. If prefetching is
enabled, there were no unavailable buffers for the same fly-
path.

5.6. Texture sampling

Next, we sample the texture images. In our cases, the tex-
tures were filled using data from other texture maps that use
a different set of texture coordinates, or the textures were
filled with normals from the original geometry. Next, we fill
in samples near the boundaries using a dilation algorithm
to prevent mipmapping and bilinear sampling artifacts. We
then compute mipmaps for the textures. Each level of the
mipmap corresponds to the texture that will be used as the
highest mip level of a particular LOD.

6. Implementation and results

We implemented progressive buffers in DirectX 9.0. Our ex-
periments were made on a Pentium 4 2.5GHz machine with
1GB of memory and a Radeon X800 graphics board.

In order to analyze our algorithm, we preprocessed the
Pillars model from Figure 7, a 14.4 million polygon textured
model with 288 voxels. We used an input model that was
split into parametrizable charts. The remaining steps were
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Figure 6: Results for texture-mapped rendering. The results of using a fixed LOD band size, k, is shown in the top four graphs.
The bottom four graphs show the results of automatic LOD control with a target of 60MB of video memory usage.

Figure 7: Wireframe rendering of the color-coded LODs for the Pillars model. Note the significantly lower tesselation to the
left, where it is far from the camera.

performed automatically as outlined in Section 5. Each voxel
used a 512x512 texture image at the highest level of detail.

Figure 6 shows results for texture-mapped rendering with
two different configurations for the Pillar model. The top
row of graphs shows statistics using a fixed LOD band size.
Note that the framerate remains at about 60fps until the end
of the flypath, when the camera starts moving away from the
model. At that point, the framerate increases, while memory
usage, number of faces rendered and draw calls drop. The
bottom row shows statistics for the same flypath, except that
instead of using a fixed LOD band size, it tries to maximize
the band size subject to a target of 60MB of video memory
usage. As evidenced by the second chart, memory remains
roughly constant around 60-70MB, causing the LOD band
sizes to shrink and grow automatically to meet that memory
requirement. This is a significantly lower memory footprint
than on the first experiment, and therefore the number of ren-
dered faces decreases by a factor of two and the framerate
increases to approximately 90fps.

The vertex caching optimization gave an improvement of
almost a factor of three in rendering speed. Peak rates for
our system were in the 60Mtri/sec range, which we consider
high given that we are decompressing and geomorphing be-
tween two buffers in the vertex shader.

Figure 5 shows the different LODs. The lowest level of
detail is shown in dark green. Coarse LODs, whose draw
calls are grouped together using the CBH, are shown in
white. Figure 7 shows the LODs of the Pillars model from
different vantage point. Note that the view point is close to
the right-most pillar.

Figure 8 illustrates the importance of prefetching by
graphing the number of clusters that were unavailable for
rendering when prefetching from disk was disabled (no dis-
tinction between priority levels 0, 1 and 2). With prefetching
enabled, and loading approximately 30% additional buffer
data, all clusters are available.

Figure 1 shows an example of shadow-mapping on our
system. A 16M triangle Parthenon mesh was used for this
example. Shadows were cast with the coarse geometry by
rendering the coarse mesh to the shadow map with just a
single API draw call. That scene was rendered at 30fps.

Figure 9 shows examples of using our system for instanc-
ing. In this case, the progressive buffer is loaded into mem-
ory and instanced multiple times. The total number of virtual
triangles is 45 million for the planes scene, and 240 million
for the dragon scene. However, less than 1 million triangles
are actually rendered when using the LOD system.

c© The Eurographics Association 2005.



P. V. Sander & J. L. Mitchell / Progressive Buffers:View-dependent Geometry and Texture LOD Rendering

(a) Instanced plane model (b) Color-coded LOD of planes scene

(c) Plane wireframe

(d) Instanced dragon model (e) Color-coded LOD of (d)

Figure 9: Examples of instancing: 900 planes for a total of 45 million triangles and 1600 dragons for a total of 240 million
triangles.

7. Summary and future work

We presented a new data structure and algorithm for dy-
namic level of detail rendering of arbitrary meshes. We
showed examples with out-of-core and instanced geometry.
To our knowledge, our out-of-core view-dependent renderer
is the first such system to provide smooth LOD transitions
and texture mapping, the latter being a key component of
real-time graphics. We presented experiments that demon-
strate the viability of such a geometry and texture LOD ap-
proach. The method allows for scales well, is suitable for
current and previous graphics hardware.

There are several interesting areas of future work:

Deformable models. Although we have not implemented
progressive buffers for deformable models, our approach can
be adapted to such a setting. The renderer would need to
be able to track a bounding sphere for each model, and be
aware of the maximum radius r of all clusters over all of their
possible poses (that is necessary in order to set the geomorph
range as shown in Figure 2b). All of these quantities can

be preprocessed. The bounding spheres would need to be
propagated up the CBH when they change.

Flypath lookahead. If the camera follows a specific
known path, such as in a presentation, an architectural walk-
through or a demo, the prefetching algorithm can be adapted
based on this flypath, since the application can easily deter-
mine which clusters will be needed ahead of time.

Tiled geometry. This technique can also be applied to a
streaming world system, commonly used in video games.
Only a single copy of each tile needs to be stored in video
memory. The different tiles would have to be simplified in
a consistent way, so that the vertices would match at the
boundaries at all LODs.

Future architectures. In future graphics architectures,
with performant texture fetch in the vertex shader, one could
consider storing the parent index rather than the parent ver-
tex attributes, thus reducing memory overhead.
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